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Abstract: Sunflower in coding theory is a class of important subspace codes and can be used to
construct linear codes. In this paper, we study the minimality of linear codes over Fq constructed
from sunflowers of size s in all cases. For any sunflower, the corresponding linear code is minimal
if s ≥ q + 1, and not minimal if 2 ≤ s ≤ 3 ≤ q. In the case where 3 < s ≤ q, for some sunflowers,
the corresponding linear codes are minimal, whereas for some other sunflowers, the corresponding
linear codes are not minimal.
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1. Introduction

Let Fq be the finite field with q elements and Fn
q the vector space with dimension n

over Fq. For a vector v = (v1, . . . , vn) ∈ Fn
q , let Suppt(v) := {1 ≤ i ≤ n : vi ̸= 0} be the

support of v. The Hamming weight of v is wt(v):=#Suppt(v). For any two vectors u, v ∈ Fn
q ,

if Suppt(u) ⊆ Suppt(v), we say that v covers u (or u is covered by v) and write u ⪯ v.
Clearly, av ⪯ v for all a ∈ Fq.

An [n, m]q linear code C over Fq is an m-dimensional subspace of Fn
q . A codeword c in

a linear code C is called minimal if c covers only the codewords ac for all a ∈ Fq, but no other
codewords in C. If every codeword in C is minimal, then C is said to be a minimal linear
code. Minimal linear codes have interesting applications in secret sharing [1–5] and secure
two-party computation [6,7], and could be decoded with a minimum distance decoding
method [8].

Up to now, there are two approaches to studying minimal linear codes. One is the
algebraic method and the other is the geometric method. The algebraic method is based
on the Hamming weights of the codewords. In [8], Ashikhmin and Barg gave a sufficient
condition for a linear code to be minimal. Many minimal linear codes satisfying the
condition wmin

wmax
> q−1

q are obtained from linear codes with few weights; for example [9,10].

Cohen et al. [7] provided an example to show that the condition wmin
wmax

> q−1
q is not necessary

for a linear code to be minimal. Ding, Heng, and Zhou [11,12] derived a sufficient and
necessary condition on all Hamming weights for a given linear code to be minimal.

When using the algebraic method to prove the minimality of a given linear code, one
needs to know all the Hamming weights in the code, which is very difficult in general. Even
if all the Hamming weights are known, it is hard to use the algebraic method to prove the
minimality. In this paper, we will use the geometric approaches to study the minimality of
some linear codes. Based on the geometric approaches (see [13–15]) it is easier to construct
minimal linear codes or to prove the minimality of some linear codes (see [16–21]).

Sunflower in coding theory is a class of important subspace codes and can be used to
construct linear codes, see [22]. Let s be the number of the elements in a sunflower. In [23],
(Theorem 10), the authors proved that if s ≥ p + 1, then the corresponding linear code over
Fp is minimal, where p is a prime number.
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In this paper, we will use the approach used in [14] to consider the minimality of linear
codes over Fq constructed from sunflowers for all s. We obtain the following three results:
(1) when s ≥ q + 1, for any sunflower, the corresponding linear code is minimal; (2) when
2 ≤ s ≤ 3 ≤ q, for any sunflower, the corresponding linear code is not minimal; (3) when
3 < s ≤ q, for some sunflowers, the corresponding linear codes are minimal, wherea for
some other sunflowers, the corresponding linear codes are not minimal.

This paper is organized as follows. In Section 2, we introduce some basic knowledge
about sunflowers, Euclidean inner product, and minimal linear codes. In Section 3, we
consider the linear codes constructed from sunflowers and discuss the minimality of these
linear codes in three cases. In Section 4, we conclude this paper.

2. Preliminaries
2.1. Sunflower

Throughout this paper, let k and t0 be two positive integers, m = 2k + t0 and l = k + t0.
Let 2 ≤ s ≤ qk + 1 be a positive integer, T0 ≤ Fm

q be a subspace of Fm
q , and dimT0 = t0. We

denote Gq(l, m) the set of l-dimensional vector subspaces of Fm
q . We define

Φ = {Ei ≤ Fm
q : dimEi = l, Ei ∩ Ej = T0, 1 ≤ i ̸= j ≤ s}.

Then, Φ ⊆ Gq(l, m) is a sunflower of Fm
q and the space T0 is called the center of the sun-

flower Φ.

Lemma 1. Let Φ ⊆ Gq(l, m) be a sunflower and T0 the center of Φ. For any Ei, Ej ∈ Φ with
1 ≤ i ̸= j ≤ s, we have Fm

q = Ei + Ej.

Proof. Since
dim(Ei + Ej) = dim(Ei) + dim(Ej)− dim(Ei ∩ Ej)

= dim(Ei) + dim(Ej)− dim(T0)

= l + l − t0 = m

and Ei + Ej ≤ Fm
q , we have Fm

q = Ei + Ej.

Lemma 2. Let Φ ⊆ Gq(l, m) be a sunflower and T0 the center of Φ. For any Ei, Ej ∈ Φ with
1 ≤ i ̸= j ≤ s, we have E⊥

i ∩ E⊥
j = {0}.

Proof. Assume that z ∈ E⊥
i ∩ E⊥

j . It follows from Lemma 1 that z ∈
(
Fm

q

)⊥
, which implies

z = 0.

2.2. Euclidean Inner Product

Let m be a positive integer. For x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym) ∈ Fm
q , the

Euclidean inner product of x and y is given by

< x, y >:= xyT =
m

∑
i=1

xiyi.

For any S ⊆ Fm
q , we define

Span(S) :=

{
r

∑
i=1

λisi | r ∈ N, si ∈ S, λi ∈ Fq

}
,

S⊥ := {v ∈ Fm
q | vsT = 0, for any s ∈ S}.



Entropy 2023, 25, 1669 3 of 12

Then, Span(S) and S⊥ are vector spaces over Fq and

dim(Span(S)) + dim(S⊥) = m. (1)

2.3. Minimal Linear Codes

All linear codes can be constructed by the following way. Let m ≤ n be two positive
integers. Let G := [d1, . . . , dn] be an m × n matrix over Fq and D := {d1, . . . , dn} be a
multiset. Let r(D) = r(G) denote the rank of G, which is equal to the dimension of the
vector space Span(D) over Fq. Let

C(D) :=
{

c(x) = xG = (xdT
1 , . . . , xdT

n ), x ∈ Fm
q

}
.

Then, C(D) is an [n, r(D)]q linear code with generator matrix G. We always study the
minimality of C(D) by considering some appropriate multisets D.

To present the sufficient and necessary condition for minimal linear codes in [14], some
concepts are needed. For any y ∈ Fm

q , we define

H(y) := y⊥ = {x ∈ Fm
q | xyT = 0},

H(y, D) := D ∩ H(y) = {x ∈ D | xyT = 0},

V(y, D) := Span(H(y, D)).

It is obvious that H(y, D) ⊆ V(y, D) ⊆ H(y).

Proposition 1 ([14]). For any x, y ∈ Fm
q , c(x) ⪯ c(y) if and only if H(y, D) ⊆ H(x, D).

Let y ∈ Fm
q \{0}. The following lemma gives a sufficient and necessary condition for

the codeword c(y) ∈ C(D) to be minimal.

Lemma 3 ([14] (Theorem 3.1)). Let y ∈ Fm
q \{0}. Then, the following three conditions are equivalent:

(1) c(y) is minimal in C(D);
(2) dimV(y, D) = m − 1;
(3) V(y, D) = H(y).

The following lemma gives a sufficient and necessary condition for linear codes over
Fq to be minimal.

Lemma 4 ([14] (Theorem 3.2)). The following three conditions are equivalent:

(1) C(D) is minimal;
(2) for any y ∈ Fm

q \{0}, dimV(y, D) = m − 1;
(3) for any y ∈ Fm

q \{0}, V(y, D) = H(y).

By the following lemma, we can obtain infinity of many minimal linear codes from
any known minimal linear codes.

Lemma 5 ([14] (Proposition 4.1)). Let D1 ⊆ D2 be two multisets with elements in Fm
q and

r(D1) = r(D2) = m. If C(D1) is minimal, then C(D2) is minimal.

The following corollary is trivial.

Corollary 1. Let D1 ⊆ D2 be two multisets with elements in Fm
q and r(D1) = r(D2) = m. If

C(D2) is not minimal, then C(D1) is not minimal.
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In the following section, we will use the above lemmas to consider the minimality of
linear codes constructed from sunflowers.

3. The Minimality of Linear Codes Constructed from Sunflowers

In this section, we consider the linear codes constructed from sunflowers and discuss
the minimality of these linear codes.

Let
Φ = {Ei ≤ Fm

q : dimEi = l, Ei ∩ Ej = T0, 1 ≤ i ̸= j ≤ s}.

be a sunflower of Fm
q and T0 the center of Φ.

Let

D :=

(
s⋃

i=1

Ei

)
\T0 =

s⋃
i=1

(Ei\T0). (2)

It is easy to see that C(D) is a [s(ql − qt0), m]q linear code.
The following lemmas are important in the proofs of this section.

Lemma 6 ([24] (Lemma 3.1)). For all y ∈ Fm
q \{0}, E ≤ Fm

q and dim(E) = r, we have
H(y, E) = V(y, E) and

dimV(y, E) =

{
r, i f y ∈ E⊥;

r − 1, i f y /∈ E⊥.

By linear algebra, we can obtain the following lemma.

Lemma 7. Let y ∈ Fm
q \{0}. If for any Ei ∈ Φ, y /∈ Ei

⊥, 1 ≤ i ≤ s. For any Ei0 , Ej0 ∈ Φ,
Ei0 ̸= Ej0 , let D1 = (Ei0 ∪ Ej0)\T0. We have

rankH(y, D1) =

{
m − 2, i f y ∈ T0

⊥;

m − 1, i f y /∈ T0
⊥.

Proof. Since y /∈ E⊥
i , it follows from Lemma 6 that dimH(y, Ei0) = dimH(y, Ej0) = l − 1.

Note that H(y, T0) ≤ H(y, Ei0) and H(y, T0) ≤ H(y, Ej0).
If y ∈ T⊥

0 , then H(y, T0) = T0. Suppose that

H(y, T0) = T0 = Span{γ1, γ2, . . . , γt0},

H(y, Ei0) = Span{α1, α2, . . . , αk−1, γ1, γ2, . . . , γt0},

H(y, Ej0) = Span{β1, β2, . . . , βk−1, γ1, γ2, . . . , γt0}.

Then, we have

H(y, Ei0) \ T0 ⊇ {α1, α2 · · · , αk−1, α1 + γ1, α1 + γ2, . . . , α1 + γt0},

H(y, Ej0) \ T0 ⊇ {β1, β2, . . . , βk−1, β1 + γ1, β1 + γ2, . . . , β1 + γt0}.

Since H(y, D1) = (H(y, Ei0) ∪ H(y, Ej0)) \ T0, the above equations lead to

H(y, D1) ⊇ {α1, α2, . . . , αk−1, β1, β2, . . . , βk−1, α1 + γ1, α1 + γ2, . . . , α1 + γt0},

i.e., rankH(y, D1) = m − 2.
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If y /∈ T⊥
0 , then dimH(y, T0) = t0 − 1 by Lemma 6. Suppose that

H(y, T0) = Span{γ1, γ2, . . . , γt0−1},

T0 = Span{γ1, γ2, . . . , γt0−1, γt0},

H(y, Ei0) = Span{α1, α2, . . . , αk, γ1, γ2, . . . , γt0−1},

H(y, Ej0) = Span{β1, β2, . . . , βk, γ1, γ2, . . . , γt0−1}.

Then, we have

H(y, Ei0) \ T0 ⊇ {α1, α2 · · · , αk, α1 + γ1, α1 + γ2, . . . , α1 + γt0−1},

H(y, Ej0) \ T0 ⊇ {β1, β2, . . . , βk, β1 + γ1, β1 + γ2, . . . , β1 + γt0−1}.

Since H(y, D1) = (H(y, Ei0) ∪ H(y, Ej0)) \ T0, the above equations yield

H(y, D1) ⊇ {α1, α2, . . . , αk, β1, β2, . . . , βk, α1 + γ1, α1 + γ2, . . . , α1 + γt0−1},

i.e., rankH(y, D1) = m − 1. The proof is completed.

Now, we consider the minimality of C(D) in three cases. First, when s ≥ q+ 1, we have

Theorem 1. Let Φ = {E1, . . . , Es} be a sunflower of Fm
q with center T0 of dimension t0. If

s ≥ q + 1, then C(D) is an [s(ql − qt0), m]q minimal linear code.

Proof. According to Lemma 4, we only need to prove that for any y ∈ Fm
q \{0}, dimV(y, D) =

m − 1. By (2), we obtain

H(y, D) = D ∩ H(y) =
s⋃

i=1

(H(y, Ei)\T0). (3)

There are three cases:
(1) If there exists Ei0 ∈ Φ such that y ∈ E⊥

i0
, then we have dimH(y, Ei0) = l from

Lemma 6. According to Lemma 2, for any Ej0 ∈ Φ with Ej0 ̸= Ei0 , we have y /∈ E⊥
j0

.

Then, it follows from Lemma 6 that dimH(y, Ej0) = l − 1. Since y ∈ E⊥
i0

⊆ T⊥
0 , we have

H(y, T0) = T0. We set

H(y, T0) = T0 = Span{γ1, γ2, . . . , γt0}.

When k = 1, we set

H(y, Ei0) = Span{α1, γ1, γ2, . . . , γt0}.

By (3), we have H(y, D) ⊇ {α1, α1 + γ1, α1 + γ2, . . . , α1 + γt0}, and so dimV(y, D) = m − 1.
When k > 1, we set

H(y, Ei0) = Span{α1, α2, . . . , αk, γ1, γ2, . . . , γt0},

and
H(y, Ej0) = Span{β1, β2, . . . , βk−1, γ1, γ2, . . . , γt0}.

By (3), we have

H(y, D) ⊇ {α1, α2, . . . , αk, β1, β2, . . . , βk−1, α1 + γ1, α1 + γ2, . . . , α1 + γt0}.

Since

rank{α1, α2, . . . , αk, β1, β2, . . . , βk−1, α1 + γ1, α1 + γ2, . . . , α1 + γt0} = m − 1,
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it is easy to obtain dimV(y, D) = m − 1.
(2) If for any Ei ∈ Φ, 1 ≤ i ≤ s, we have y /∈ E⊥

i and y /∈ T⊥
0 , then

dimH(y, Ei0) = dimH(y, Ej0) = l − 1 for any Ei0 , Ej0 ∈ Φ with Ei0 ̸= Ej0 . Since y /∈ T⊥
0 ,

dimH(y, T0) = t0 − 1. We set

H(y, T0) = Span{γ1, γ2, . . . , γt0−1}, T0 = Span{γ1, γ2, . . . , γt0}.

When k = 1, we set

H(y, Ei0) = Span{α1, γ1, γ2, . . . , γt0−1}, H(y, Ej0) = Span{β1, γ1, γ2, . . . , γt0−1}.

Then,
H(y, D) ⊇ {α1, β1, α1 + γ1, α1 + γ2, . . . , α1 + γt0−1}.

Since
rank{α1, β1, α1 + γ1, α1 + γ2, . . . , α1 + γt0−1} = m − 1,

it is easy to obtain dimV(y, D) = m − 1.
When k > 1, let D1 = (Ei0 ∪ Ej0)\T0. By Lemma 7, we have rank(H(y, D1)) = m − 1,

thus dimV(y, D) = m − 1.
(3) If for any Ei ∈ Φ, 1 ≤ i ≤ s, we have y /∈ E⊥

i and y ∈ T⊥
0 ; then, it follows from

Lemma 6 that dimH(y, Ei) = l − 1 and dimH(y, T0) = t0.
When k = 1, we obtain dimT⊥

0 =2 and dimE⊥
i =1, 1 ≤ i ≤ s, then E⊥

i is the one-
dimensional subspace of T⊥

0 . There are q + 1 one dimensional subspace of T⊥
0 , since

s ≥ q + 1, we obtain s = q + 1. By Lemma 2, for any Ei, Ej ∈ Φ, Ei ̸= Ej, we have
E⊥

i ∩ E⊥
j = {0}. Thus,

T⊥
0 =

s⋃
i=1

E⊥
i . (4)

Since y ∈ T⊥
0 , by (4), there exists Ej ∈ Φ, such that y ∈ E⊥

j , a contradiction. So k ̸= 1.
When k > 1, we have dimH(y, E1)=dimH(y, E2) = l − 1. Let D1 = (E1 ∪ E2)\T0. By

Lemma 7, we have rank(H(y, D1)) = m − 2. We set

T0 = H(y, T0) = Span{γ1, γ2, . . . , γt0}.

E1 = Span{α1, α2, . . . , αk−1, αk, γ1, γ2, . . . , γt0}, H(y, E1) = Span{α1, α2, . . . , αk−1, γ1, γ2, . . . , γt0}.

E2 = Span{β1, β2, . . . , βk−1, βk, γ1, γ2, . . . , γt0}, H(y, E2) = Span{β1, β2, . . . , βk−1, γ1, γ2, . . . , γt0}.

Let
B = {α1, α2, . . . , αk−1, β1, β2, . . . , βk−1, α1 + γ1, α1 + γ2, . . . , α1 + γt0}.

Then, rankB = m − 2 and B ⊆ H(y, D). Let V = Fm
q , W = Span(B) and V = V/W the

quotient space of V over W. We have dimV = 2 and V =Span{αk, βk}. Let π be the
standard map from V to V. For any Ei ∈ Φ, 1 ≤ i ≤ s, π(Ei) is a subspace of V. It is easily
seen that dimπ(Ei) = 1 or 2. There are the following two cases.

(i) If there exists Ei0 ∈ Φ such that dimπ(Ei0) = 2, then π(Ei0) = V̄. There must exist
α ∈ Ei0 such that

π(α) = αk − bβk, where b = (αkyT)/(βkyT).

So, α = αk − bβk + w, where w ∈ W. It is simply checked that α /∈ T0, α ∈ H(y) and α /∈ W.
We obtain

(B ∪ {α}) ⊆ H(y, D), rank(B ∪ {α}) = m − 1.

Thus, dimV(y, D) = m − 1.



Entropy 2023, 25, 1669 7 of 12

(ii) If for any Ei ∈ Φ we have dimπ(Ei) = 1, combining that V = Ei + Ej for any Ei,
Ej ∈ Φ with Ei ̸= Ej in accordance with Lemma 1, we have

V = π(V) = π(Ei) + π(Ej) and π(Ei) ̸= π(Ej).

Since V has only q + 1 one-dimensional subspace and s ≥ q + 1, we have s = q + 1 and

V =
s⋃

i=1
π(Ei). There must exist Ej0 ∈ Φ such that

π(Ej0) = Span{αk − bβk}, where b = (αkyT)/(βkyT).

Hence, there exists α = αk − bβk + w ∈ Ej0 , where w ∈ W, such that π(α) = αk − bβk. One
can easily deduce that α /∈ T0, α ∈ H(y) and α /∈ W. We obtain

(B ∪ {α}) ⊆ H(y, D), rank(B ∪ {α}) = m − 1.

Thus, dimV((y), D) = m − 1.
In conclusion, for any y ∈ Fm

q \{0}, we have dimV(y, D) = m − 1, so C(D) is a
minimal linear code.

Remark 1. In Theorem 1, if q = p is a prime number, then it becomes [23] (Theorem 10).
So Theorem 1 is a generalization of [23] (Theorem 10). Our method is different from theirs.
When s ≤ q, our method also can be used to study the minimality of the linear codes, whereas theirs
can not.

Example 1. Let e1, . . . , em be the standard basis of Fm
q . Let

T′
0 = Span({e2k+1, e2k+2, . . . , em}) = {(0, 0, t)|t ∈ Ft0

q }. (5)

For any b ∈ Fq, we define

Eb = Span{e1 + bek+1, e2 + bek+2, . . . , ek + be2k, e2k+1, . . . , em}. (6)

Suppose that

Φ = {Eb|b ∈ Fq} ∪ Span{ek+1, ek+2, . . . , e2k, e2k+1, . . . , em}

and
D′ =

⋃
Ei∈Φ

(Ei\T′
0).

It is easy to see that Φ is a sunflower of Fm
q with center T′

0 and s = q+ 1. Here, we take q = 4, k = 3,
and t0 = 1. With the help of Magma, we verify that the code C(D′) is a minimal [1260, 7]4 linear
code with minimum distance 768, and

wmin

wmax
=

4
5
>

3
4

.

Now, we consider the minimality of C(D) when 2 ≤ s ≤ 3 ≤ q. If s = 3, we have

Theorem 2. Let Φ = {E1, . . . , Es} be a sunflower of Fm
q with center T0 of dimension t0. If

s = 3 ≤ q, then C(D) is not minimal.

Proof. To prove C(D) is not minimal, by Lemma 4, we only need to prove there exists
y0 ∈ Fm

q \{0} such that dimV(y0, D) ≤ m − 2.
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When s = 3, Φ = {E1, E2, E3}. By Lemma 2 we know E⊥
1 ∩ E⊥

2 = {0}. Then,
for any y1 ∈ E⊥

2 \ {0}, we have y1 /∈ E⊥
1 and y1 ∈ T⊥

0 . Thus, dimH(y1, E1) = l − 1,
dimH(y1, E2) = l, and dimH(y1, T0) = t0. We set

T0 = H(y1, T0) = Span{γ1, γ2, . . . , γt0},

E1 = Span{α1, α2, . . . , αk−1, αk, γ1, γ2, . . . , γt0}, H(y1, E1) = Span{α1, α2, . . . , αk−1, γ1, γ2, . . . , γt0},

E2 = H(y1, E2) = Span{β1, β2, . . . , βk, γ1, γ2, . . . , γt0},

where αkyT
1 = 1. Let

E′
1 = Span{α1, α2, . . . , αk}, E′

2 = Span{β1, β2, . . . , βk},

we have Fm
q = E′

1 ⊕ E′
2 ⊕ T0. For any η ∈ E3, there exist unique α ∈ E′

1, β ∈ E′
2, γ ∈ T0, such

that η = α + β + γ. Since α + β = η − γ ∈ E3, for any α ∈ E′
1, there exists unique β ∈ E′

2
such that α + β ∈ E3. Let φ be a map from E′

1 to E′
2 satisfying φ(α) = β. We can see φ is an

isomorphism from E′
1 to E′

2 and

E3 = {x + φ(x)|x ∈ E′
1} ⊕ T0 = E′

3 ⊕ T0.

Since y1 /∈ E⊥
1 , y1 ∈ T⊥

0 , and E1 = E′
1 ⊕ T0, we have y1 /∈ (E′

1)
⊥, dimH(y1, E′

1) = k− 1,
dimφ(H(y1, E′

1)) = k − 1, and dimφ(H(y1, E′
1))

⊥ = m − (k − 1) = k + t0 + 1. Thus,

dim(φ(H(y1, E′
1))

⊥ ∩ E⊥
1 )

=dimφ(H(y1, E′
1))

⊥ + dim(E⊥
1 )− dim(φ(H(y1, E′

1))
⊥ + E⊥

1 )

≥k + t0 + 1 + k − m = 1.

Since q ≥ 3, there exists y2 ∈ (φ(H(y1, E′
1))

⊥ ∩ E⊥
1 )\{0} such that φ(αk)yT

2 ̸= −1. It
is easy to see y2 /∈ E⊥

2 and y2 ∈ T⊥
0 . Let y0 = y1 + y2, we obtain y0 /∈ E⊥

1 , y0 /∈ E⊥
2 , and

y0 ∈ T⊥
0 . Since αk + φ(αk) ∈ E3 and

(αk + φ(αk))y
T
0 = (αk + φ(αk))(y1 + y2)

T

= αkyT
1 + αkyT

2 + φ(αk)y
T
1 + φ(αk)y

T
2

= 1 + 0 + 0 + φ(αk)y
T
2 ̸= 0,

we obtain y0 /∈ E⊥
3 . Thus, y0 /∈ E⊥

i , 1 ≤ i ≤ 3 and dimH(y0, Ei) = l − 1.
(1) When k = 1, dimH(y0, Ei) = t0, since T0 ≤ H(y0, Ei), we have T0 = H(y0, Ei).

Thus,

H(y0, D) =
3⋃

i=1

(H(y, Ei)\T0) = ∅.

Thus, C(D) is not minimal.
(2) When k > 1, since Ei = E′

i ⊕ T0, we have y0 /∈ (E′
i)
⊥ and dimH(y0, E′

i) = k − 1.
Thus,

H(y0, Ei) = H(y0, E′
i)⊕ T0, 1 ≤ i ≤ 3.

By Lemma 6, it is easily verified that

H(y0, E′
1) = H(y1, E′

1),

H(y0, E′
2) = H(y2, E′

2) = φ(H(y1, E′
1)) = φ(H(y0, E′

1)),

H(y0, E′
3) = {x + φ(x)|x ∈ H(y0, E′

1)} ⊆ Span(H(y0, E′
1) ∪ H(y0, E′

2)).

Then, dimV(y0, D) = m − 2. By Lemma 4, we have that c(y0) is not minimal.

Combining Theorem 2 and Corollary 1, we have
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Corollary 2. Let Φ = {E1, . . . , Es} be a partial spread of Fm
q . If 2 ≤ s ≤ 3 ≤ q, then C(D) is

not minimal.

Now, we consider the minimality of C(D) when 4 ≤ s ≤ q. We recall from (5) that

T′
0 = Span({e2k+1, e2k+2, . . . , em}) = {(0, 0, t)|t ∈ Ft0

q }.

We will show that some sunflowers Φ with center T′
0, C(D) are minimal, whereas some

other sunflowers Φ with center T′
0, C(D) are not minimal.

First, we construct some sunflowers Φ such that C(D) are minimal. Let k ≥ 2, f (x) be
an irreducible polynomial in Fq[x] of degree k and M ∈ Fk×k

q be a matrix with characteristic
polynomial f (x). We define

E1 = {(x, 0, t)|x ∈ Fk
q, t ∈ Ft0

q }, E2 = {(0, x, t)|x ∈ Fk
q, t ∈ Ft0

q },

E3 = {(x, x, t)|x ∈ Fk
q, t ∈ Ft0

q }, E4 = {(x, xM, t)|x ∈ Fk
q, t ∈ Ft0

q },
(7)

and
Φ = {E1, E2, E3, E4}. (8)

We can see Φ is a sunflower with center T′
0.

Theorem 3. For the sunflower Φ defined in (8), the linear code C(D) is minimal.

Proof. According to Lemma 4, we only need to prove that for any y ∈ Fm
q \{0},

dimV(y, D) = m − 1. There are three cases:

(1) If there exists Ei0 ∈ Φ such that y ∈ E⊥
i0

, the proof is similar as that in Theorem 1 (1).
(2) If for any Ei ∈ Φ, 1 ≤ i ≤ s, we have y /∈ E⊥

i and y /∈ T′⊥
0 , then the proof is similar to

that in Theorem 1 (2).
(3) If for any Ei ∈ Φ, 1 ≤ i ≤ s, we have y /∈ E⊥

i and y ∈ T′⊥
0 , the proof is as fol-

lows. Let y = (y1, y2, y3) where y1, y2 ∈ Fk
q, y3 ∈ Ft0

q . Next, we define two linear
transformations φ, ψ from Fk

q to Fk
q:

φ(x) = x, ψ(x) = xM, x ∈ Fk
q. (9)

Then,

E3 = {(x, φ(x), t)|x ∈ Fk
q, t ∈ Ft0

q }, E4 = {(x, ψ(x), t)|x ∈ Fk
q, t ∈ Ft0

q }. (10)

Let
E′

1 = {(x, 0, 0)|x ∈ Fk
q}, E′

2 = {(0, x, 0)|x ∈ Fk
q},

E′
3 = {(x, φ(x), 0)|x ∈ Fk

q}, E′
4 = {(x, ψ(x), 0)|x ∈ Fk

q}.
(11)

It is easy to verify that
Ei = E′

i ⊕ T′
0, 1 ≤ i ≤ 4.

Let
S : = Span{H(y, E1) ∪ H(y, E2)}

= Span{{H(y, E1) ∪ H(y, E2)}\T′
0}

= {(α, β, 0)|α ∈ H(y, E1), β ∈ H(y, E2)} ⊕ {(0, 0, t)|t ∈ Ft0
q }

= S′ ⊕ T′
0.

(12)

By Lemma 7, we have dimS = m − 2.

Now, we prove H(y, E3) ⊈ S or H(y, E4) ⊈ S. If not, assume that H(y, E3) ⊆ S and
H(y, E4) ⊆ S. By H(y, E3) ⊆ S, it is obvious that H(y, E′

3) ⊆ S′. Since y /∈ E⊥
3 and y ∈ T′⊥

0 ,
we have y /∈ E′⊥

3 , and then dimH(y, E′
3) = k − 1. There exists α1, . . . , αk−1 ∈ H(y1),
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β1, . . . , βk−1 ∈ H(y2) such that (α1, β1, 0), . . . , (αk−1, βk−1, 0) is a basis of H(y, E′
3). Then,

(10) yields βi = φ(αi). It is effortlessly demonstrated that α1, . . . , αk−1 is a basis of H(y1),
and β1, . . . , βk−1 is a basis of H(y2). Thus,

φ(H(y1)) = H(y2).

Similarly, by H(y, E4) ⊆ S, we obtain

ψ(H(y1)) = H(y2).

Then, we have
ψ(H(y1)) = H(y2) = φ(H(y1)) = H(y1).

That is to say, H(y1) is the ψ-invariant subspace of Fk
q.

Let α1, . . . , αk−1, αk be a basis of Fk
q, where α1, . . . , αk−1 is a basis of H(y1). Then, the

matrix of ψ with respect to this basis is

B =

(
B1 B2
0 b

)
,

where B1 is the matrix of ψ|H(y1) with respect to α1, . . . , αk−1. Note that M is the matrix
of ψ with respect to the standard basis, and thus M and B are similar and have the same
characteristic polynomial. So

f (x) = |xI − B1|(x − b),

a contradiction with the irreducibility of f (x). Hence, H(y, E3) ⊈ S or H(y, E4) ⊈ S.
It is easy to see that r({H(y, E1) ∪ H(y, E2) ∪ H(y, E3)}\T′

0) = m − 1 or r({H(y, E1) ∪
H(y, E2) ∪ H(y, E4)}\T′

0) = m − 1. So, dimV(y, D) = m − 1.
In conclusion, for any y ∈ Fm

q \{0}, dimV(y, D) = m − 1. By Lemma 4, C(D) is
minimal.

Combining Theorem 3 and Lemma 5, we have

Corollary 3. Let s ≥ 4 and Φ = {E1, . . . , Es} be a sunflower of Fm
q with center T′

0. If
{E1, E2, E3, E4} are defined as (7), then C(D) is minimal.

Example 2. Take q = 5, k = 2, and t0 = 1. Let f (x) = x2 + x + 1 and

M =

(
0 −1
1 −1

)
.

It is easily checked that f (x) ∈ Fq[x] is an irreducible polynomial of degree 2 and the characteristic
polynomial of M. Then, the code C(D) constructed based on Theorem 3 is a minimal [480, 5]5 linear
code with minimum distance 300, and

wmin

wmax
=

3
4
<

4
5

.

Now, we construct some sunflowers Φ with center T′
0 such that C(D) are not minimal.

Let us recall from (6) that

Eb = Span{e1 + bek+1, e2 + bek+2, . . . , ek + be2k, e2k+1, . . . , em}.

Let
Φ = {Eb|b ∈ Fq}. (13)

It is easy to see that Φ is a sunflower of Fm
q with center T′

0.
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Theorem 4. For the sunflower Φ defined in (13), the linear code C(D) is not minimal.

Proof. Let y0 = e1. Then, for any b ∈ Fq, we obtain

H(y0, Eb) = Span{e2 + bek+2, · · · , ek + be2k, e2k+1, . . . , em}
⊆ Span{e2, . . . , ek, ek+2, . . . , e2k, e2k+1, . . . , em}.

By (3), we have

H(y0, D) ⊆ Span({e2, . . . , ek, ek+2, . . . , e2k, e2k+1, . . . , em}).

Then, dimV(y0, D) ≤ m − 2. By Lemma 4, we have that c(y0) is not minimal and C(D) is
not minimal.

Combining Theorem 4 and Corollary 1, we have

Corollary 4. Let 3 < s ≤ q and S ⊆ Fq where #S = s. Let Φ = {Eb| b ∈ S}. Then, C(D) is
not minimal.

Remark 2. In Theorem 3, Corollary 3, Theorem 4, and Corollary 4, the center of the sunflower
Φ is the special subspace T′

0. When the center is a general subspace, we have not yet proved the
minimality of C(D).

Example 3. Take q = 3, k = 2, and t0 = 2. Then, the code C(D) constructed based on Theorem 4
is [216, 6]3 linear code with minimum distance 108, and

wmin

wmax
=

2
3

.

According to Magma experiments, there exists y1 = [1, 0, 0, 0, 0, 0] ∈ F6
3 such that dimV(y1, D) = 4.

Then, it follows from Lemma 4 that C(D) is not minimal.

4. Concluding Remarks

In this paper, we use the approach used in [14] to study the minimality of linear
codes constructed from sunflowers in all cases. In [23], the authors proved that if the
number s of the elements in a sunflower satisfying s ≥ p + 1, then the corresponding
linear code over Fp is minimal, where p is a prime number. Our results in this paper
generalize [23] (Theorem 10). We discuss the minimality of linear codes constructed from
sunflowers for all s. We obtain the following three results: (1) when s ≥ q + 1, for any
sunflower, the corresponding linear code is minimal; (2) when 2 ≤ s ≤ 3 ≤ q, for any
sunflower, the corresponding linear code is not minimal; (3) when 3 < s ≤ q, for some
sunflowers, the corresponding linear codes are minimal, whereas for some other sunflowers,
the corresponding linear codes are not minimal.
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