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Abstract: Diverse forms of nonlinearity within stochastic equations give rise to varying dynamics in
processes, which may influence the behavior of extreme values. This study focuses on two nonlinear
models of the discrete Langevin equation: one with a fixed diffusion function (M1) and the other
with a fixed marginal distribution (M2), both characterized by a nonlinearity parameter. Extremes
are defined according to the run theory with thresholds based on percentiles. The behavior of inter-
extreme times and run lengths is examined by employing Fisher’s Information Measure and the
Shannon Entropy. Our findings reveal a clear relationship between the entropic and informational
measures and the nonlinearity of model M1—these measures decrease as the nonlinearity parameter
increases. Similar relationships are evident for the M2 model, albeit to a lesser extent, even though
the background data’s marginal distribution remains unaffected by this parameter. As thresholds
increase, both the values of Fisher’s Information Measure and the Shannon Entropy also increase.

Keywords: nonlinear Langevin equation; time series; Fisher–Shannon plane; run theory; extremes

1. Introduction

Numerous complex natural phenomena, observed via time series, are modeled using
stochastic processes due to limited knowledge about the underlying intrinsic processes.
Many of these phenomena are nonlinear in nature, leading to the prevalent use of nonlinear
stochastic models to describe them accurately.

The Langevin equation stands as a widely employed nonlinear stochastic model for
time series. It is used to describe the evolution of a wide class of stochastic diffusion
Markov processes and is associated with the equivalent Fokker–Planck equation for the
time evolution of the distribution function. One of its significant advantages is its capability
to model a broad spectrum of distributions, ranging from Gaussian to those with long tails.
The equation was applied in many fields of science, physics, chemistry, biology, and finance
(see Allen [1]), being a handy nonlinear model of time series. Its reconstruction from the
data has been extensively developed (for details, refer to the comprehensive review paper
by Friedrich et al. [2]) and applied to various natural time series, like rough surfaces,
porous media, physiology, financial data, turbulence, geophysical processes, and others
(see [2–5]).

Different types of nonlinearity give rise to varied dynamics within the process, likely
influencing the behavior of extremes. However, this specific aspect has not undergone
comprehensive investigation to date. Our study aims to illustrate, among other findings,
that despite the marginal distribution of the underlying time series (realization of the
process) remaining constant against changes in the model’s nonlinearity, the process’
dynamics significantly impact the behavior of extremes.

In this paper, we adopt the definition of extremes following the run theory [6–8].
We intend to examine the behavior of inter-extreme times and run lengths by using two
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informational quantities, Fisher’s Information Measure and the Shannon Entropy. Initially
formulated within the context of information theory, these two quantities have found suc-
cessful application in the analysis of complex dynamics of non-stationary time series [9–12],
particularly in examining dynamical changes in biophysical signals [13–15], in atomic
systems [16,17], in particulate matter concentration data [18], and in natural processes, like
earthquakes [19–21] or volcanic eruptions [22]. The Fisher–Shannon method applied to
the geoelectrical data enabled the identification of long-term deformation processes in the
Taiwan orogeny [23]. Moreover, they were utilized to elucidate laboratory and theoretical
earthquake rupture models [24].

2. Models

For our analysis, we require a stationary model characterized by a single parameter in-
fluencing nonlinearity. This choice facilitates the identification of the desired relationships.
Alterations in nonlinearity within the drift and diffusion terms can impact the marginal
distribution, potentially extending the tail of the distribution. Alternatively, such changes
can be chosen to maintain the invariant form of the marginal distribution. It is reasonable
to expect that an increase in the tail within the distribution would impact the behavior of
extreme values, given the clear association between long tails and extremes. Nevertheless,
a comprehensive and systematic study of these relationships is currently lacking. However,
the impact of changes in the process dynamics caused by changes in the nonlinearity of the
drift and diffusion terms, while maintaining the same marginal distribution, has not been
taken into account and analyzed so far. All the above conditions are met via the Langevin
equation model derived in [25], which has an additional important advantage of a simple
analytical form of the marginal distribution function with an explicit dependence on the
nonlinearity parameter. We employ the discrete nonlinear Langevin equation as a gen-
erator for time series, specifically utilizing the forward Euler discrete approximation [26]
expressed as:

y(t + ∆t) = y(t) + a(y(t))∆t +
√

b(y(t))∆tξt (1)

Here, y(t) represents a stochastic process, ∆t is the time step, and ξt stands for an
independent random variable with a normal density. The drift function a(y) and diffusion
function b(y) can take the form of either linear or nonlinear functions. In our investigation,
we consider two distinct forms of nonlinearity (models M1 and M2), each delineated by a
singular parameter. However, a common model exists for both of these classes, and both
are particular cases of the model introduced in [25].

For model M1, the diffusion function is defined as b(y) = y, while the drift function
a(y) depends on a nonlinearity parameter α, as follows:

a(y) =
1
2

(
1
y
− yα

)
(2)

We will explore instances with various α values such as α = 2, 1, 1/2, 1/4, 1/8, 1/16,
with y > 0. Consequently, the marginal distribution function p(y) takes the following
continuous form:

p(y) =
c
y

e−
1
y−

1
α yα

(3)

where c is a normalization factor. Function p(y) is the analytical stationary solution of
the Fokker–Planck equation, which is associated with the Langevin Equation (1) (see
e.g., Equations (12) and (13) in [25]). As the parameter α decreases, the tail of the distribution
increases. Figure 1 illustrates the marginal distribution function for half-Gaussian (G)

2√
π

e−y2
, exponential (E) e−y, and inverse-gamma (IG) 1

y2 e−
(

1
y

)
for comparative purposes.
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Figure 1. Marginal distribution functions p(y) (see Equation (3)) for α = 2, 1, 1/2, 1/16 (log–log plot).
For a comparison, three typical distributions are also presented: half-Gaussian (G), exponential (E),
and inverse-gamma (IG).

In model M2, both functions b(y) and a(y) are dependent on the nonlinearity parame-
ter β, i.e.,

b(y) = yβ−1, a(y) =
1
2

(
yβ−3 + (β− 2)yβ−2 − yβ

)
(4)

but the marginal distribution function has the invariant form

p(y) =
c
y

e−
1
y−

1
2 y2

. (5)

This setup allows us to eliminate the dependence of extreme value behaviors from the
distribution function. Notably, the form of p(y) mirrors that in Equation (3) for α = 2 (i.e.,
a(y) and b(y) with α = 2 in M1 equals a(y) and b(y) with β = 2 in M2). We will explore
instances with β = 2.0, 2.2, 2.4, 2.6, 2.8, 3.0.

For each α (and β) case, we have generated 10 time series of length n = 1, 000, 000 with
a time step dt = 0.01 using both models M1 and M2, intending to investigate the behavior
of extreme values within these data.

3. Definition of Extremes

In this study, the run theory (or crossing theory) [6–8] is chosen to define extremes.
According to this approach, a run is defined as a sequence of R contiguous values above
a predetermined threshold, and an extreme can be characterized by a three-component
vector (t, m, R), where t denotes the time when the run initiates, m signifies the magnitude
(such as the maximum within the run), and R represents the run’s length or run’s duration.
The thresholds are defined based on percentiles [27] and are established as a percentile
of the distribution of the series’ values. The run theory proves particularly beneficial in
estimating the duration of runs above a specific level, such as the time duration of droughts
or floods, stock exchange runs, and similar scenarios.

In the cases examined within this study, we assume thresholds above which the
extremes are detected to be the 90th, 92.5th, 95th, and 97.5th percentiles of the distribution
of the background series’ values. Percentile-based extremes are frequently employed in the
analysis of hydrological or climate extremes [27–29].

Two quantities can effectively represent a sequence of extremes: (1) The series of
inter-extreme times, which denotes the intervals between contiguous extremes. (2) The
series of run lengths, highlighting the duration of each extreme event.
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4. The Fisher–Shannon Information Plane

The Fisher-Shannon Information Plane (FSIP), initially proposed by Vignat and Bercher [11]
and then subsequently utilized in several works [30–32], is a planar representation where the
horizontal and vertical axes are functionals derived from the relevant probability distribution
function (PDF), the Shannon Entropy S, and Fisher’s Information Measure the FIM, respectively.
This tool serves as a convenient means to depict both global and local aspects of the PDFs
associated with the studied system on the same information plane.

For a continuous probability distribution function (PDF) f (x) with x ∈ ∆ ⊂ R and∫
∆ f (x) dx = 1, its Shannon Entropy is defined as [33]

S[ f ] = −
∫

∆
f ln f dx, (6)

a measure of a ‘global’ nature that is not excessively affected by significant changes occur-
ring in localized areas of the distribution’s support set ∆.

This is not true for Fisher’s Information Measure (FIM) that quantifies the gradient
of the PDF, being particularly sensitive even to small localized perturbations [34–36]. It is
defined as

F[ f ] =
∫

∆

1
f (x)

(
d f (x)

dx

)2

dx. (7)

Fisher’s Information Measure (FIM) has diverse interpretations, serving as a gauge
for the precision of parameter estimation, the extent of information retrievable from a
set of measurements, and a metric indicating the degree of disorder within a system or
phenomenon [36]. In the earlier definition of FIM (Equation (7)), the division by f (x) poses
difficulties when f (x) becomes too small to be accurately computed. In this case, utilizing
probability amplitudes ψ =

√
f , such an issue could be avoided [36,37]. The influence of

the gradient operator significantly impacts the contribution of subtle local variations to the
value of FIM. Hence, this quantifier is acknowledged as a ‘local’ metric [36].

Considering discrete probability distributions (P =
{

pj : j = 1, · · · , M
}

), its Shannon
Entropy S[P] [33] is defined as:

S[P] = −
M

∑
j=1

pj · ln(pj) (8)

When S[P] = 0, there is certainty about which of the possible outcomes j with proba-
bilities pj will occur, signifying maximal knowledge of the underlying process described
by the probability distribution. Conversely, for a uniform distribution, this knowledge is
minimal. For a given distribution P, the “normalized Shannon entropy” is calculated as:

Sn[P] =
S[P]
Smax

(9)

where Smax = ln(M).
For the same probability distribution P, starting from the expression in terms of real

probability amplitudes (Equation (7)), the FIM is defined as:

F[P] = F0

M−1

∑
i=1

[
(pi+1)

1
2 − (pi)

1
2
]2

(10)

The normalization constant (see also Supplementary Materials) is defined as:

F0 =

{
1 if pi∗ = 1 for i∗ = 1 or i∗ = M and pi = 0 ∀ i 6= i∗
1
2 otherwise
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It has been extensively discussed that this discretization is the best behaved in a
discrete environment [38].

In the discrete case, the axes of FSIP are the normalized Shannon Entropy Sn and FIM
F, which are well suited for investigating both global and local features of the probability
distribution under study.

5. Results

We generated 10 time series, each comprising a length of n = 1,000,000 for every one
of the six specified values of nonlinearity parameters, α (in the M1 model) and β (in the
M2 model), and identified the extremes, forming temporal point processes for each series.
This identification was carried out according to the methodology described in Section 3,
employing four distinct percentile values (90th, 92.5th, 95th, and 97.5th). Subsequently,
for each series of extremes, two distinct time series were derived—one representing inter-
extreme times and the other the run lengths (resulting in a total of 960 series) (Figure 2
shows, as an example, the series of interevent times and that of the run lengths for one
series generated with β = 2.0 and for the threshold as the 90th percentile of the distribution
of the series’ values). These individual time series were then analyzed by using the
Fisher–Shannon Information Plane. The calculation of the Sn[P] and F[P] involves the
calculation of the discrete probability distribution P. Since both the interevent time and the
run length are discrete variables, meaning they take only integer values, the probability
density for each of them is discrete. Thus, for instance, if the run length R varies from

Rmin to Rmax, P(R) = {p(Ri) =
NR=Ri

Ntot
, Ri = Rmin, ..., Rmax}. Figure 3 shows the probability

distribution for the run lengths shown in Figure 2b. After calculating the probability
distribution for each intervent time and run length series, we calculated Sn[P] and F[P] by
using Equations (9) and (10).
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Figure 2. Example of extremes for a time series generated with β = 2.0 and threshold = 90th percentile
of the distribution of the series’ values: (a) interevent times; (b) run lengths.

Figure 4 displays the results exhibited on the FSIP for both the series of inter-extreme
time (presented on the left) and the run length series (shown on the right) derived from the
data generated by M1. Different colors correspond to different values of the nonlinearity
parameter α. There are 10 symbols of each color because 10 time series for each α have
been produced.The widest variation in the results from these 10 series is observed for Sn,
particularly for the case when α = 1

16 . As α increases, this variation decreases.
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Figure 3. Probability distribution of run lengths of the extremes shown in Figure 2b.
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Figure 4. FSIP for both the series of inter-extreme time (left) and the run length series (right) derived
from the data generated by model M1. The color of symbols refers to the following cases: α = 1

16
(blue), α = 1

8 (red), α = 1
4 (yellow), α = 1

2 (purple), α = 1 (green), and α = 2 (cyan)).
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In Figure 5, averaged values of Sn and F are depicted. The average values of Sn and
F for the inter-extreme times decrease with an increase in the nonlinearity parameter α
(ranging from 1

16 to 2.0) for all analyzed threshold values. A similar trend is observed for
the time series of run lengths.
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Figure 5. Averaged FSIP for both the series of inter-extreme time (left) and the run length series
(right) derived from the data generated by model M1. The color of symbols refers to the following
cases: α = 1

16 (blue), α = 1
8 (red), α = 1

4 (yellow), α = 1
2 (purple), α = 1 (green), and α = 2 (cyan).

An effect of the increasing threshold on Sn and F is shown in Figure 6; we observe a
growth of these quantities for inter-extreme times and run lengths.

Figures 7 and 8 present graphs illustrating the outcomes obtained for model M2,
similar to those in Figures 4 and 5. The average value of Sn and mean value of F for
inter-extreme times decline with an increase in the nonlinearity parameter β (ranging from
2.0 to 3.0) across all analyzed threshold values (refer to Figure 8, plots on the left). However,
for the time series of run lengths, the relationship holds only for Sn, whereas for F, a notable
dispersion of results is observed (Figure 8, plots on the right).
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Figure 7. FSIP for both the series of inter-extreme time (left) and the run length series (right) derived
from the data generated by model M2. The color of symbols refers to the following cases: β = 2.0.
(blue), β = 2.2 (red), β = 2.4 (yellow), β = 2.6 (purple), β = 2.8 (green), and β = 3.0 (cyan).
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Figure 8. Averaged FSIP for both the series of inter-extreme time (left) and the run length series
(right) derived from the data generated by model M2. The color of symbols refers to the following
cases: β = 2.0. (blue), β = 2.2 (red), β = 2.4 (yellow), β = 2.6 (purple), β = 2.8 (green), and β = 3.0
(cyan).

When the threshold level increases, both Sn and F for inter-extreme times increase,
as shown in Figure 9, similar to M1. However, the behavior differs for run lengths in M2:
Sn increases for the case of β = 2.0, remains nearly constant for β = 2.2, but decreases for
higher β values. On the other hand, F for run lengths maintains an overall increasing trend
in most cases.
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Figure 9. Average Sn and F of inter-extreme times and run lengths versus the percentile threshold for
the model M2.

It is worth emphasizing that the range of changes in the values of these measures (Sn
and F) is considerably smaller in the M2 model compared to the M1 model.

6. Discussion

Natural complex phenomena often exhibit nonlinear behavior, necessitating appropri-
ate nonlinear models to capture their underlying processes. Creating a precise deterministic
model proves challenging due to our limited knowledge of degrees of freedom and internal
mechanisms. Hence, stochastic models are commonly employed, approximating the effects
of these processes via the introduction of random variables with specific probabilistic
characteristics. This stochastic approach becomes invaluable when analyzing time series
obtained from monitoring natural phenomena, particularly in studying extreme values due
to their significant impact on safety, the economy, and health.

The objective of this study was to explore how different forms of nonlinearity within
the stochastic model, specifically the Langevin equation, influence extreme behavior in
generated time series. To facilitate our analysis, we introduced a single parameter to index
the nonlinear variations in the drift and diffusion functions. We presented two models:
in M1, the drift function varies along with the nonlinearity parameter, altering the shape
of the marginal distribution function (shortening the tail of the distribution), while in M2,
the form of the distribution function remains constant, and the two terms of the Langevin
equation change accordingly. These models share a common aspect and smoothly transition
from one to the other (for the largest assumed value of α in M1 and for the smallest assumed
value of β in M2, both models become identical), unifying our analysis and interpretation.

To define and identify extremes, we employed run theory and percentile-based thresh-
olds particularly suitable for hydrological and meteorological data analysis. We assessed
extreme behavior on the Fisher–Shannon Information Plane, a widely used method for
discriminating different measurement data. The analysis involved two types of extreme-
related series: inter-extreme times and run lengths.

The Shannon Entropy, characterized by a global nature, measures the distribution
spread and shows minimal sensitivity to abrupt changes in a localized distribution. In con-
trast, Fisher’s Information Measure exhibits a local property by focusing on the gradient
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content of the distribution. FIM reflects the irregularities of the density and then, it is a
measure of systems disorder.

To comprehend the behaviors of entropic and informational measures, Sn and F,
let us delve into the physical interpretation of the underlying Langevin equation. This
equation encapsulates the diffusion of a particle within a potential niche (refer to Figure 10).
The potential V(y) is represented by the drift function (dV(y)/dy = −a(y)), and the
diffusion process, modeled by the white noise ξt, is modified by the diffusion function b(y).
The competition or interaction of these two forces (drift force Fd = a(y) and stochastic force
Fs = (b(y)/∆t)1/2ξt) describes the nonlinear dynamics of the process.

In Model M1, while the diffusion force remains constant across different α values,
the right branch of the potential niche steepens with the increasing α (Figure 10). This
restricts particle diffusion, limiting the y range and consequently shortening the tail of the
marginal distribution (as seen in Figure 1). This constraint curtails chaotic movements, lead-
ing to a reduction in entropy. Our findings reveal that such characteristics are, to a certain
extent, evident in the inter-extreme time and run length series of Model M1. The reduction
in F with the increasing α is associated with decreased fluctuations, thereby reducing
uncertainty in distribution function estimation of inter-extreme time and run length from
time series. Although these distributions become narrower (resulting in an increased F),
their ‘smoothness’ prevails, leading to a decrease in F, which dominates.

α = 2 α = 1�16

Fs Fs

Fd

1 2 3 4 5 6
y

0.5

1.0

1.5

2.0

V HyL

Figure 10. Graph of the potential V(y) for α= 2 (blue curve) and α = 1
16 (yellow curve). Arrows

illustrate forces: Fs—stochastic forces directed to the right or to the left according to the sign of the
diffusion term, Fd—repelling drift force..

In the case of Model M2, the marginal distribution of the background series remains
constant across different β values; therefore, both the informational quantities for these
series do not change with the parameter. However, the nonlinear dynamics, influenced by
varying forms of drift and diffusion forces (see Equation (4)), significantly impact extreme
behaviors, as indicated rather well by Sn. While the distributions of inter-extreme time and
run length series become narrower (yet ’smoother’) with the increasing β, the decrease in F
for the run lengths is no longer dominant, but adopts a compensatory nature.

7. Conclusions

Our findings demonstrate a distinct impact of varying forms of nonlinearity, repre-
sented by parameters α and β, on the behavior of extremes. With an increase in α, we
observed a shift of states towards lower values of F and Sn on the FSIP for inter-extreme
times, which continued at a slower pace with an increase in β in the M2 model. A similar
trend was noticeable for run lengths in M1, while in M2, F and Sn values related to run
lengths exhibited fluctuations that disrupted the trend. As the threshold level increases,
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these trends are sustained, with both F and Sn increasing. The observed shifts on the FSIP
can be partially explained based on the physical interpretation of the Langevin equation.

A crucial outcome of this study is that even if the nonlinearity in the drift and diffusion
terms of the Langevin equation does not alter the marginal distribution function, it still
influences the behavior of extreme values. Enhancing our understanding of how the
nonlinear form of the Langevin equation impacts the behavior of extremes in generated time
series will help in constructing more suitable stochastic models for underlying processes.
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