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Abstract: Orthogonal frequency division multiplexing with index modulation (OFDM-IM) has great
potential for the implementation of high spectral-efficiency underwater acoustic (UWA) communica-
tions. However, general receivers consisting of the optimal maximum likelihood detection suffer from
high computational load, which prohibits real-time data transmissions in underwater scenarios. In
this paper, we propose a detection based on a vector approximate message passing (VAMP) algorithm
for UWA OFDM-IM communications. Firstly, a VAMP framework with a non-loopy factor graph for
index detection is formulated. Secondly, by utilizing the sparsity inherently existing in OFDM-IM
symbols, a novel shrinkage function is derived based on the minimum mean square error criterion,
which guarantees better posterior estimation. To reduce the errors from estimated non-existing
indices, one trick is utilized to search the elements from the look-up table with the minimal Euclidean
distance for the replacement of erroneously estimated indices. Experiments verify the advantages of
the proposed detector in terms of low complexity, robustness and effectiveness compared with the
state-of-art benchmarks.

Keywords: underwater acoustic communications; OFDM-IM; data detection; vector approximate
message passing

1. Introduction

Underwater acoustic (UWA) communications are dominant technologies for data
exchanges in broad sea areas, which have been successfully used to accomplish underwater
tasks such as marine environmental monitoring, marine security surveillance and resource
exploration. As the requirements for underwater network deployments and large-volume
marine data acquisition increase, multicarrier UWA communications have attracted the
attention of researchers due to high spectral efficiency (SE), where Orthogonal Frequency
Division Multiplexing (OFDM) and index modulation with OFDM (OFDM-IM) are the
outstanding and representative schemes. OFDM-IM has the robustness to multipath fading
of UWA channels and exploits the idle space resources as compensation for the limited
frequency bandwidth. OFDM-IM communications are highly desired to be further studied
for emerging underwater applications.

The concept of index modulation (IM) originates from spatial modulation (SM) in
multiple-input multiple-output (MIMO) systems. The difference between OFDM-IM from
SM-MIMO is that OFDM-IM employs the indices of subcarriers in the frequency domain
instead of the indices of antennas [1]. IM separates the data into two parts, i.e., the con-
stellation data and the index data, hence OFDM-IM conveys useful information using
both constellation symbols and subcarrier indices. OFDM-IM is flexible to achieve the
tradeoff between bit error rate (BER) performance and SE by designing different subcarrier
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activation patterns (SAPs), which determine the activated or inactivated subcarriers. In
OFDM-IM, additional information requires special handling because the conventional
detection for constellation symbols is only part of data detection modules. The detection
of SAPs is the prerequisite for constellation data detection, which is the key to avoiding
decoding error propagation. For OFDM-IM detection, maximum likelihood (ML) detection
is the best, which searches the optimal indices and constellation points among all com-
binations. The complexity of ML detection increases exponentially with the number of
index combinations as well as the order of constellation modulations. Even the searches
have been employed for each subblock, the complexity is heavy, especially for the multi-
carrier systems with large-number subcarriers and high-order constellation modulations.
A log-likelihood (LLR) detector can achieve near-optimal ML performance with reduced
complexity [1]. If the ratio of activated subcarriers is low, the LLR detector tends to find
nonexistent index combinations with high probability. Subsequently, many sub-optimal
detectors are developed [2–4]. The work in [3] proposes a low-complexity detector that
conveys data using all possible SAPs to avoid errors from invalid SAPs. The mapping
of non-fixed length bits makes the communication system complicated. The work in [4]
proposes a modified k-largest-value (klv) detector, which chooses k active indices with the
largest values according to the active likelihood metrics. This method provides a method
for dealing with illegal SAPs and operates on each subcarrier.

As research deepens, the inherent characteristics of OFDM-IM symbols from IM con-
cept and SAPs are further exploited. SAPs are constructed by zero subcarriers and activated
subcarriers, which makes OFDM-IM symbols present inherent sparsity characteristics. The
sparsity leverages powerful tools to solve the detection problem. The paper [5] proposes to
interpret data detection as a problem of convex optimization, on which the AP constraints
are imposed, and then a semi-definite relaxation method is utilized. The convergence speed
of this method is severely limited and the error floor exists in high SNR ranges. Exploiting
the sparsity of symbols, compressed sensing (CS) based methods have recently emerged.
The work [6] proposes a CS-assisted signaling strategy, based on which an iterative resid-
ual check (IRC)-based detector is formulated. An AMP-based detector is proposed for
OFDM-IM by exploiting the statistic of OFDM-IM symbols in the frequency domain [7].
The work [8] proposes to use the AMP framework to realize iterative channel estimation
and data detection for OFDM-IM. Approximate Message Passing (AMP) algorithm belongs
to the Bayesian estimation framework [9,10]. The simplifications of the Gaussian message
according to the central limit theorem and Taylor expansions make the IM detector efficient
depending on several posterior parameters. One constraint of the AMP method is the sen-
sitivity to the non-Gaussianity of the dictionary matrix. The generalized AMP (GAMP) is
incorporated as a step for joint phase-noise Estimation and decoding in OFDM-IM [11]. The
performance of these OFDM-IM detectors for UWA communications cannot be concluded
and is to be verified and analyzed.

OFDM-IM was first introduced to UWA communications in [12]. The work verifies the
reduced PAPR effects due to power averaging by the inactivated subcarriers and better BER
performance compared with OFDM. Since then, OFDM-IM-based UWA communications
have been developing. Combining the IM with advanced OFDM schemes, many UWA
OFDM-IM transceivers are proposed such as the fully quadrature subcarrier-index shift
keying OFDM (FQSISK-OFDM) modulation scheme [13], which put their emphasis on the
design of activation strategy. The work [14] combines the IM concept with Orthogonal
Time Frequency Space (OTFS) and proposes a Hamming distance optimized model to
modify the index combinations. Currently, there is a lack of a design scheme for a low-
complexity OFDM-IM detector for UWA communications and a detailed analysis of the
effects from the UWA channel for UWA OFDM-IM systems. To fill this gap, this paper
considers the OFDM-IM receiver design and especially focuses on data detection, which
is a major challenge for real-time and high SE data transmission schemes in the UWA
physical layer.



Entropy 2023, 25, 1667 3 of 16

In this paper, we involve the data detection for OFDM-IM in the Bayesian estimation
framework. Instead of a loopy factor graph (FG), a vector approximate message passing
(VAMP) detector based on a scalar FG is proposed. An appropriate statistical prior model is
beneficial for the achievement of the optimal Bayesian solution. By exploiting the sparsity of
symbols in the frequency domain, the SAP constraint is considered using the statistical prior
and a novel minimum mean square error (MMSE)-optimal shrinkage function is derived.
The data reconstruction performance is improved through the forward-back message
passing scheduling, where the involved statistical parameters are learned automatically.
Inherently from the robustness of VAMP for the deviations of Gaussian matrices [15],
the proposed detector is less sensitive to the non-Gaussianity of the measurement matrix
which is composed of unknown channel components and presents good generality and
convergence. Aiming to mitigate the possible invalid SAPs, a modified trick using the
criterion of minimal Euclidean distance with the space of a look-up table is used to replace
the possible non-existent results. The VAMP-based detection has relatively low complexity,
which is advantageous for real-time data transmission. Simulation results verify the
proposed receiver outperforms the benchmarks in terms of complexity, BER as well as
robustness to the time-varying UWA channel.

The rest of this paper is organized as follows. Section 2 introduces the UWA OFDM-IM
communication systems. The proposed VAMP-based detector is presented in Section 3. The
computation complexity and numerical experiments are analyzed in Section 4. Section 5
makes the conclusive remarks.

Notations: Lower case boldface letter x and upper case boldface letter X denote vector
and matrix, respectively. (·)T and (·)H stand for the transpose and conjugate transpose
operation. diag{x} is the diagonalized operation with x as the diagonal element. E{·} and
var{·} denote the expectation and variance operation. ⌊·⌋ denotes the floor operation.

2. System Model

In this paper, the OFDM-IM-based UWA communication system is considered. The
system framework is shown in Figure 1. There are a total B bits to be transmitted and
input to the bit splitter. The system has N subcarriers, and these subcarriers are split into G
groups. Each group includes n = N

/
G subcarriers. Correspondingly, the bits are also split

as G groups, and there are p bits in each group. The p bits include two parts, i.e., p1 bits for
index selection and p2 bits for amplitude and phase modulation (APM). p1 bits are mapped
as the indices of k activated subcarriers, which are extracted from the index combinations

in a look-up table. p1 is determined by
⌊

log2

(
n
k

)⌋
which is the logarithm of the index

combination number. The total number of data subcarriers is Nd = kG. Considering the
g-th group of the OFDM-IM subblock, the indices of activate subcarriers in the look-up
table J are given by

J(g) =
{

j(g)
1 , j(g)

2 , · · · , j(g)
k

}
, (1)

where j(g)
γ ∈ {1, · · · , n} for γ = 1, · · · , k and g = 1, · · · , G. The elements of J(g) are

arranged in an ascending order. The size of Table J is |J | = 2p1 . p2 bits are mapped
as M-ary constellation points from the constellation alphabet S . p2 = klog2(M) where

M = |S| is the modulation order. Mapping symbol s(g) =
{

s(g)
γ

}k

γ=1
are appended on the

k activated subcarriers with normalized power, i.e., E
{

sHs
}
= 1.

A coherent UWA communication system is required to track the channel effects.
Besides data subcarriers, there are Np subcarriers allocated as comb pilots for the tracking
of time-varying UWA channels. The information of pilot subcarriers is perfectly known.
The remaining Nu = N − Np − Nd subcarriers are idle. The gth OFDM subblock can

be expressed as x(g) =
[

x(g)
1 , x(g)

2 , · · · , x(g)
n

]T
. Concatenate G OFDM-IM subblocks, and

OFDM-IM data frame is given by
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x =
[
(x(1))T , (x(2))T , · · · (x(G))T

]T
, (2)

where x ∈ CN×1 denotes the symbols to be modulated on N subcarriers. The mth subcarrier
is with the frequency fm = fc +m∆ f , where ∆ f denotes the subcarrier spacing. The symbol
duration is T = 1

∆ f . Before transmission, the OFDM-IM is transformed as the time-domain
signal through the inverse fast Fourier transform (FFT) operation, then the Ncp-length
cyclic prefix (CP) is appended to mitigate the inter-symbol interference (ISI), and the time
duration of CP Tcp is larger than the maximum path delay. The SE is given by

η =

G
(⌊

log2

(
n
k

)⌋
+ klog2(M)

)
N + Ncp

(bit/s/Hz). (3)

The baseband signal is upshifted to the passband given by

x̃(t) = 2ℜ
{[

N

∑
m=1

x[m]ej2πm∆ f tg(t)

]
ej2π fct

}
, t ∈

[
−Tcp, T

]
, (4)

where g(t) is the pulse shaping filter, and g(t) = 1 when t ∈
[
−Tcp, T

]
, otherwise g(t) = 0.
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Figure 1. OFDM-IM system for UWA communications.

As shown in Figure 1, the signal passes through the UWA channel. The UWA channel
is generally expressed as a time-varying model given by

h(τ, t) =
L

∑
l=1

αl(t)δ(τ − τl(t)), (5)

where L is the total number of paths, αl(t) and τl(t) denote the path amplitude and path
delay for the lth path. Assuming all paths have the same Doppler scaling factor a, then
τl(t) = τl − at [16]. After passing through the channel, the received signal is given by

ỹ(t) =
L

∑
l=1

αl x̃((1 + a)t − τl) + ṽ(t), (6)

where ṽ(t) is the passband additive white Gaussian noise (AWGN). Due to the Doppler
effects, the received signal suffers from compressing and broadening effects. The scalar
coefficient a is estimated by the resampling method as â = T̃rx

T̃tx
− 1, where T̃tx is the length

of the transmitted signal and the length of the received signal T̃rx is calculated by cross-
correlating the linear frequency modulated (LFM) preambles of neighboring frames. After
the resampling and downshifting operation, the baseband received signal is given by
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y(t) = LPF
[
ỹ
(
t
/
(1 + â)

)
e−j2π fct

]
≈ ej2πϵt ∑m

{
x[m]ej2πm∆ f t

[
∑l αle−j2π fmτl g(t − τl)

]}
+ v(t),

(7)

where v(t) denotes the baseband AWGN and ϵ = a−â
1+â fc is the residual carrier frequency

offset (CFO). To discretize the baseband signal y(t) at the baseband rate 1/B, then the

pth received sample is given by y[p] = e
j2πϵp

B ∑m

{
x[m]e

j2πmp
N ∑l αle−j2π fmτl g(p − l)

}
+ v[p].

Through expansion and union simplification operation, the received samples are denoted as

y[p] = e
j2πϵp

B ∑l hl ∑m x[m]e
j2πm(p−l)

N g[p − l] + v[p], (8)

where hl = ∑K/2−1
m=−N/2 C( fm)e

j2ml
N and C( f ) = ∑p αpe−j2π f τp is the channel

frequency response.

Based on Formula (8), CFO matrix is defined as Ψ(ϵ) = diag
(

1, e
j2πϵ

B , · · · , e
j2πϵ(N−1)

B

)
.

Part of inactive subcarriers is used for CFO mitigation. The process is operated in the
frequency domain based on the goal of minimizing the leaked energy of the zero subcar-
riers after the signal passes through the channel. After CP removal and FFT transform,
the received signal in the frequency domain is denoted as Y = Fy, where F is the Dis-
crete Fourier Transform (DFT) matrix and y is the received signal in the time domain.
The selection matrix Ξ extracts zero subcarriers from Y, and the energy is expressed as
∥ΞFy∥2

2. Assuming CFO is perfectly known and compensated, the optimization problem is
formulated as

ϵ̂ = arg min
ϵ

∥ΞFΨ(ϵ)y∥2
2. (9)

One dimensional (1-D) search method is used to solve the problem (9) [17]. The detailed
effects of CFOs are analyzed in the following experiments. With ϵ̂, the received signal
components are corrected through phase reversal. Then the inter-carrier interference (ICI)
is mitigated and the ICI-free signal is obtained.

Channel state information (CSI) h is obtained through the channel estimation module.
Np pilot subcarriers are utilized as input, and the received pilot subcarriers are the output,
then the channel estimation problem can be formed as a sparse signal recovery (SSR)
problem. To design efficient channel estimation, representative CS-based methods can be
involved.

Then frequency-domain channel H is fed to the data detection module. For the
detection of OFDM-IM, symbol detection includes index detection and constellation symbol
detection. To realize reliable data detection, the signal for the gth group y(g) in Y in the
frequency domain is expressed as

y(g) = H(g)x(g) + w(g), g = 1, 2, · · · , G, (10)

where H(g) ∈ Cn×n is a diagonal matrix with the components from the gth group vector in
H and w(g) is the gth group Gaussian noise vector. ML detection is the optimal method
and searches all the combinations of indices and constellation points, which is generally
defined as (

Ĵ(g), ŝ(g)
)
= arg min

J(g),s(g)

k

∑
γ=1

∣∣∣∣y(g)

j(g)
γ

− h(g)

j(g)
γ

s(g)
γ

∣∣∣∣2, (11)

where y(g)
χ and h(g)

χ , χ = 1, 2, · · · , n, are the corresponding signal element and channel coef-
ficient of the gth OFDM-IM subblock. ML detector achieves the optimal error performance.
However, it has high complexity which exponentially increases with the size of subblocks
and the modulation order. It is impractical for cases with a large number of subcarriers
or high-order modulation in UWA communications. Therefore, it is desired to design a
low-complexity and effective detector for UWA communications. In the following contents,
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we propose a novel detector based on VAMP theory by exploiting the inherent sparsity of
OFDM-IM symbols in the frequency domain.

3. Proposed Method

OFDM-IM symbols with different non-zero supports exhibit sparse structure, which is
different from the OFDM frame. In the OFDM frame, almost all subcarriers are required
for data transmission. To solve the problem of data detection in OFDM-IM, VAMP based
framework is incorporated by considering the symbol sparsity generated from the SAPs.
In this section, the concept of VAMP detection and detailed message scheduling is first
introduced. Then the VAMP-based data detection with the designed prior aided shrinkage
functions is presented.

3.1. VAMP Framework for IM Detection

According to the Equation (10), the data detection problem is defined as

x̂(g) = arg min
x(g)∈S

{∥∥∥y(g) − H(g)x(g)
∥∥∥2

2

}
. (12)

The problem means to recover the vector x(g) from noisy linear observation y(g) with noise
w(g). w(g) follows Gaussian distribution with the element w(g) ∼ CN

(
0, γ−1

w
)
, and γw is

the noise precision. Once the problem is solved, the indices are detected and the symbols
are equalized jointly. The detection is executed for each group, and the superscript g is
omitted for simplification.

In the field of digital communications, many problems such as channel estimation, data
detection or user detection, are involved as Bayesian estimation problems. The key to the
Bayesian message-passing graph is appropriate assumptions about the prior distribution
and Gaussian noise. The standard linear regression problem corresponding to the problem
in (12) is given by

x̂ = arg min
x

1
2
∥y − Hx∥2

2 + f (x), (13)

where f (x) is the penalty function. y ∈ CM̃×1 and H ∈ CM̃×Ñ is the measurement matrix,
which is the diagonal matrix with the channel components. Relate the measurement matrix
H with the system model in Section 2, M̃ = Ñ = n.

VAMP is first proposed in [15] to solve the problem (13), which has been proved
robust to a broader class of large random matrices Φ compared with conventional AMP
method [9]. Assuming known prior function p(x) and likelihood function p(y|x), the
posterior function is calculated through Bayesian rule as

p(x|y) = p(y|x)p(x)
p(y)

, (14)

where p(y) =
∫

p(y|x)p(x)dx. According to different estimate criteria, the minimum
mean square (MMSE) estimation is x̂mmse = arg min

x̃

∫
∥x − x̃∥p(x|y)dx = E[x|y] and the

maximum a posteriori (MAP) estimation is x̂map = arg max
x

p(x|y).

The basic VAMP framework is given as in Algorithm 1. In Algorithm 1, η(·) is the
denoising function which is parameterized by r and γ.

〈
η
′
(rk, γk)

〉
is the divergence at rk

and η
′
(rk, γk) = diag

[
∂η(rk ,γk)

∂rk

]
. The Onsager term αkrk cancels the correlation between Φ

and x and guarantees the Gaussianity of estimated errors.
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Algorithm 1 Vector AMP (SVD Version)
Input: Measurement y ∈ CM̃×1, dictionary matrix H ∈ CM̃×Ñ , maximum iteration number T, denoising function

η(·), noise precision γw
Output: Recovered channel vector x̂T

1: Initialization: t = 0, r0, γ0 ≥ 0
2: Compute SVD of [U, S, V] = svd(H), UHU = I and VHV = I, s = diag{S}, R = rank(Φ)

3: Compute ỹ = S−1Uy
4: while t < T do
5: x̂k = η(rk , γk)

6: αk =
〈

η
′
(rk , γk)

〉
7: r̃k = (x̂k − αkrk)

/
(1 − αk)

8: γ̃k = γk(1 − αk)
/

αk

9: dk = γwdiag
{

γws2 + γ̃k1
}−1s2

10: γk+1 = γ̃k⟨dk⟩
/〈 N

R − ⟨dk⟩
〉

11: rk+1 = r̃k +
N
R Vdiag

(
dk
/
⟨dk⟩

)(
ỹ − VH r̃k

)
12: end while

To involve the problem (12) into the VAMP framework, the factor graph and message
scheduling of the VAMP-based detection are shown in Figure 2.

Figure 2. Factor graph of VAMP based detection.

In Figure 2, the leftmost node denotes the likelihood function defined as

p
(
y; Hx2, γw

−1I
)
=

n
∏

m=1

( γw
2π

)
exp

(
− γw∥ym−HT

mx2∥2
2

2

)
, where HT

m is the mth row of the mea-

surement matrix H. The rightmost factor node denotes the prior distribution p(x1). The
original variable node x is divided as x1 and x2, which are connected by the Dirac delta func-
tion δ(x2 − x1). Then the joint probability distribution is p(y, x2, x1) = p(y|x2)δ(x2 − x1)
p(x1). The message passing scheduling in the non-loopy graph includes three parts:

• Approximate belief

The expectation propagation (EP) is adopted for belief calculation using the Gaus-
sian approximation and moment matching. For each variable node, the marginal func-
tion is the product of all impinged messages. We denote the approximate message for
xi as CN

(
xi; x̂i, β−1

i I
)

, where i = 1, 2, i.e., bsp(x2) = µ f→x2(x2)µδ→x2(x2) and bsp(x1) =

µp→x1(x1)µδ→x1(x1). The approximate belief bapp(xi) for the node xi is determined by expec-
tation x̂i and covariance β−1

i with respect to the marginal function bsp(xi), i.e., E
[
xi|bsp(xi)

]
and

〈
diag

(
cov
[
xi|bsp(xi)

])〉
.

• Message from variable node to factor node

The message from the variable node to the factor node is µxi→ f (xi) ∝ bapp(xi)
µ f→xi

(xi)
. Because

all beliefs are approximated as the Gaussian messages, the messages at tth iteration are
assumed as µδ→x2(x2) ∼ CN

(
r2t, γ−1

2t I
)

and µδ→x1(x1) ∼ CN
(

r1t, γ−1
1t I
)

.

• Message from factor node to variable node

Message from factor node to variable node is µ f→xi(xi) ∝
∫
∼xi

f(xi)∏xj∈N( f)
/

xi
µxj→ f

(
xj
)
,

where ∫∼x is to integrate over the other connected factors except x. N( f ) is the neighboring
node of f .

According to the sum-product rules, the bidirectional messages for each edge are
derived as µ f→x2(x2) = f (x2), µp1→x1(x1) = p(x1), µδ→x2(x2) =

∫
δ(x2 − x1)µx1→δ(x1)dx1

and µδ→x1(x1) =
∫

δ(x2 − x1)µx2→δ(x2)dx2. Due to the equivalent relation in δ(x2 − x1),
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µx1→δ(x1) = µδ→x2(x2) and µx2→δ(x2) = µδ→x1(x1). Based on the above analysis, we can
achieve the node message for tth iteration as follows:

(1) Calculate bapp(x2) with bsp(x2) ∝ p
(
y|Hx2, γ−1

w I
)

p
(

x2|r2t, γ−1
2k I
)

, then

x̂2 =
(

γwHHH + γ2tI
)−1(

γwHHy + γ2tr2t

)
, (15)

β−1
2t = γ2tvar[x2|r2t, γ2t] =

γ2tTrace
((

γwHHH + γ2tI
)−1
)

n
. (16)

(2) Calculate bapp(x1) with bapp(x1) ∝ p(x1)p
(

x1|r1t, γ−1
1t I
)

, then one key step is to
define the prior p(x1). Without any assumptions, the prior p(x1) is unknown; therefore,
the shrinkage function η(·) and the divergence

〈
η
′
(rk, γk)

〉
are unknown. The problem is

solved in the next subsection.
(3) Calculate the edge message µx1→δ(x1) with µx1→δ(x1) ∝ bapp(x1)

µδ→x1
(x1)

∝
CN (x1;x̂1t ,β

−1
1t I)

CN (x1;r1t ,γ
−1
1t I)

,

then its mean and precision are given by r2t =
β1t x̂1t−γ1tr1t

β1t−γ1t
and γ2t = β1t − γ1t.

With the forward-and-back message passing, the iterations are converged until the
true belief is approximated. The non-loopy factor graph in Figure 2 provides interpretable
message scheduling with ease of implementation.

3.2. Prior-Aided VAMP Detection

Considering the explicit definition of the sparsity of OFDM-IM symbols in the fre-
quency domain, it can be predicted that the posterior estimation of symbols based on the
optimal MMSE criterion can be achieved. x has sparse characteristics and non-zero symbols
are drawn from the constellation S . For each element in x, the prior of x is given by

p(x) =
ρ

|S| ∑
s∈S

δ(x − s) + (1 − ρ)δ(x), (17)

where ρ = k
n is the signal sparsity and |S| is the size of constellation map S . The constella-

tion point s has normalized power, i.e., ∑s∈S |s|2
|S| = 1.

As shown in step (2), the marginal belief bsp(x) ∝ µδ→x(x)µp1→x(x), which is given by

bsp(x)
∆
= p(x)p(r|x)∫

p(x)p(r|x)dx , where p(r|x) ∝ CN (x; r̂, vr) with mean r̂ and variance vr. The MMSE

denosing function is element-wise given by x̂ = E
[
x|bsp(x)

]
=
∫

xp(r|x)p(x)dx∫
p(r|x)p(x)dx . Expand the

denominator as∫
p(r|x)p(x)dx = CN (x; r̂, vr)

[
ρ

|S| ∑s∈S δ(x − s) + (1 − ρ)δ(x)
]

=
ρ

|S| ∑s∈S
γw

π
exp

{
−γw|r̂ − s|2

}
+

γw(1 − ρ)

π
exp

(
−γw|r̂|2

)
.

(18)

The numerator is given by∫
xp(r|x)p(x)dx =

∫
xCN (x; r̂, vr)

[
ρ

|S| ∑s∈S δ(x − s) + (1 − ρ)δ(x)
]

dx

=
ρ

|S| ∑s∈S
sγw

π
exp

{
−γw|s − r̂|2

}
.

(19)

The derivative of MMSE denoiser is required to be calculated, which needs the key

term cov
[
x|bsp(x)

]
= E

[
x2|bsp(x)

]
− x̂2. E

[
x2|bsp(x)

]
=
∫

x2 p(r|x)p(x)dx∫
p(r|x)p(x)dx , where the numer-

ator is given by
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∫
x2 p(r|x)p(x)dx =

∫
|x|2CN (x; r̂, vr)

[
ρ

|S| ∑s∈S δ(x − s) + (1 − ρ)δ(x)
]

dx

=
ρ

|S| ∑s∈S
γw|s|2

π
exp

{
−γw|s − r̂|2

}
.

(20)

With the equation from (18) to (20), the MMSE denoiser and its divergence are achieved,
which are utilized to replace step 5 and step 6 in Algorithm 1.

3.3. Modification for Invalid SAPs and Constellation Detection

After x̂ each group is estimated, the invalid SAPs appear like the case in LLR detection.
Instead of discarding the non-existent SAPs as wrong results, modifications are required to
reduce the performance loss. Firstly, we sort the power amplitudes of x̂ in an ascending
order and obtain the indices sequence Ĩ = {i0, i1, · · · , in−1}, then the non-zero index group
I = {i0, · · · , ik−1} is guaranteed by the k indices with the largest values in Ĩ . The step is
important especially for low SNR cases due to the noise effects greatly blur the boundaries
between noise and signal subspace.

However, the member I may be out of the scope of J . To minimize the effects of
error detection, the value in the index group is checked to choose the closest one in J .
The choice criterion is to minimize the Euclidean distance between I with the Table space,
i.e., arg min

c=1,...,|J |
∥I − Jc∥2

2. It is worth noting that symbols x̂ =
{

x̂j
}ik−1

j=i0
are simultaneously

equalized and they have been located on the decision region of the constellation symbols.
They are easily recovered using one-step ML symbol detection given by

x̃j = arg min
sq∈S

∥∥x̂j − sq
∥∥2

2, j = i0, · · · , ik. (21)

Besides the VAMP with SVD transform in Algorithm 1, here we present the whole
process considering the message passing of Figure 2, and the VAMP with LMMSE step is
shown in Algorithm 2.

Algorithm 2 Vector AMP-based OFDM-IM detection (LMMSE Version)
Input: Received signal of each group y ∈ Cn×1, measurement matrix H ∈ Cn×n , Maximum iteration

number T, denoising function η(·), noise precision γw,activated subcarrier number k
Output: Recovered index data I and equalized symbols x̃
1: Initialization: t = 0, r0, γ0 ≥ 0
2: while t < T do
3: x̂1t = η(r1t, γ1t)

4: α1t =
〈

η
′
(r1t, γ1t)

〉
5: β1t =

γ1t
/
α1t

6: γ2t = β1t − γ1t

7: r2t =
β1t x̂1t−γ1tr1k

γ2t

8: x̂2t =
(
γwHHH + γ2tI

)−1(
γwHHy + r2tγ2t

)
9: α2t =

γ2t
m ∗ trace

[(
γwHHH + γ2tI

)−1
]

10: β2t =
γ2t
α2t

11: γ1,t+1 = β2t − γ2t
12: r1,t+1 = (β2tx̂2t − γ2tr2t)

/
γ1,t+1

13: end while
14: Sort x̂ as Ĩ = sort(x̂,′ ascend′) and estimated indices I = Ĩ(n − k + 1 : n)
15: if I /∈ J then
16: Update I as Jc with the minimum ED in J
17: end if
18: x̃j = arg min

sq∈S

∥∥∥x̂j − sq

∥∥∥2

2
, j ∈ I
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4. Numerical Simulations

The numeral experiments are executed through a simulated UWA channel. The results
are analyzed to show the advantages of the proposed method. The benchmarks include
IM-AMP [9], IM-MMSE-AMP [7], IM-LLR and IM-ML [1] and the proposed detector. The
OFDM-IM system parameters are defined in Table 1 unless otherwise stated.

Table 1. Parameters for UWA OFDM-IM system.

Bandwidth B 5 kHz No. Subcarrier N 1024 Modulation S QPSK
Subcarrier spacing ∆ f 4.88 Hz No. Group G 256 Sampling Freq fs 100 kHz
CP duration Tcp 51.2 ms No. Active subcarrier k 2 Center Freq fc 12.5 kHz

The simulated UWA CIRs are generated from the time-varying UWA channel
model [18]. The multipath channel includes L = 15 paths and the inter-arrival time follows
an exponential distribution with a mean value of 1 ms. The average channel delay spread
is 15 ms. The amplitudes of paths follow Rayleigh distribution and the average power of
paths decreases exponentially with total power decay 20 dB. The model generates dupli-
cated paths which are merged together. The CFO is randomly generated ϵ ∈

[
−∆ f

2 , ∆ f
2

]
.

For coherent communication systems, accurate CSI is the precondition to guarantee the
reliability of the communication links. By exploiting the sparse characteristics of UWA
channels, the orthogonal matching pursuit (OMP) method is used in this paper [19].

4.1. Complexity Analysis

The signal detection is operated group by group and the implementation complexity
of the mentioned detectors for each group is shown in Table 2. AMP is a low-complexity
framework. For AMP-based detectors, the complexity majorly lies in the matrix multi-
plication operation. For each group, the complexity is O(n2). The proposed detector has
two types, i.e., the SVD form and the LMMSE form, and the results of the two versions
are shown in Figure 3. In Figure 3, both forms of the proposed detector show similar
performance. The LMMSE form has matrix inversion operation, and the complexity is
O(n3) per group. For the SVD form, H is decomposed by SVD transformation and the
complexity is O(nR), where R is the rank of H. LLR detector works for each subcarrier
with the LLR ratio calculation for each constellation point, so the complexity is O(nM)
per group. The optimal ML detector requires searching the space of index patterns and
constellation maps, so its computation complexity exponentially increased with the index
table number as well as the modulation order.

Table 2. Complexity comparison.

AMP MMSE-AMP VAMP (SVD/LMMSE) LLR ML

O(n2) O(n2) O(nR)/ O(n3) O(nM) O

2

⌊
log2C

(
n
k

)⌋
Mk



4.2. Residual CFO Effects

Before the investigations on the performance of detectors, CFO effects are first an-
alyzed. To verify the CFO compensation results, Figure 4a presents the BER of the ML
detector in three cases when CFO = 0.2. Case 1 considers CFO effects but has no CFO
compensation step. Case 2 does not incorporate the CFO effects, which perform as the
benchmark. Case 3 incorporates CFO effects as well as the compensation step. From
Figure 4, we can see the BER of case 3 is very approximated with the one of case 2, which
proves that the CFO compensation method in Section 2 is effective, which greatly reduces
the performance losses due to the ICI. At BER = 10−2, the performance of case 3 is about
7 dB better than case 1.
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Figure 3. BER performance of the proposed detector with different implementation forms.
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Figure 4. BER comparisons of detectors with different modulation methods. (a) BER of ML detector
with different residual CFO effects when CFO = 0.2; (b) BER comparisons of detectors with CFO
compensations when CFO = [0.05 0.2].

Figure 4b studies the BER performance of detectors with the CFO compensation in the
presence of different CFOs, i.e., ϵ = [0.05, 0.2]. As shown in Figure 4b, besides the ML and
LLR detectors, the proposed detector presents robustness to various CFO effects. However,
the IM-AMP fails in both cases even considering CFO mitigation. The proposed detector
performs better than the IM-MMSE-AMP over the whole SNR range. The results prove
that the VAMP framework in the proposed detector is less sensitive to the noise from the
UWA channel, such as the channel estimation and ICI. Moreover, the prior-aided denoising
function can exploit symbol sparsity and achieve approximated BER compared with the
ML and LLR.

4.3. BER Performance with Channel Uncertainty

In real applications, the UWA channel cannot be guaranteed in advance. CSI is the
prerequisite for data detection. Figure 5 studies the effects of channel uncertainty ξ2

on the BER performance of detectors. The CSI uncertainty is incorporated according to
ĥ = h + e, where h and ĥ are the true channel vector and estimated channel vectors,
respectively. The channel error e ∼ CN

(
0, ξ2I

)
with the error variance ξ2. Figure 5

considers two CSI conditions with ξ2 = [0.01, 0.1]. In Figure 5, the larger ξ2 causes severe
performance losses for detectors. The IM-AMP is too fragile for channel deviation due to
channel estimated errors, and it almost loses efficacy due to the non-Gaussianity of the
UWA channel matrix. The IM-MMSE-AMP improves the performance and the gains are
generated due to the consideration of the symbol prior. The proposed detector performs
better than the IM-MMSE-AMP, which both consider the symbol prior but the VAMP
framework achieves more gains. The main reasons lie in that the scalar message passing
of the VAMP framework has more accurate posterior estimation and robustness to the
measurement matrix. Furthermore, the proposed detector performs most approximately
with the LLR and the ML. In the case ξ2 = 0.01 and BER= 10−2, the proposed detector
works slightly worse than the ML with a performance gap of about 1dB and the gap with
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the LLR is within 0.3 dB. In the case ξ2 = 0.1, all detectors are challenged; the proposed
detector performs better than the AMP-based benchmarks. The results show that the
novel shrinkage function and scalar message passing are effective in recovering the symbol
and robust to the measurement matrix with time-varying UWA channel components. It
is worthy noting that we use the OMP-based channel estimation method. Actually, the
OMP-based method easily achieves an error floor in real UWA channel conditions as in
work [17]. To further improve the system performance, a more accurate channel estimation
method deserves to be explored, which is not investigated in this paper.
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2
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Figure 5. Channel error effects on BER comparisons of detectors when ξ2 = [0.01 0.1].

4.4. BER Performance with Different System Configuration

Figure 6 studies the BER performance of detectors with different constellation modu-
lation, i.e., BPSK, QPSK, 8PSK, and 16QAM. Combined with the setting {n = 4, k = 2}, the
data rates of these cases are {1, 1.5, 2, 2.5} bit/s/Hz. In the four subfigures, we can see the
IM-AMP has the worst performance. The incorporation of symbol sparsity improves the
performance of IM-MMSE-AMP. The IM-MMSE-AMP has relatively good performance in
the first three cases, but it diverges in the 16QAM case. The proposed detector outperforms
the AMP-based detectors in all considered scenarios and approximates most with the
IM-ML along with IM-LLR. In the whole SNR range, the gaps among the three detectors,
i.e., the proposed, the IM-LLR and the IM-ML, are within 1dB. As the modulation order
increases, the detection is harder due to the decreasing signal spatial distance. Additionally,
in our proposed method, the constellation signals are equalized jointly. The better BER
performance of our proposed VAMP-based detector proves better index detection results.
The results show that the VAMP framework is more robust than the AMP ones when
confronting diverse modulation methods.

Figure 7 studies the performance of detectors with different combinations of SAPs and
constellation points. These cases have the SE {2, 1.375, 0.75, 1.25} bit/s/Hz. In Figure 7,
the proposed detector achieves effective results, which are approximated with the ML and
the LLR over the whole SNR range. When BER = 10−3, the proposed detector is almost
matched with the IM-ML, and the gain is more than 5 dB compared with IM-MMSE-AMP.
The IM-AMP almost works worse due to the sensitivity to the SAPs as well as the errors.
The IM-MMSE-AMP presents unstable performance especially in (8, 2, 2), it arrives at
its error floor at SNR = 10 dB. OFDM-IM provides us the flexibility to design different
systems with desirable SE, where the proposed detector can serve as a low-complexity and
effective implementation.



Entropy 2023, 25, 1667 13 of 16

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R
AMP

IM-MMSE-AMP

IM-LLR

IM-ML

PROPOSED

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

IM-AMP

IM-MMSE-AMP

IM-LLR

IM-ML

PROPOSED

(a) (b)

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

IM-AMP

IM-MMSE-AMP

IM-LLR

IM-ML

PROPOSED

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

IM-AMP

IM-MMSE-AMP

IM-LLR

IM-ML

PROPOSED

(c) (d)

Figure 6. BER comparisons of detectors with different modulation methods. (a) BPSK; (b) QPSK;
(c) 8PSK; (d) 16QAM.
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Figure 7. BER comparisons of detectors with different subcarrier allocations. (a) (4, 3, 4); (b) (8, 3, 4);
(c) (8, 2, 2); (d) (8, 4, 2).
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4.5. Performance over Different UWA Channel

Besides the path-based channel model in the above experiments, the statistical UWA
channel model is developed in [20]. This channel model considers detailed ocean physical
parameters and deployment conditions. Through setting different deployment parameters
as shown in Table 3, the channel impulse responses are shown in Figure 8. These channels
present different sparse structures. Pass signals over these channels and CS-based channel
estimation is utilized. The BER performance comparisons are shown in Figure 9. From
the figure, we can see the proposed detector achieves better BER results compared with
the conventional AMP methods. ML has the best BER results over all test channels. Over
channel 1, considering the case when BER = 3 × 10−3, the performance gap between the
proposed detector and the LLR is about 1 dB, which is better than the conventional AMP-
based detectors with 3 dB gains. Over channel 2, the proposed detector has approximate
BER results with the LLR detectors and achieves 4 dB gains compared with the IM-MMSE-
AMP detector at BER = 10−2.

We test the performance over the real-test channel in Wuyuan Bay, Xiamen, China.
The channels are sensed and collected by the transceivers at a distance of 1000 m. The
transmitter and the receivers are deployed about 4m below the surface. One example of a
channel is shown in Figure 10a. From the channel impulse response, we can see the signals
are reflected by the sea surface and the bottom. Pass the OFDM-IM signals over the real
channel and add different Gaussian noise with a defined SNR level, the BER results are
shown in Figure 10b. From the result, we can see the proposed detector keeps its superior
performance compared with conventional AMP-based detectors, and most approximates
the LLR and ML detectors.

Table 3. UWA channel parameters.

Parameters Channel 1 Channel 2

Spreading factor 1.7 1.7
Sound speed in water (m/s) 1500 1500
Sound speed in bottom (m/s) 1200 1200
Surface variance (m2) 0.0125 0.0125
Bottom variance (m2) 0.00625 0.00625
Number of intra-paths 20 20
Mean of intra-path amplitudes 0.025 0.025
Variance of intra-path amplitudes 0.000001 0.000001
Distance (km) 1.5 3
Height of transmitter (m) 45 58
Height of receiver (m) 60 59
Depth of water (m) 100 103
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Figure 8. Channel impulse response with different setting parameters. (a) Channel 1; (b) Channel 2.
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Figure 9. BER comparisons of detectors over different UWA channels. (a) BER over channel 1;
(b) BER over channel 2.
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Figure 10. Real channel and BER comparisons of detectors. (a) Real channel from Wuyuan Bay;
(b) BER over Wuyuan Bay channel.

5. Conclusions

This paper studies the low-complexity detection for UWA OFDM-IM communication
systems. Firstly, we formulate the index detection and the symbol equalization problem
into the Bayesian estimation framework. Instead of a well-known AMP framework, the
VAMP method with non-loopy FG is utilized to solve the problem. Secondly, considering
the symbol sparsity inherently in the OFDM-IM data frame, the prior-aided shrinkage
function is derived to achieve better denoising results. For the avoidance of non-existent
index detection results, a trick is utilized, which involves the detected erroneous ones into
the member of the look-up table. The experimental results show that the proposed detector
has reduced complexity, and is robust and effective over different subcarrier allocations and
modulation configurations. The proposed method approximates the ML detector, which
proves that it can be a competitive alternative for UWA communication applications.
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