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Abstract: The spin-1/2 quantum transverse Ising model, defined on a ladder structure, with nearest-
neighbor and four-spin interaction on a plaquette, was studied by using exact diagonalization on
finite ladders together with finite-size-scaling procedures. The quantum phase transition between
the ferromagnetic and paramagnetic phases has then been obtained by extrapolating the data to
the thermodynamic limit. The critical transverse field decreases as the antiferromagnetic four-spin
interaction increases and reaches a multicritical point. However, the exact diagonalization approach
was not able to capture the essence of the dimer phase beyond the multicritical transition.
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1. Introduction

Low-dimensional quantum spin models have long been the subject of many theoretical
and experimental approaches. The interest in such systems mainly derives from two factors.
The first is the high experimental appeal because some physical realizations, when viewed
by the relevant microscopic quantum interactions, consist, in fact, of single molecules,
linear chains, or even ladder-like structures. To cite a few examples among the vast list of
experimental results that fall into these scenarios, we have (i) molecular magnetism in Cu5-
NIPA [1], V6-like magnetic molecules [2], and multiferroics [3] (these compounds can be
considered zero-dimensional systems); (ii) TMMC, CsNiF3, and CuCl22NC5H5 systems ex-
hibiting one-dimensional characteristics [4]; (iii) ladder-type structures as in (VO)2P2O7 [5],
Cu(C5H12N2)22Cl4 [6], as well as La2CuO4 and La6Ca8Cu24O41 cuprates [7–10]. Of course,
the majority of physical realizations indeed have the main quantum interactions along the
three crystalline directions. Second, it is a real challenge to theoretically treat quantum
models even in low spatial dimensions, since the statistical mechanics of a d-dimensional
quantum model (d being the dimension of the lattice) is equivalent to a d + 1-classical
model [11], implying that even one-dimensional quantum systems can undergo a critical
phase transition at zero temperature, the so-called quantum phase transition.

Regarding the low-dimensional theoretical models, the Ising, XY, and Heisenberg quan-
tum spin systems have been widely studied in the literature, mostly with nearest-neighbor
interactions and also in the presence of transverse fields (see, for example, Refs. [11,12]).
In particular, spin-1/2 XY chains, with the transverse Ising case being a projection of
the XY Hamiltonian when no interaction in the y-direction is present, have been studied
not only for their static phase transition behavior but also from a dynamical perspective
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by computing the time-dependent correlation functions and the corresponding spectral
functions [13–16]. On the other hand, spin-1/2 anisotropic Heisenberg chains have been
treated according to different approaches, including the Bethe ansatz and Jordan–Wigner
transformations (for example, see Ref. [17] and references therein). Furthermore, the effects
of randomness in the isotropic XY chain [17], which makes the theoretical treatment even
more difficult to tackle, have been introduced in the nearest-neighbor exchange and other
types of interactions, as well as in the transverse field.

Despite the nearest-neighbor exchange being the relevant interaction in all physi-
cal realizations and models cited above, four-spin interactions in a plaquette have been
suggested to reproduce the dispersion relation observed in inelastic neutron scattering
experiments on cuprates [7–10] and even to stabilize a chiral spin liquid on a triangular
lattice [18]. This new experimental motivation has lead to an increase in theoretical investi-
gations of quantum Ising–Heisenberg-like models defined on a ladder [19,20], especially
with four-spin interaction, which has been shown to induce other unusual types of order,
such as scalar chirality and intra-rail staggered dimerization (see, for instance, Ref. [21] and
references therein).

The spin-1/2 quantum transverse Ising model, which is the simplest model defined
on a ladder structure with nearest-neighbor interaction, has thus been widely studied in
the literature. In particular, the model including a four-spin interaction on a plaquette
has been recently considered by using the density matrix renormalization group (DMRG)
approach [21]. (The dynamical behavior has also been recently studied via the recurrence
relation method [22]) The ground state phase diagram has been obtained in the transverse
field versus four-spin interaction plane. In this case, a ferromagnetic-to-paramagnetic
second-order phase transition is observed, and, for sufficiently high antiferromagnetic
four-spin couplings, the system presents a dimer phase and a multicritical point. Al-
though the transition for ferromagnetic four-spin couplings is well established, with the
two degenerated ferromagnetic phases becoming equal to the paramagnetic phase at the
transition point, the situation is less clear for antiferromagnetic four-spin couplings, where
the ordered phase is given by a superposition of dimerized states [21]. In view of this
fact, it is interesting to investigate this model with different techniques in order to obtain a
better picture of the phases along the dimerized transition line. Since the finite-size-scaling
approach, based on exact results on finite lattices, has been shown to be one of the most
accurate methods to treat such models, it was employed here to obtain the quantum phase
transition of the transverse Ising ladder with four-spin interactions. It would also be quite
interesting and illustrative to compare the present results of the phase diagram to those
obtained for the one-dimensional model with linear four-spin coupling, which have been
obtained by using the same exact diagonalization procedure [23].

Thus, based on the above, in the present work, we have revisited the transverse Ising
model with four-spin interaction in a ladder structure and used exact diagonalization on
finite lattices. The energy gap has been computed, and, from the corresponding finite-
size-scaling (FSS) relation, the critical transverse field has been obtained for several values
of four-spin interaction. The ferromagnetic–paramagnetic phase transition line has been
obtained by extrapolating the data to the thermodynamic limit. The results agree well
with those previously obtained from the DMRG [21]. However, contrary to the model with
four-spin interactions in one dimension [23], it has been noticed that, in the ladder structure,
there are much stronger finite-size effects, and one indeed has to use the larger possible
lattices for the extrapolations. In addition, the ferromagnetic–paramagnetic transition line
on the ladder does not go to zero at the multiphase point in the classical limit of vanishing
transverse field, as does the one-dimensional model.

The remainder of the paper is structured as follows. In the next section, the model is
defined, and the configurations in the classical limit are discussed. Section 3 describes the
theoretical approach using the exact diagonalization on finite ladders and the corresponding
FSS relation for the energy gap and critical transverse field. The results of the transition line
are presented in Section 4, and some concluding remarks are addressed in the final section.
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2. Model

The Hamiltonian of the spin-1/2 Ising model, defined on a ladder structure, as depicted
in Figure 1, with four-spin interaction and in the presence of a transverse field, can be
written as

H = −J
L

∑
i=1

(
σz

1,iσ
z
1,i+1 + σz

2,iσ
z
2,i+1

)
− J

L
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where J > 0 is the nearest-neighbor exchange interaction along the rails and in the rungs,
J4 is the four-spin interaction connecting the spins in a plaquette, and B is the transverse
external field applied in the x direction. The sums are over the L rungs of a ladder with
periodic boundary conditions in the direction of the two side rails denoted, respectively,
by 1 and 2. The spin-1/2 operators σα

ℓ,i, with ℓ = 1, 2 and α = x, z, are given by the Pauli
spin matrices.
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Figure 1. Sketch of a ladder with rails labeled as 1 and 2. The interaction along the rails and in the
rungs is J. The circles represent the four-spin interaction J4 in each plaquette. σz

n,i, with n = 1, 2, are
the z-component spin operators. The z axis is taken to be perpendicular to the plane of the figure and
the transverse field B is along the x axis.

Due to the positiveness convention of the four-spin interaction in the Hamiltonian (1),
when J4 < 0, the plaquette ordering is also ferromagnetic for low values of transverse
fields. As a result, the system undergoes a second-order transition from a ferromagnetic
phase to a paramagnetic phase at a critical transverse field value Bc. This critical transverse
field decreases as J4 increases. As has been shown in Ref. [21], when J4 > 0, this transition
persists until some value of J4 (that is B-dependent) where a dimer phase is set up in
the ladder.

At B = 0, one has a classical system with a multiphase point at J4 = 3/2 dividing
the classical axis J4 into two regions: (1) for J4 < 3/2 a double degenerated ferromagnetic
phase and (2) for J4 ≥ 3/2 a ground state that is 2L+1 degenerate, with a residual entropy
Sr = (L + 1)kB ln 2 (here, kB is the Boltzmann constant).

Contrary to the one-dimensional model with four-spin interaction along a straight
line [23], the ferromagnetic–paramagnetic transition line does not terminate at the multi-
phase point at B = 0. This is a consequence of the ladder structure allowing the appearance
of the rung dimerized phase [21].

3. Theoretical Background

We have used finite ladders of length L, with N = 2L sites, and periodic boundary
conditions. For each ladder, the energy gap GL(B, J4) has been computed. The quantity
GL(B, J4) is given by

GL(B, J4) = E1
L − E0

L, (2)

where E1
L − E0

L is the energy gap between the first excited state and the ground
state, respectively.
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GL(B, J4) is equivalent to the correlation length in thermal systems and satisfies the
FSS relation [24]

LGL(BL
c , J4) = L′GL′(BL

c , J4), (3)

for two finite ladders of length L and L′, with usually L > L′. From the above relation, it is
possible to estimate BL

c , the critical field for the ladder pair (L, L′).
For sufficiently large lattices, it is expected that the quantities LGL(B, J4), as a function

of B for a given value of J4, cross at the same point Bc, the critical transverse field for
the considered value of J4. However, in some cases, where the size of the finite lattices
is insufficient, residual corrections make the crossing points BL

c suffer a systematic shift
as L varies. Nevertheless, there is an additional FSS relation for the L dependence on the
transition points BL

c given by [25]

BL
c = Bc + aL−1/ν

(
1 + bL−ω

)
, (4)

where Bc = BL→∞
c is the critical transverse field in the thermodynamic limit, ν is the

correlation length critical exponent, ω is the correction-to-scaling exponent, and a and
b are non-universal constants. In this way, for every chosen value of J4 and reference
ladder L′, one obtains the crossing point BL

c for the ladder pair (L, L′) through Equation (3).
Next, using Equation (4) for various values of L, the desired extrapolated value of critical
transverse field can be computed.

In the present work, the energy gap has been obtained through exact diagonalization
of finite ladders with length L in the range 2 ≤ L ≤ 11. For the larger lattices, we have
employed the Lanczos diagonalization procedure [26].

4. Results and Discussion

In what follows, J = 1. This value of J can also be interpreted as measuring the
four-spin interaction J4, as well as the transverse field strength B, in units of J.

As an example of the behavior of energy gap as a function of the transverse field,
Figure 2 shows LGL(B, J4) for several values of L and J4 = 0. In this case, we simply have
the transverse Ising model on a ladder [27]. It is clear that a small region of unique crossings
is only achieved for the larger ladders. The estimate of the critical transverse field, in this
case, is revealed by the corresponding arrow.

1.8 1.82 1.84 1.86 1.88 1.9 1.92
B

4

4.2

4.4

4.6

4.8

5

L
G

L
(B

, 
J 4

)

L = 2

B
c
 = 1.8320(2)

J
4
 = 0

3

4
5

678910

11

Figure 2. The quantity LGL(B, J4), defined in the text, as a function of the transverse field B, for
several values of L (indicated in the curves) and J4 = 0. The arrow indicates the estimate of Bc when
considering only the larger ladders.

It is also evident in the figure that for smaller ladders, there is a shift in the values of
crossings BL

c . We can thus compute BL
c by taking a reference lattice L′ and several values



Entropy 2023, 25, 1665 5 of 8

of L > L′. From the results of Figure 2, it is possible to obtain a clear crossing by using
L′ = 2, 3, and 4. The results obtained are depicted in Figure 3, which allows one to obtain
additional extrapolated estimates of Bc through fits to Equation (4) for each value of the
reference ladder L′. The present estimate Bc =1.8322(2) agrees very well with Bc = 1.83213
from the DMRG of Ref. [21] using a finite ladder with length L = 28.

0 0.05 0.1 0.15 0.2 0.25 0.3

L
-1/ν

1.82

1.84

1.86

1.88

1.9

B
c

L

1.8280(8)  L’ = 2

1.8320(1)  L’ = 3

1.8324(2)  L’ = 4

1.8320(2)  cross 

J
4
 = 0

1.83213     ref.[21]

Figure 3. Crossing transverse field BL
c , as a function of L−1/ν (ν = 1), for J4 = 0 and different values

of the reference ladder L′ (indicated in the legend). In the legend we find the extrapolated values of
Bc, using fits to Equation (4) with θ = 2, for each curve. Furthermore, indicated in the legend come
the values from the crossings of the larger ladders in Figure 2 (cross) and from Ref. [21].

It should be stressed that in using Equation (4), the exponents ν and θ are required.
Although from Equation (3) it is possible to compute ν using renormalization group ideas
and estimates of Bc [23,28] (for instance, from the values of the crossings BL

c for the larger
ladders), the obtained results are close to the exact ones for this universality class. However,
the correction-to-scaling exponent cannot be obtained in this way and, at least, should be
treated as an extra adjustable parameter. For this reason, and due to the fact that we are
indeed more interested in the location of the transition line, we have resorted to the known
values ν = 1 and θ = 2 for the Ising universality class in order to compute the extrapolated
critical transverse field.

Similar curves, with similar FSS analysis, are obtained when J4 > 0. Figure 4 shows
the critical transverse field Bc as a function of J4 obtained from the present method in
comparison to some results from the DMRG of Ref. [21]. One can clearly see that, contrary
to the very same model in one dimension [23] (with four-spin interactions along a straight
line), the transition line definitely does not go to zero as J4 tends to 3/2, the multiphase
point. The agreement with DMRG results is not only apparent in Figure 4 but also in
Table 1, which gives a more detailed numerical comparison for some selected values of J4.

Table 1. Critical values of the transverse field Bc in the thermodynamic limit for some values of the
four-spin interaction J4. The first row gives the results from the present work and the second row
those from the DMRG calculation [21] with L = 28.

J4 0 0.5 1 1.5 1.7 1.85

Bc
1.8322(2) 1.5726(2) 1.2938(2) 0.9813(3) 0.834(3) 0.697(2) this work
1.83213 1.57226 1.29334 0.98041 0.83579 0.70510 DMR [21]



Entropy 2023, 25, 1665 6 of 8

0 0.5 1 1.5 2
J

4

0

0.5

1

1.5
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B
c

exact diag.

DMRG L = 28

FM

PM

Figure 4. Critical values of the transverse field Bc as a function of the four-spin interaction J4. FM
and PM stand for the ferromagnetic and paramagnetic phases, respectively. The full line represents
the present results and the circles the values from the DMRG of Ref. [21]. The diamond is located at
the multiphase point at Bc = 0.

5. Concluding Remarks

The transverse Ising model, defined on a ladder and with four-spin interactions on a
plaquette, has been studied by using the finite-size-scaling approach with exact diagonaliza-
tion of finite ladders. The method has achieved acceptable results for the ferromagnetic-to-
paramagnetic transition line in the transverse field versus four-spin interaction plane. The
computed critical transverse field in the thermodynamic limit is also in good agreement
with that from the density matrix renormalization group procedure.

Despite the expected efficacy of the FSS along the ferromagnetic–paramagnetic transi-
tion line, the model shows, in fact, strong finite-size effects, and only with considerably
larger lattices could the results be accurately obtained. The finite-size effects here are,
in fact, stronger than those seen in the one-dimensional model [28]. The ferromagnetic–
paramagnetic transition line definitely does not meet the multiphase point at zero field,
and there is no reentrancy along this transition line whatsoever. This behavior is contrary
to the one-dimensional model although in agreement with the DMRG approach providing
a dimerized phase for sufficiently high values of antiferromagnetic four-spin interaction.

One unexpected feature is the exact diagonalization on finite lattices method being
unable to locate the dimerized phase and the corresponding transition to the ferromagnetic
and paramagnetic phases that occurs. For values J4 > 1.9, the crossings become more
diffuse, and in some regions it is not possible to obtain good fits with the expected scaling
relation. More suitable quantities than the energy gap may be necessary to unveil the
transition characteristics and the microscopic spin behavior for larger values of four-spin
interaction by using the FSS procedure. Accordingly, a detailed characterization of the
nature of the multicritical point, whether tricritical, tetracritical, etc. [29], remains to
be conducted.
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