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Abstract: This paper introduces a novel method for enhancing fault classification and diagnosis in
dynamic nonlinear processes. The method focuses on dynamic feature extraction within multivariate
time series data and utilizes dynamic reconstruction errors to augment the feature set. A fault
classification procedure is then developed, using the weighted maximum scatter difference (WMSD)
dimensionality reduction criterion and quadratic discriminant analysis (QDA) classifier. This method
addresses the challenge of high-dimensional, sample-limited fault classification, offering early di-
agnosis capabilities for online samples with smaller amplitudes than the training set. Validation
is conducted using a cold rolling mill simulation model, with performance compared to classical
methods like linear discriminant analysis (LDA) and kernel Fisher discriminant analysis (KFD). The
results demonstrate the superiority of the proposed method for reliable industrial process monitoring
and fault diagnosis.

Keywords: dynamic process monitoring; discriminant analysis; multivariate statistics; supervised
learning; cold rolling mill

1. Introduction

The continuous development of data acquisition methods has substantially widened
the capacity to efficiently accumulate extensive datasets in industrial processes. Data-driven
techniques serve a crucial role in improving manufacturing operations [1–4]. Employing
historical data for online process monitoring to prevent critical failures and accidents is a
real-world utilization of data-driven techniques, spanning fault detection and diagnosis.
Fault detection serves as the initial stage in process monitoring, issuing advance notification
of potential process failures. Following this, fault diagnosis identifies the specific type of
anomaly detected, offering guidance for subsequent troubleshooting [5–7].

Typical multivariate statistical techniques employed for process monitoring and fault
detection include principal component analysis (PCA), partial least squares (PLS) and their
enhanced variations. These techniques use control charts such as SPE and T-square to eval-
uate whether the ongoing process is within normal operational bounds. The examination of
the contribution of each variable to these statistics aids in the identification of the variables
responsible for faults and supports fault diagnosis [8–10]. Moreover, research focusing on
PCA Bayesian network (PCA-BN) has significantly enriched fault diagnosis methodologies,
especially through the use of contribution plots [11,12]. Furthermore, optimized PLS and
parity methods have shown progress in nonlinear fault diagnosis [13,14].

However, industrial historical datasets often include both normal and labeled fault
data, emphasizing the significance of supervised classification in fault diagnosis tasks [15].
Through supervised classification, each fault data class can be distinguished from others,
enabling the allocation of online anomaly data to the relevant fault class. This streamlines
the process of implementing targeted solutions [7,16,17].
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Linear discriminant analysis (LDA), as a representative supervised classification, is
understood through two closely linked interpretations. The first, known as Fisher’s LDA,
was initially introduced by Fisher in 1936 for binary classification and later extended to
handle multiple classes by Rao [18,19]. The second interpretation is Bayesian LDA, which
operates as a linear Gaussian classifier based on Bayes’ rule [20]. These two perspectives
are essentially equivalent under specific conditions [21]. In practical conditions, Fisher’s
LDA and its refined variants often serve as dimensionality reduction techniques [22],
while Bayesian LDA and more generalized Gaussian classifiers are typically employed to
establish decision boundaries [23]. In some cases, the linear transformation based on the
Fisher criterion and the application of Bayesian linear discriminant function can be seen as
sequential stages in a classification task, often referred to as reduced-rank LDA [20].

In situations characterized by high-dimensional datasets with limited samples, the
classic Fisher criterion encounters a significant challenge related to the potential singularity
of within-class covariance matrices. To tackle this challenge, several enhanced approaches
leveraging subspace or null space techniques have been proposed [24–26]. However, it is
imperative to recognize that such preliminary dimensionality reduction may result in the
loss of discriminant information within the non-principal components or non-null spaces,
potentially impacting the overall classification performance [27]. While certain discriminant
analysis techniques based on matrix exponentials exhibit strong discriminative capabilities,
they impose considerable computational resource demands, especially when applied to
high-dimensional datasets [28,29]. To maximize the retention of discriminative features,
several modified Fisher criteria have been introduced. These criteria are designed to avoid
issues related to matrix inversion and null space analysis. Notably, the maximum scatter
difference (MSD) and maximum margin criterion (MMC) have emerged successively to
address the challenge of small sample size (SSS) problems [30–32].

Quadratic discriminant analysis (QDA) is an extension of Bayesian LDA, offering
increased flexibility and enhanced nonlinear classification capability [33]. However, its
quadratic relationship with feature dimension renders it more susceptible to issues asso-
ciated with high-dimensional data [34]. To tackle this, various improved methods aim
to refine parameter estimation for quadratic discriminant functions, reducing complex-
ity. These methods include regularized discriminant analysis (RDA), which combines the
covariance estimation aspects of LDA and QDA and other approaches utilizing sparse esti-
mators, such as sparse QDA (SQDA) [35–37]. However, many of these methods necessitate
complex assumptions and extensive parameter fine-tuning [34]. In recent years, hybrid
techniques combining preliminary dimensionality reduction and feature extraction have
been introduced. These include ridge-forward quadratic discriminant (RFQD), envelope
discriminant subspace (ENDS) QDA, locally linear embedding (LLE) QDA, PCA-QDA and
others [38–41].

To cope with dynamic and nonlinear scenarios, our proposed method combines
QDA with a novel dynamic feature extraction strategy. Our research primarily focuses on
optimizing scenarios where online fault magnitudes are relatively smaller than those in
historical datasets, with the objective of enhancing early classification capabilities.

This paper presents the following key contributions:

(1) An approach to represent dynamics within multivariate time series data is introduced.
It quantifies the dynamic relationships among lag submatrices by reconstructing past
samples using current data. The reconstruction errors serve as dynamic features to
expand the sample set.

(2) A fault classification procedure for dynamic nonlinear processes is developed. It
utilizes the WMSD criterion for dimensionality reduction of fault samples integrated
with dynamic features and employs QDA for classification. The effectiveness of
this approach is demonstrated in a subsequent novel cold rolling mill simulation
case study.
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2. Related Researches
2.1. Fisher Criterion Based Dimensionality Reduction

When referring to the term Fisher’s discriminant analysis (FDA), it typically implies
two main aspects: dimensionality reduction and classification. It’s noteworthy that the
classification phase shares commonalities with Bayesian LDA, which will be explored in
the subsequent subsection. Thus, this section focuses on explaining the dimensionality
reduction technique based on the Fisher criterion, which involves the projection of high-
dimensional data into a lower-dimensional feature space. This transformation aims to
maximize the between-class scatter while minimizing the within-class scatter.

We consider a training set as denoted by X ∈ Rn×p, where n represents the number
of observations and p denotes the number of features. This dataset comprises K distinct
classes, with ni being the count of observations within the i-th class. The sample mean mi
for the i-th class is calculated as follows:

mi =
1
ni

∑
C=i

xj i = 1, 2, . . . , K j = 1, 2, . . . , ni (1)

where xj represents a sample belonging to the i-th class.
We employ the covariance of the class means to establish the between-class scatter,

denoted as SB and the covariances within distinct classes to define the within-class scatter,
represented as SW . The expressions for these matrices are as follows:

SB =
K

∑
i=1

ni(mi − m̄)T(mi − m̄) (2)

Si = ∑
C=i

(
xj −mi

)T(xj −mi
)

(3)

SW =
K

∑
i=1

Si (4)

where m̄ represents the mean of all samples.
The projection from the original dataset to a reduced p′-dimensional space is expressed

as follows:
Y = XW (5)

Here, the resulting matrix Y(n× p′) denotes the reduced dataset and the projection
matrix W(p× p′) is composed of the weight vectors w. This projection helps to reduce
dimensionality while preserving critical information.

To obtain the weight vectors, we employ the Fisher criterion, which is formulated
as follows:

w = arg max
w

wTSBw
wTSWw

(6)

The aim of this optimization is to maximize the ratio of the between-class scatter to the
within-class scatter. This ratio is essentially a generalized Rayleigh quotient and the vector
that maximizes the function corresponds to the eigenvector associated with the maximum
eigenvalue of S−1

W SB. The eigenvalue decomposition is expressed as:

S−1
W SBw = λw (7)

In this equation, λ represents the eigenvalues and w denotes the eigenvectors. The top
p′ eigenvectors collectively form the projection matrix W. It’s important to note that the
maximum permissible value for p′, equivalent to the rank of SB, is no greater than both p
and K− 1. This constraint ensures that the dimensionality of the target space is suitably
low, making it suitable for subsequent classification tasks.
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2.2. Bayesian Linear and Quadratic Discriminant Analysis

Bayesian discriminant rules are widely employed probability-based classification
techniques, encompassing methods such as Bayesian LDA and QDA. In both LDA and
QDA, the classification task is fundamentally rooted in the pursuit of the highest posterior
probability, which is expressed as:

C(x) = arg max
i

P(C = i|x) i = 1, 2, . . . , K (8)

Guided by Bayesian theory, the posterior probability of sample x belonging to class i
is computed as follows:

P(C = i|x) = P(x|C = i)P(C = i)

∑K
k=1 P(x|C = k)P(C = k)

(9)

Here, P(x|C = i) represents the probability density function of the i-th class and
P(C = i) denotes the prior probability of the i-th class. It’s worth noting that this prior
probability signifies the proportion of the sample size within that class relative to the total
sample size.

Assuming that the samples of the i-th class follow the multivariate normal distribution,
whose probability density function is expressed as follows:

P(x|C = i) =
1

(2π)p/2|Σi|1/2 e−
1
2 (x−µi)Σ−1

i (x−µi)T
(10)

where µi represents the mean of the i-th class and Σi denotes the covariance matrix of the
i-th class.

By substituting Equation (10) into Equation (9) and subsequently applying logarithm,
the Bayesian discriminant function is derived. For the LDA classifier, the covariance
matrices of all classes are assumed to be equal. The linear discriminant function takes on
the following form:

δi(x) = log P(C = i|x)

= xΣ−1µi
T − 1

2
µiΣ

−1µi
T + log P(C = i)

(11)

In the equation, Σ is commonly referred to as the pooled within-class covariance
matrix. Its unbiased estimate corresponds to the weighted average of the covariances from
all classes and is computed as follows:

Σ =
1

n− K ∑
C=i

(ni − 1)
(
xj − µi

)T(xj − µi
)

(12)

When new observations are substituted to the discriminant functions associated
with each class, the class that yields the highest value becomes the output result of the
LDA classifier.

In the LDA classifier, distinct classes are separated by hyperplanes. However, when
we relax the assumption of equal covariances across all classes, LDA transforms into QDA.
In the QDA classifier, different classes are demarcated by quadratic hypersurfaces.

The discriminant function for QDA is expressed as follows:

δi = −
1
2

log|Σi| −
1
2
(x− µi)Σ

−1
i (x− µi)

T + log P(C = i) (13)

where |·| represents the determinant.
QDA offers the advantage of non-linear classification, but it comes with significantly

higher model complexity compared to LDA. This increased complexity elevates the risks
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of overfitting and issues related to singular values. Therefore, maintaining sufficient
classification information within a reduced dataset is of paramount importance when
employing QDA as a classification method.

3. Dynamic Feature Extraction Based Quadratic Discriminant Analysis
3.1. Dynamic Extraction and Feature Extension

In our prior research [42], we introduced methods for process monitoring and fault
detection, which primarily centered on extracting direct dynamic representations from
process data. These techniques yielded significant results. In this paper, we extend these
methods to the initialization of classified data. More precisely, we utilize the dynamic
process information derived from an extensive volume of normal training data to extract
valuable features for subsequent fault classification procedures.

For a standardized and whitened normal dataset represented by X0 with dimensions
n× p, we form its lagged submatrices at a one-step lag as follows:

Xk−1 =
[

xT
1 xT

2 xT
3 . . . xT

n−1

]T

Xk =
[

xT
2 xT

3 xT
4 . . . xT

n

]T
(14)

Here, each row vector xj represents an individual sample from X0, with j = 1, 2, . . . , n.
To establish a direct dynamic representation between these submatrices, our objective

is to determine the optimal transformation matrix that relates them. This is achieved by
solving the following optimization problem:

R = arg min
R

‖XkR− Xk−1‖ (15)

The transformation matrix R is a square matrix with dimensions p× p and is designed
for convenient application to online data. When Xk is invertible, the transformation matrix
R = X−1

k Xk−1, calculated using matrix inversion, precisely satisfies the requirements of the
objective function and minimizes it to zero. However, for more general cases, we use the
Moore–Penrose pseudo-inverse, which is also suitable for rank reduction. The calculation
of R is as follows:

R = pinv(Xk) · Xk−1 (16)

Here, pinv(·) denotes the Moore–Penrose pseudo-inverse. Previous research has
demonstrated that the reduced-rank version of the pseudo-inverse already contains a
sufficient amount of dynamic information. To minimize information redundancy, we
conduct a singular value decomposition (SVD) on Xk, which is expressed as follows:

R = V · pinv(S) ·UT · Xk−1 (17)

The reduced-rank version of SVD and the corresponding R can be expressed as:

Xk ≈ ŨS̃ṼT (18)

R = ṼS̃−1ŨTXk−1 (19)

Here, Ũ, S̃, Ṽ have dimensions of n× r, r × r and p× r, respectively, with r being
smaller than both n and p.

With the aid of the transformation matrix R, we can utilize the current submatrix Xk
to reconstruct the past submatrix Xk−1, as follows:

X̃k−1 = XkR (20)
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Moreover, the transformation matrix R can be applied to the fault training datasets. We
introduce a novel dynamic feature set by incorporating the error of reconstruction. These
features are subsequently combined with the original samples to create an augmented
vector, serving as the subject of further processing. The computational process can be
described as follows:

ẽj = x̃j−1 − xj−1

= xjR− xj−1
(21)

x̃j = [xj ẽj] (22)

In this context, xj denotes a sample from the ith fault training dataset with ni samples.
Here, j spans from 2 to ni. This computation leads to the formation of reconstructed error,
denoted as ẽj and the augmented vector, represented as x̃j. The augmented vector is a
fusion of static and dynamic features.

The dynamic reconstruction procedure described above is adaptable and can be readily
applied to either a pair or a series of new online samples.

3.2. Improved Dynamic Discriminant Analysis Classifier

To enhance the performance of nonlinear classification, our proposed approach lever-
ages an improved QDA classifier. The effectiveness of QDA is sensitive to the dimensional-
ity of the input data. As a preliminary step, we employ dimensionality reduction based on
a modified Fisher criterion.

The traditional Fisher criterion typically employs the inverse matrix of the pooled
within-class scatter to compute the transformation matrix. However, this approach carries
the risk of singular values, particularly when dealing with datasets with numerous features
but limited samples, a case frequently encountered in process fault analysis. Even if we
opt for a pseudo-inverse substitution, the utilization of too many parameters can lead
to overfitting. In such cases, the model becomes excessively tuned to the training data,
making it challenging to promptly detect minor faults.

To address these challenges, this paper adopts the WMSD criterion to formulate a
dimensionality reduction model with enhanced generalization capabilities [32]. The WMSD
criterion can be expressed as:

w = arg max
w

θwTSBw− (1− θ)wTSWw

= arg max
w

wT(θSB − (1− θ)SW)w
wTw

s.t. wTw = 1

(23)

In this expression, 0 < θ < 1 represents a weight coefficient. Notably, the WMSD
criterion replaces S−1

W SB from the classic Fisher criterion with θSB − (1− θ)SW . In order to
find the optimal value of the new Rayleigh quotient, we apply eigenvalue decomposition
to θSB − (1− θ)SW to obtain the weight vectors w and the projection matrix W. This substi-
tution not only eliminates the need for matrix inversion but also provides a mechanism for
adjusting the weight of the pooled within-class scatter.

While dimensionality reduction based on the modified Fisher criterion effectively
constrains the input dimensions of QDA to a maximum of K− 1 (where K represents the
number of classes), it is essential to acknowledge that valuable information might still
be sacrificed within this limited features. To enhance the discriminative capabilities of
our classifier without increasing the input dimensions for QDA, we expand the input
features of the modified Fisher model. We introduce the dynamic reconstructed error as
new features to both training and testing samples. The augmented vectors are structured
as Equation (22). As a result, the dimensionality model keeps the output dimension
unchanged while accommodating more dynamic information that proves advantageous
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for classification. Such combined techniques are particularly suited for detecting online
faults with smaller magnitudes compared to those present in the training sets.

Figure 1 illustrates the learning framework of the proposed method, delineating
the transformation of static and dynamic features across the algorithm’s layers. In this
schematic representation, the p-dimensional X corresponds to the fault training dataset,
while matrix Ẽ encompasses the reconstruction error vectors. The fusion of dynamic
features within Ẽ and static features from X creates an augmented dataset X̃, which
undergoes projection into a p′-dimensional space guided by the WMSD criterion. This
transformation paves the way for the training of the QDA classifier.

 

Figure 1. Learning framework of the proposed method.

3.3. Offline Modeling

During the offline modeling stage, the preparation of two distinct training datasets is
essential. The first dataset comprises normal data, characterized by the stable operation
of the process under study and a substantial sample size. The second dataset consists
of fault training data, which encompasses multiple classes, each represented by a signifi-
cantly smaller sample size compared to the normal data. This discrepancy in sample size
accurately mirrors the real-world conditions observed in industrial processes.

In the initial stage, we begin by substituting the preprocessed normal training dataset
into Equation (14) and then use Equations (18) and (19) to calculate the transformation
matrix, referred to as R. Following this, we proceed to initialize the fault training datasets
using the baseline of normal data. These fault datasets are subsequently utilized in into
Equations (21) and (22) to calculate the augmented vectors x̃ with dynamic features.

Assuming we are dealing with a total of K fault classes. In this context, X̃i represents
the augmented training dataset specific to the i-th fault class. The sample sizes of various
classes and the total sample size are represented by ni and n respectively. Based on these
datasets, we can readily compute the respective class means mi and the overall sample
mean m̄. From these calculations, we can derive the covariance matrix for each class,
subsequently enabling the assessment of within-class and between-class scatter matrices.

SB =
K

∑
i=1

ni(mi − m̄)T(mi − m̄) (24)

Si = ∑
C=i

(
x̃j −mi

)T(x̃j −mi
)

(25)

SW =
K

∑
i=1

Si (26)

where x̃j represents an augmented vector belonging to class i.
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Subsequently, according to the WMSD criterion expressed as Equation (23), we per-
form eigenvalue decomposition of θSB − (1− θ)SW as shown below:

(θSB − (1− θ)SW)w = λw (27)

To create the projection matrix W, we preserve the eigenvectors w corresponding to
the top p′ eigenvalues λ, a selection that is determined via cross-validation. The matrix W
can be succinctly expressed as:

W =
[
w1 w2 . . . wp′

]
(28)

Afterward, the low-dimensional projection of various fault classes can be calculated
as follows:

Yi = X̃iW (29)

In order to train a QDA classifier, it is essential to determine the mean, covariance
matrix and prior probability of each class. These parameters can either be recomputed
using the projected data Yi or derived from previously calculated values:

µi = mi ×W (30)

Σi = WT 1
ni

SiW (31)

P(C = i) =
ni
n

(32)

In these equations, µi and Σi correspond to the mean and covariance matrix of Yi from
the i-th class, while P(C = i) denotes the prior probability of class i.

At this point, a QDA classifier founded on dynamic feature extraction and modified
Fisher dimensionality reduction is trained.

3.4. Online Classification

Typically, the tasks of fault detection and fault diagnosis are carried out sequentially.
For the purposes of this study, we assume that the online fault samples have already been
accurately identified by the fault detection algorithm and subsequently classified using the
method proposed herein.

Now, when dealing with a new pair of online samples, denoted as xt and xt+1 and
suspected to be faulty, the online classification stage begins by initializing them with the
baseline obtained from the normal training data. Following this setup, we proceed to
compute the reconstructed error, ẽt and the corresponding augmented vector, x̃t, through
the following equations:

ẽt = x̃t−1 − xt−1

= xtR− xt−1
(33)

x̃t = [xt ẽt] (34)

Following this, we project the augmented vector into a low-dimensional space utilizing
the projection matrix, denoted as W, which has been derived from the training data for
various fault classes. The calculation of the low-dimensional projection yt is executed
as follows:

yt = x̃tW (35)

Finally, we integrate yt into the discriminant function for each class, employing the
QDA parameters obtained during the training phase as follows:

δi(yt) = −
1
2

log|Σi| −
1
2
(yt − µi)Σ

−1
i (yt − µi)

T + log P(C = i) (36)
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For the same new sample, the highest function value designates the class with the
highest posterior probability, thereby classifying the sample accordingly.

C(yt) = arg max
i

δi(yt) (37)

The flowchart in Figure 2 visually outlines the methodology presented in this paper,
offering a clear representation of the offline modeling and online classification procedures. It
provides a clear depiction of both the offline modeling and online classification procedures,
shedding light on how trained parameters are applied to newly acquired online samples.

 
Figure 2. Flowchat of the proposed method.

This process commences by harnessing a substantial volume of normal process data,
serving as the foundation for reference in subsequent standardization and whitening
procedures. Importantly, this phase plays a pivotal role in deriving the transformation
matrix R. Subsequently, the fault training datasets are initialized based on the normal
training data. These datasets are crucial in training projection and classification models.
For online samples, the process involves initialization with the normal training data as
well, followed by projection and classification based on the models developed from the
fault training data.
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4. Simulation Experiment and Discussion
4.1. Experiment Setup in the Cold Rolling Mill Case

The cold tandem rolling process encompasses a broad spectrum of knowledge do-
mains, including materials science, machinery, computer science and control engineering.
This intricate industrial operation is marked by multi-variable coupling and relies on a
range of advanced control techniques. A key parameter of concern in this process is the
exit thickness of the cold-rolled strips, where the automatic gauge control (AGC) system
plays a vital role in ensuring accuracy.

In the realm of AGC, addressing high-frequency faults such as servo valve gain
deviations, oil contamination, pipeline leaks and displacement sensor failures is essential.
Anomalies arising from these issues can propagate through the series rolling mill system,
potentially causing issues like strip stacking or breakage and posing safety hazards for
operators. Early detection and precise fault localization for slowly emerging issues are
challenging tasks, underscoring the urgent need for an efficient AGC dynamic system fault
classification method.

Given the inherent risks and destructive potential of anomalies in real rolling mills,
the development of a robust simulation model is a pivotal aspect of tandem cold rolling
process research. In previous work, we established a simulation model that takes into
account the intricacies of the AGC system, known for its complex dynamics, nonlinearity
and significant pure delay. This foundational model serves as a basis for our exploration of
data-driven fault classification algorithms [43].

The five-stand AGC simulation model, as depicted in Figure 3, is a visual represen-
tation of the rolling mill modules. It not only computes rolling force and thickness but
also derives strip speed through the flow rate equation, crucial for calculating the inter-
stand tension. Delay modules are thoughtfully employed to facilitate the exchange of strip
thickness information among the five rolling mill stand modules.

Figure 3. Five-stand AGC simulation model.

Figure 4 provides a glimpse into the control block diagram within a single stand. This
diagram encompasses the hydraulic position control system, along with feedforward and
feedback AGC subsystems, all simulated using industry-standard mechanism models. This
model’s versatility allows dynamic simulation of various variables when simulating both
normal AGC loop operation and faults. Measurable variables are represented by obround
blocks within the block diagram, while fault introduction points are highlighted in red font.

Table 1 presents a comprehensive inventory of measurable variables acquired from
the 4th and 5th stands of the 5-stand cold rolling mill model. These variables encompass
numerous critical parameters and involve data obtained from diverse sensors. The normal
training data are gathered during stable operation of the simulation model, with a sampling
period of 40 ms.
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Figure 4. AGC control system block diagram.

Table 1. Measured process variables in the simulation model for the cold rolling AGC system.

Variable Description Unit

V1 Output of the inner loop position controller V
V2 No-load flow of the servo valve m3/s
V3 Pressure of the hydraulic cylinder Pa
V4 Displacement of the hydraulic cylinder mm
V5 Strip thickness of the inlet side mm
V6 Strip thickness of the outlet side mm
V7 Output of the outer loop thickness controller V
V8 Rolling force kN
V9 Strip speed of the inlet side m/s
V10 Strip speed of the outlet side m/s
V11 Strip tension of the inlet side MPa
V12 Strip tension of the outlet side MPa

Table 2 provides an overview of the six distinct simulated fault classes targeting the
4th stand AGC system. Each fault within these classes has been deliberately introduced
in a ramp-like progression. To thoroughly validate the algorithm’s efficacy, the simulated
fault types cover various locations within the multi-loop AGC system.

To address the influence of chance outcomes, we conducted multiple Monte Carlo
experiments, varying the random seeds with each run. Our experimental setup involved
a normal training set comprising 10,000 samples, while the fault training set comprised
100 samples for each type, considering 24 variables derived from two stands. This configu-
ration mirrors real scenarios, where fault history data is notably limited in comparison to
normal data, while also simulating scenarios with high-dimensional features and restricted
sample sizes.
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Table 2. Simulated fault types in the simulation model for the cold rolling AGC system.

Case Description

F1 Change in the servo valve gain coefficient KSV
F2 Air mixed into the oil, causing a change in the parameter E0
F3 Change in the load damping coefficient BC
F4 Gradual shift in the displacement sensor coefficient K0
F5 Gradual shift in the inlet thickness sensor coefficient K1
F6 Gradual shift in the outlet thickness sensor coefficient K2

All faults are introduced in ramp form, wherein following their occurrence, the respec-
tive fault points gradually increase at a slow linear rate. In the test set, the ramp slope is set
at half the value of the fault training set, emulating scenarios with smaller fault magnitudes.

In our comparative experiment, we employ both LDA and QDA as control groups.
To emphasize the enhancements offered by our proposed dynamic extraction method,
we use the WMSD criterion as a control variable. This criterion is utilized not only by
LDA but also as part of the preliminary dimensionality reduction process in QDA. This
selection ensures the comprehensiveness of our experiment while providing valuable
reference points. Furthermore, we introduce KFD, a widely used nonlinear FDA extension,
for comparison purposes. It’s important to note that our proposed method essentially
incorporates dynamic extraction as an initial step based on the foundation of WMSD-QDA.

Table 3 provides the specific parameters employed by each of these methods. In our
comparative analysis, we maintain consistent parameter settings for all methods that utilize
the WMSD criterion. The weight of the between-class scatter (θ) is uniformly established at 0.9.
In the dynamic reconstruction phase of our proposed method, we apply a cumulative energy
of singular values (CESV) set at 0.8 as the criterion for rank reduction. As for KFD, we employ
a Gaussian kernel and set the bandwidth to 100n, where n represents the sample size. These
parameter configurations have been fine-tuned to optimize the classification performance.

Table 3. Parameters of the algorithms involved in the comparison.

Proposed WMSD- WMSD- Kernel
Method LDA QDA FDA

Parameters θ = 0.9 θ = 0.9 θ = 0.9 σ = 100n
CESV = 0.8

4.2. Results and Discussion

Figure 5 illustrates our procedure for determining the optimal projection dimension-
ality parameter. As depicted, in the case of our proposed methods, QDA and KFD, the
classification accuracy exhibits a notable increase as the projection dimensions range from
1 to 3. However, beyond this 3-dimensional threshold, the classification accuracy stabi-
lizes, primarily influenced by random disturbances. When extended to five dimensions,
corresponding to the six-class problem’s highest dimensionality, the accuracy decreases
due to overfitting. Notably, although LDA exhibits a distinct trend, there’s only a marginal
accuracy increase beyond the 3-dimensional projection. Consequently, to ensure uniformity
and generate more comparable results, we fix the projection dimensionality at three for our
comparative tests.

Table 4 presents an overview of the classification performance from 100 repeated
experiments. In our analysis, we have noted that the performance of some methods exhibits
substantial variability, rendering average accuracy insufficient for capturing the nuances
among different algorithms. Therefore, we include the worst accuracy and standard
deviation. It is essential to clarify that the “worst accuracy” in the penultimate line refers to
the worst among the average accuracies for six faults over multiple experiments, rather
than the worst accuracy for a single fault.
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Figure 5. Relationship between projection dimensionality and classification accuracy.

Table 4. Performance of the algorithms involved in the comparison.

Proposed WMSD- WMSD- Kernel
Method LDA QDA FDA

Fault 1 (%) 100 48.3 100 100
Fault 2 (%) 100 61.9 100 100
Fault 3 (%) 98.8 100 98.9 98.9
Fault 4 (%) 98.7 47.6 92.5 92.6
Fault 5 (%) 96.7 48.7 80.3 80.2
Fault 6 (%) 95.8 32.3 92 92.1
Overall average (%) 98.3 56.4 93.9 94
Worst average (%) 94.8 48 84 84
Standard deviation (%) 1.48 4.55 5.02 5.12

The results indicate that, in this context, LDA’s performance is notably deficient,
yielding an average classification rate of approximately 50%. QDA and KFD achieve
commendable average scores, hovering around 94%, yet in specific experiments, these
values dip to 85%, accompanied by a considerable standard deviation. In contrast, the
proposed method not only secures the highest average classification accuracy, exceeding
98%, but also elevates the lower limit of the score to more than 94%, surpassing the
average scores of QDA and KFD. The significantly lower standard deviation underscores
the robustness of the proposed method.

The average accuracies individually calculated for each of the six fault classes can be
analyzed by examining the first six rows of Table 4 and the confusion matrices of Figure 6.

The figure clearly illustrates a significant number of misclassifications for LDA, pri-
marily attributing faults to fault 3, which consequently results in an overall classification
accuracy of only 50%. Meanwhile, QDA and KFD exhibit similar performance to each other,
effectively distinguishing faults 1 and 2. However, their ability to classify faults 5 remains
limited. Their performance on fault 3 surpasses that of the proposed method, albeit at the
cost of a higher misclassification rate for other fault classes.

In comparison to QDA and KFD, the proposed method offers an overall enhancement
in classifying faults 3 to 6. As the potential for misclassifying other faults as fault 3 di-
minishes, the classification accuracy for fault 3 experiences a minor decrease but remains
impressively high at 98%. For each listed fault, the proposed method consistently achieves
a classification success rate of over 95%. This reconfirms the reliable performance of the
proposed method in the context of this classification task.

Due to the characteristic ramp form of the faults, early samples pose greater classifi-
cation challenges compared to later ones. To further elucidate the enhanced performance
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of early fault diagnosis through dynamic feature extraction and expansion, we focused
on analyzing the initial 20 samples of faults 3 and 4 in a specific experiment, as depicted
in Figure 7. In the scatter plots, the horizontal and vertical coordinates represent the top
two feature directions with the highest separation after projection. The blank and filled
circles respectively denote samples from the training and test sets. Additionally, green
and blue colors respectively represent faults 3 and 4. The red curve outlines the quadratic
discrimination boundary.

Confusion matrix (%)
LDA

48.25

0

0

0

0

0

0

61.85

0

0

0

0

51.75

24.85

100

52.4

51.35

67.5

0

0

0

47.6

0

0.2

0

13.3

0

0

48.65

0

0

0

0

0

0

32.3

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6
Predicted class

1
2

3
4

5
6

Tr
ue

cl
as

s

Confusion matrix (%)
QDA

100

0

0.05

0

0.9

0

0

100

0

0

0

0

0

0

98.85

7.05

18.75

2.8

0

0

0.2

92.5

0.1

5.2

0

0

0.9

0

80.25

0

0

0

0

0.45

0

92

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6
Predicted class

1
2

3
4

5
6

Tr
ue

cl
as

s

Confusion matrix (%)
KFD

100

0

0.05

0

1.15

0

0

100

0

0

0

0

0

0

98.9

7

18.55

2.75

0

0

0.15

92.55

0.1

5.2

0

0

0.9

0

80.2

0

0

0

0

0.45

0

92.05

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6
Predicted class

1
2

3
4

5
6

Tr
ue

cl
as

s

Confusion matrix (%)
Proposed method

100

0

0

0

0.6

0

0

100

0

0

0

0

0

0

98.75

1.35

2.55

0.35

0

0

0

98.65

0

3.85

0

0

1.25

0

96.7

0

0

0

0

0

0.15

95.8

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6
Predicted class

1
2

3
4

5
6

Tr
ue

cl
as

s

Figure 6. Confusion matrices of algorithms involved in the comparison.

The analysis reveals that QDA performs satisfactorily in segregating the training set
when the WMSD criterion is applied individually. This holds true not only for resubstitution
validation but also for new samples with identical slope to the training set. However, when
online samples feature smaller fault magnitudes, they tend to deviate from the classification
centroid, leading to misclassifications. In contrast, our proposed method, WMSD-QDA
with the inclusion of dynamic feature expansion, successfully maintains accurate early
fault classification even under these conditions.
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5. Conclusions

In conclusion, this study introduces a novel method for fault diagnosis in dynamic
nonlinear systems. The main contributions of this research include the proposal of a
dynamic feature extraction method and the development of an enhanced fault classification
procedure. While controlling the input dimensions of QDA, this algorithm retains sufficient
useful discriminant information and improves early diagnosis capabilities.

To evaluate the performance of the proposed method, a case study using a cold rolling
mill system was conducted. The results indicate that the proposed method surpasses the ca-
pabilities of traditional approaches, LDA, QDA and KFD methods in terms of classification
accuracy and stability in maintaining excellent diagnostic results.

While the proposed method shows promise for application in process fault diagnosis
within the steel industry, challenges pertaining to real-time implementation, scalability to
larger datasets and robustness across diverse fault patterns emerge as vital aspects requiring
attention. Tackling these challenges is essential to advance the method’s effectiveness and
ensure its successful deployment. Additionally, these areas pave the way for further
exploration and refinement in our future endeavors.
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