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Abstract: Carnot cycles of samples of harmonically confined ultracold 87Rb fluids, near and across
Bose–Einstein condensation (BEC), are analyzed. This is achieved through the experimental determi-
nation of the corresponding equation of state in terms of the appropriate global thermodynamics
for non-uniform confined fluids. We focus our attention on the efficiency of the Carnot engine when
the cycle occurs for temperatures either above or below the critical temperature and when BEC is
crossed during the cycle. The measurement of the cycle efficiency reveals a perfect agreement with
the theoretical prediction (1− TL/TH), with TH and TL serving as the temperatures of the hot and
cold heat exchange reservoirs. Other cycles are also considered for comparison.
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1. Introduction

Thermodynamic transformations are among the most fascinating phenomena between
the micro- and macro-world. We can think of many ways in which quantum effects
can enter the work of thermodynamic engines. There are many considerations regarding
quantum machines, either thermal [1] or not thermal [2]. When quantum fluids are involved,
this is still new ground, which could be explored from many perspectives. The Carnot
cycle is one of the keystones of thermodynamics, as it allows for the determination of
temperature in absolute terms. This is provided by the Clausius inequality [3] which, for
reversible processes, states that the ratio of absorbed to released heat, exchanged through
the isothermal processes, can be identified using the ratio of the corresponding heat bath’s
absolute temperatures, independently of the material cycle operating properties. At the
same time, this result shows that the efficiency of the cycle is [4].

η = 1− TL
TH

, (1)

with TH and TL the temperatures of the hot and cold heat-exchange reservoirs. Since
this universal result is independent of the medium carrying out the cycle, any correct
thermodynamic description of any physical system realizing this cycle must obey it. There
is no reason, in principle, to imagine that this consideration should not hold for a gas in
the quantum regime [5]. Even in situations in which generic quantum features such as
coherence and entanglement are present, the limit for efficiency still holds [6]. In light
of these general statements, we present a thermodynamic analysis of an ultracold gas of
87Rb atoms confined in a harmonic trap, during which Carnot cycles are performed under
different experimental conditions. Figure 1 shows the aim of our study:
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Figure 1. Carnot Cycles in a Π-V diagram for a 87Rb gas that is harmonically trapped.

For global-pressure Π vs. global-volume V , the appropriate thermodynamic variables
for a harmonically confined gas [7,8], as explained below, we show three cycles: one within
the normal phase T > Tc, one fully within the condensate phase T < Tc, and a third
one, in which the quantum transition takes place within the cycle itself; namely, where
the isothermal curves cross the Bose–Einstein condensation transition line. The latter,
to the best of our knowledge, is the first experimental study of a cycle performed by a
superfluid across its second-order phase transition (for theoretical studies, see [9,10]). As
detailed below, we can directly calculate the efficiency of any cycle and compare this with
its theoretical prediction, finding satisfying agreements. The type of analyses presented
here are usually very difficult to perform for any fluid, if not impossible, due to the lack
of accurate equations of state for the physical system at hand. In our case, we could
achieve this goal because we had already developed a thermodynamic framework, Global
Variables Thermodynamics [7,8], to properly describe the thermodynamic variables of an
inhomogeneous trapped gas. In addition, after a very thorough experimental study on
clouds of 87Rb, we obtained what we name a technical equation of state, from which the
different processes in a cycle can be accurately obtained.

Thermodynamic cycles with single particles occupying discrete states of a poten-
tial [11–13] or many particles comprising a many-body quantum system [14] are a new
concept within the topic of thermodynamic engines. The quantum effects in such systems
may be used to compose relevant concepts in the new area of quantum technological
devices [15]. In the same sense, the present work fits within the generic classification of
“quantum engines” by using a quantum object as the main part of the system, allowing
for quantum properties to lead to the occurrence of quantum phase transitions during
the cycle’s performance. This is certainly a realistic scenario in the context of quantum
engines. There are excellent reviews discussing many theoretical aspects of quantum
thermodynamic devices [16].

Fluids confined in non-uniform traps, such as those in harmonic confinement, are also
inhomogeneous. Hence, the hydrostatic pressure becomes locally spatial-dependent and
the volume is not defined. As such, pressure and volume are no longer thermodynamic
variables. Based on this observation, in recent years, we developed the correct thermody-
namic description, called Global Thermodynamics, by identifying the proper equilibrium
mechanical variables “pressure” and “volume” [8], which we called global pressure (Π)
and global volume (V). This identification follows from the formal expression of statistical
physics of free energy and entropy in the thermodynamic limit. For instance, as described
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in detail in Ref. [8], a gas of N neutral atoms can be accurately described by a Hamiltonian
with pairwise interactions confined by an external field, as follows:

H =
N

∑
i=1

p2
i

2m
+ ∑

i<j
u(|ri − rj|) +

N

∑
j=1

Vext(rj) , (2)

with u(|ri − rj|) is a pairwise, short-range, interatomic potential and the external field, in
our case, is a harmonic trap of optical and/or magnetic origin [17,18],

Vext(r) =
1
2

m
(

ω2
xx2 + ω2

yy2 + ω2
z z2
)

, (3)

with r = (x, y, z) and ωi as the frequencies of the confining trap potential. It can be rigor-
ously shown that, by appealing to the definition of the free energy of a gas at temperature T,

F = −kT ln Tr e−βH , (4)

in the appropriate thermodynamic limit, N → ∞, V → ∞ with N/V = constant, the
Helmholtz free energy is found to be an extensive function F = F(N,V , T), where the
global extensive volume is given by V = 1

ωxωyωz
. Accordingly, the conjugate intensive

global pressure is given by:

Π = −
(

∂F
∂V

)
N,T

=
1

3V

∫
r · ∇Vext(r) ρ(r)d3r. (5)

The second line is a generalization of the hydrostatic pressure in terms of the virial of the
external force and, essentially, the equation for force equilibrium within the fluid. However,
more importantly for application purposes, the second line also provides a procedure that
can be used to determine the global pressure Π as an integration of the inhomogeneous
density profile ρ(r), which is weighted by the confining external potential. It is also
important to recall that all thermodynamic formalisms follow from, for instance, the usual
expression for the free energy, F = U − TS = −ΠV + µN and dF = −SdT −ΠdV + µdN.
In this way, the work involved in any reversible process is given by:

W = −
∫ B

A
Π dV , (6)

where the integral occurs along the given process from state A to state B. It is worth noting
that, if the external potential Vext(r) is not harmonic, although it is a confining potential,
one can always find the appropriate generalized or global volume V to such an external
potential ([8]) and, once it is identified, the definition of the corresponding pressure Π is
given by (5).

2. Cycles

Using these global variables, we can set up any cycle in the usual Π-V diagram, at
constant N. The Carnot cycle is defined by four reversible processes [19]. Starting in an
initial state (Π1,V1, TH), an isothermal expansion takes place to volume V2 > V1, while heat
is absorbed from the reservoir at TH . Then, a further adiabatic expansion to V3 cools the gas
to TL. This is followed by an isothermal compression to V4, releasing heat to the reservoir
at TL < TH . Finally, the system returns to its initial state with adiabatic compression. The
efficiency of a thermodynamic cycle is the ratio of the work W carried out by the system to
the heat absorbed QH . According to the Second Law of Thermodynamics, it is true that the
efficiency depends only on the isotherm temperatures in the cycle [20], as follows:



Entropy 2023, 25, 311 4 of 9

η =
W
QH

= 1− TL
TH

. (7)

The main goal of our experiment is to predict the work that the system can complete
and the corresponding absorbed heat in each ideal cycle. These can be used to find the
efficiency and, a posteriori, verify that the efficiency equals the expected expression. The
work performed during the whole cycle can be calculated if one uses the parametrization
of the isothermal and adiabatic curves in the Π-V diagram, at constant N. The former are
directly obtained from the equation of state Π = Π(N,V , T), while the latter can be derived
from the relationship of the entropy S as a function of (N,V , T),

TdS = CVdT + T
(

∂Π
∂T

)
N,V

dV (8)

where CV is the heat capacity at constant N and V . In a previous work by our group [21],
we showed that the heat capacity can be accurately approximated by CV = 3V

(
∂Π
∂T

)
N,V

.

The validity of this expression rests on the fact that density profiles below BEC are basically
fitted by a bimodal distribution. In this way, the internal energy can be separated into two
parts: one arising from the thermal cloud and the other from the condensate fraction. In
turn, the global pressure of the condensate is much smaller than the pressure of the thermal
cloud; following condensation, the expression for CV holds exactly. Hence, the adiabatic
curves can be found by setting dS = 0 in Equation (8), yielding VT3 = constant; therefore,
with the use of the equation of state, we can find Π as a function of V along the adiabatic
curves. To calculate the heat absorbed along the isotherm at TH , we integrate Equation (8)
for constant T,

QH =
∫ 2

1
TdS =

∫ 2

1

(
∂Π
∂T

)
N,V

dV . (9)

In a typical experimental run, about 105 rubidium atoms (87Rb) are confined in a
magnetic trap, where the sample is cooled to the order of a few microkelvins through
radiative cooling methods [22]. Then, with radiofrequency methods, evaporation cools the
atomic cloud down cools down to around 100 nK, with ∼ 104 atoms in the Bose–Einstein
condensate. Variations in controllable elements, such as heat and range of evaporation
frequencies, magnetic fields and number of atoms, allow for the global thermodynamic
variables N, Π and V to be mapped at different values. The global volume V = 1/ωxωyωz
is known independenly from accurate measurements of the trap frequencies, using center-
of-mass oscillations. With the knowledge of these frequencies, the in situ spatial density
distribution can be reconstructed from the absorption time-of-flight images [23] of the
trapped atomic cloud. Then, from this image, we can obtain the temperature T, number of
particles N and global pressure Π; the temperature was found by fitting the density profile
tail to the expected Gaussian equilibrium profile of a diluted gas; the number of particles
N were found using the absorption optical density of the image; the global pressure Π
was calculated using the theoretical expression (5). We recall that the simplest criterion
that was used to identify if the gas suffered from Bose-Einstein condensation, namely, if
T < Tc, was the appearance of a bimodal density distribution with a Thomas–Fermi peak
in the center and a thermal Gaussian tail; in the normal gas phase, T > Tc, the density
profile is a broad Gaussian thermal function. One can further verify that this is correct
by rotating the sample and observing the appearance of superfluid quantized vortices in
the condensed phase [17]. More details on the experimental set-up and procedures can be
found in previous works [18,21]. Then, to construct the equation of state Π = Π(N,V , T),
as described below, we first generated a large amount of dataset with nearly 500 density
profiles ρ(r). Each of these yielded the thermodynamic variables (N,V , T, Π) for each
experimental thermodynamic state.

The equation of state Π = Π(N,V , T) was found by a fitting procedure. We propose
a so-called technical equation for the global pressure as a function of temperature, with
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five technical coefficients (ai) that depend on the number of particles N and the global
volume V ,

Π(N,V , T) =
{

a0(N,V)T4+a1(N,V) + a2(N,V) T ≤ Tc
a3(N,V)T + a4(N,V) T ≥ Tc

(10)

Above the critical temperature, we fit an ideal gas type of equation, while below condensa-
tion, we fit the equation of a Bose gas using a harmonic potential corrected by a coefficient
to consider the first-order atomic interactions, since the gas is in a diluted regime. An equa-
tion of this form is proposed, since a previous finding indicated that the global pressure
depended on temperature, with a power law close to 4 below the critical temperature [24].
Above this, we can recover the ideal Bose gas equation. It is interesting to note that the
pressure does not reach zero when the temperature is zero; that is, there is a remaining
zero-point pressure [25]. To find the technical coefficients ai, the experimental points of
a typical run, such as those in Figure 2, are fitted by Equation (10) where one of the ther-
modynamic variables must be fixed: either the number of particles N or global volume V .
We chose to fix the volume, as this is a controllable variable in our experiment. Hence, we
ended with a collection of values of (N, T, Π) for each volume V , from which we can study
any desired cycle. Although the pressure should be intensive, such as Π = Π(N/V , T),
we did not assume this at the outset; however, the results show that this was indeed the
case—see Ref. [26] for further details.

Figure 2. Typical dependence of values for global pressure and fitting using Equation (10). While
above the critical temperature the system is a linear curve, below this, it is close to a fourth-order
dependence with T. (N = 4.2× 105, V = 7.8× 10−9 s3, Tc = 2.5× 10−7 K).

Using the experimental technical equation of state, we constructed Carnot cycles in
several different conditions, such as those shown in Figure 1. As described, the cycles can
be constructed considering different adiabatic and isothermal curves. Using those, we can
calculate the work performed in the cycle and the absorbed heat and, in turn, we can then
calculate the experimental efficiency of the cycle. Figure 3 shows a plot representing the
measured efficiency η = W

QH
plotted against the theoretical Carnot efficiency η = 1− TL

TH
when the critical temperature is not crossed. Several different temperatures in the cold and
hot reservoirs, TL and TH , were considered. As we can see, the points that represent each
cycle fall very close to the identity curve, proving that the experimental efficiency equals
the theoretical thermodynamic efficiency of a Carnot cycle. Note that, for temperatures
above the critical line of temperatures Tc, the density profile occurs in the thermal phase;
below this, there is a combined condensed phase and thermal phase.
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Figure 3. Calculated efficiency η = W
QH

versus Carnot efficiency η = 1− TL
TH

for a series of cycles above
and below the critical temperature; namely, those with no transition during the cycle. Despite having
a condensed phase, the efficiency of the cycle maintains the expected efficiency for a Carnot cycle.

In Figure 4, we show the cycle efficiency η = W
QH

versus the Carnot efficiency

η = 1− TL
TH

for a series of mixed cycles that do cross the transition line. This is quite
an interesting case, as it proves the prediction of the Second Law: no matter the engine
material or the equilibrium states, the efficiency depends only on the temperatures of the
reservoirs that absorb and release heat during the isothermal processes. This occurs regard-
less of whether there is second-order phase transition between two macroscopic quantum
fluids, as expected, as other thermodynamic properties of the working medium show that
a transition occurs during the cycle. This is illustrated in Figure 5, where we show the
behavior of the global isothermal compressibility KT during the cycle. The compressibility
becomes discontinuous when crossing the critical line.

Figure 4. Calculated efficiency η = W
QH

versus Carnot efficiency η = 1− TL
TH

for a series of cycles that
cross the transition line.
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Figure 5. Global isothermal compressibility KT = − 1
V

(
∂V
∂Π

)
N,T

as a function of V along a Carnot

cycle, whose isothermal processes cross the transition line. These crosses are observed as discontinu-
ities in the compressibility. In the inset, the compressibility is shown for a cycle that does not cross
the transition.

For completion, in Figures 6 and 7 we show a comparison of Carnot cycles versus Otto
and Ideal cycles and their respective efficiencies. The first is composed of two adiabatic
processes, connected by two isochoric processes. This cycle is of particular interest in
the study of quantum thermodynamic engines in recent experimental systems [27,28],
while the second is composed of two isobaric processes connected by two isochores. The
three cycles operate between the same extreme temperatures, TH and TL, as indicated in
Figure 6. Evidently, as shown in Figure 7, Carnot cycles yield the highest efficiency for
equivalent conditions.

Figure 6. An example of Ideal, Otto and Carnot Cycles in a Π-V diagram, within the same extreme
temperatures, marked with large dots, TH and TL. These are the same hot and cold temperatures that
occur for the Carnot cycle. The Ideal cycle is composed of two isobaric curves and two isochores,
while the Otto cycle has two adiabatic processes and two isochoric ones.
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Figure 7. Ratio of the calculated efficiency to the Carnot one for a series of ideal, Otto and Carnot
cycles, as a function of experimental efficiency. The ideal cycle efficiency is approximately 0.2; the
Carnot efficiency and the Otto cycle efficiency are 0.3.

The successful combination of global thermodynamics and one of the most fundamen-
tal predictions of the Second Law, namely, the efficiency of a Carnot cycle, can be used
in the correct identification of the mechanical thermodynamic properties, global pressure
and volume of a harmonically confined ultracold gas. In addition to verifying that the
work performed by a confined gas consists of changing the trap frequencies, keeping other
variables, such as entropy or temperature, constant, global thermodynamics provides a
proper expression for this basic and fundamental quantity. In this way, the First Law is also
clearly stated since, independently of whether a system is confined, energy and heat can
always be unambiguously determined, allowing for us to generally write (at constant N),
dE = TdS−ΠdV .

To conclude, we analyzed thermal engine cycles that operate above or below Bose–
Einstein condensation and cross the superfluid transition line. As previously stated, this
type of analysis is generally very difficult to perform, since one needs accurate equations
of state. Our study, showing the strength of the technical equation of state for the thermo-
dynamic description of confined ultracold gases, motivates further theoretical quantum
many-body research to justify and improve this description, and opens the door for re-
search on the potential implementations and applications of actual thermal engines at a
macroscopic quantum level. Finally, verification of the use of quantum material in the
thermal engine, exploiting possible quantum effects, shows the maximum possible effi-
ciency of the thermal engine. This verifies that, within the described context, the Carnot
efficiency still holds. The inclusion of quantum phases, such as Bose–Einstein condensates,
in the thermal engines introduces a new type of calorimetry in the thermodynamics of
closed-cycle transformations.
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