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Abstract: This paper deals with the problem of establishing a systematic theoretical formulation of
variational principles for the continuum gravitational field dynamics of classical General Relativity
(GR). In this reference, the existence of multiple Lagrangian functions underlying the Einstein
field equations (EFE) but having different physical connotations is pointed out. Given validity
of the Principle of Manifest Covariance (PMC), a set of corresponding variational principles can
be constructed. These are classified in two categories, respectively, referred to as constrained and
unconstrained Lagrangian principles. They differ for the normalization properties required to be
satisfied by the variational fields with respect to the analogous conditions holding for the extremal
fields. However, it is proved that only the unconstrained framework correctly reproduces EFE as
extremal equations. Remarkably, the synchronous variational principle recently discovered belongs
to this category. Instead, the constrained class can reproduce the Hilbert–Einstein formulation,
although its validity demands unavoidably violation of PMC. In view of the mathematical structure
of GR based on tensor representation and its conceptual meaning, it is therefore concluded that
the unconstrained variational setting should be regarded as the natural and more fundamental
framework for the establishment of the variational theory of EFE and the consequent formulation of
consistent Hamiltonian and quantum gravity theories.
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1. Introduction

The establishment of a theory which yields variational representations of the Einstein
field equations (EFE) describing the dynamics of the space-time metric 4-tensor gµν is a
fundamental requisite of field theory and classical General Relativity (GR) in particular.
However, due to the consequent intrinsic 4-tensor property acquired by EFE itself, a further
possible mathematical requisite arises. This is represented by the 4-tensor “character” of
the same variational representation, which means that both the variational Lagrangian, the
varied functions as well as the corresponding Euler–Lagrange equations should inherit the
same 4-tensor property [1]. Such a requisite, besides being convenient for its simplicity,
represents also a consistency property for the logical structure on which physical relativistic
field theory (RFT), and in particular classical GR, should be founded [2]. In fact, the same
4-tensor feature warrants by construction the validity of the property of general covariance
(a fundamental requisite of RFT) with respect to local point transformations connecting
arbitrary different GR-frames r ≡ {rµ} and r′ ≡ {r′µ} related by a local diffeomorphism,
i.e., of the form given below by Equations (1) and (2). For this reason, the same property
and the previous consistency requisite are usually referred to as the Principle of Manifest
Covariance (PMC) and PMC requisite [3].
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It should be stressed that both requisites are commonly shared by relativistic contin-
uum field theories and relativistic particle dynamics [4]. They should therefore analogously
be regarded as physically mandatory in the context of gravitational field theory too. How-
ever, despite the fact that both properties are intimately connected with the Einstein theory
of General Relativity, rather surprisingly the second requisite is not satisfied by the ear-
liest variational formulation of the Einstein field equations due to Einstein and Hilbert
in 1915 [5,6]. As discussed below, the reason can be realized at once by noting that the
original Hilbert-Einstein (HE) variational principle misses the coordinate-independence
feature. In fact, according to this approach, the volume element appearing in the definition
of the variational functional is treated as variational with respect to variations of gµν. As a
consequence, despite the 4-scalar property of the variational functional as a whole, the vari-
ational Lagrangian is necessarily a 4-scalar density, i.e., it is not a 4-scalar, which therefore
implies the violation of the PMC requisite [3].

Besides being a matter of principle, the correct treatment of the variational character of
EFE and the related coordinate-independent feature, requires the appropriate formulation
of suitable Lagrangian and/or Hamiltonian variational principles for the Einstein field equa-
tions, which determine in turn well-defined Lagrangian and Hamiltonian structures [7,8].
Notably, the same structures provide us with the only approach to the formulation of a
canonical theory of quantum gravity which is consistent with PMC.

Along this line, the subject of the present paper is to carry out a systematic investigation
of the foundations of the theory of variational principles holding for EFE of classical GR. In
fact, as shown below, in the literature multiple different Lagrangian functions have been
proposed that equivalently generate the same form of extremal gravitational Einstein field
dynamical equations. The most relevant ones include, in particular, the original Hilbert–
Einstein variational theory, together with the associated Palatini formulation [9,10], the
synchronous metric and Ricci principles obtained in the framework of manifestly covariant
deDonder–Weyl approach [11–14], the path-integral synchronous Hamilton variational
principle in both unconstrained and constrained forms [15], as well as non-manifestly
covariant approaches exemplified by the so-called ADM theory that invoke a slicing of
four-dimensional space-time into space and time sub-spaces [16–18]. Such a distinction
among time and space coordinates, however, might pose conceptual problems on the
classical principles of GR. This feature supports the objection raised by Hawking against
the ADM theory, who stated that “the split into three spatial dimensions and one time
dimension seems to be contrary to the whole spirit of Relativity” [19] (see also Ref. [20]
for additional critics on the 3+1 decomposition). In fact, in the spirit of GR, “time” and
“space” should be treated on equal footing as independent variables. The distinction among
the entries of 4-tensors cannot be longer put on physical basis in GR, in contrast to what
happens in flat space-time. As a result, the special role attributed to the “time” (or zero)
component with respect to the “space” components does not appear consistently motivated.
In addition, the issue can also raise in turn philosofical questions about the quantum
meaning of time [21,22].

All these Lagrangian functions are characterized by distinctive physical meanings and
mathematical settings of validity, and, apparently, they exhibit independent characters,
namely in the sense that their mutual relationships might appear unrelated.

In order to investigate in depth the nature of these variational principles and reach
the targets of the research, it is necessary to set up an appropriate theoretical framework
for a consistent mathematical treatment. This is obtained by preliminarily introducing the
notion of Principle of Manifest Covariance (PMC). In particular, in the framework of a
manifestly covariant treatment, PMC states that all dynamical and observable quantities,
in particular the Lagrangian functions as well as the continuum Lagrangian coordinates
and corresponding operators should be endowed with tensor properties with respect to
a suitable group of coordinate transformations. Thus, let us assume for definiteness that
the space-time is represented by a Riemannian differential manifold of the type

{
Q4, ĝ(r)

}
,

with Q4 being the four-dimensional real vector space R4 representing the space-time
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and ĝ(r) ≡
{

ĝµν(r)
}
≡ {ĝµν(r)} being a real and symmetric metric tensor which is

parametrized with respect to a coordinate system (or GR-frame) r ≡ {rµ} ∈ Q4. Then,
the same coordinate transformations, denoted as local point transformations (LPT), must
preserve the structure of space-time, i.e., they must be realized by local and differentiable
bijections of the form

r → r′ = r′(r), (1)

referred to as LPT-group, with inverse

r′ → r = r(r′), (2)

characterized by a non-singular Jacobian matrix M ≡
{

Mk
µ(r)

}
≡
{

∂rk(r)
∂r′µ

}
. Thus, r ≡ {rµ}

and r′ ≡ {r′µ} are arbitrary points belonging to the initial and transformed space-time
structures

{
Q4, ĝ(r)

}
and

{
Q′4, ĝ′(r′)

}
, respectively. The same space-time structure is pre-

served under the LPT-group, so that actually
{

Q4, ĝ(r)
}
≡
{

Q′4, ĝ′(r′)
}

, while the metric
tensors ĝ(r) and ĝ′(r′) transform in each other in accordance with the appropriate 4-tensor
transformation laws. More precisely, in tensor form the direct and inverse transforma-
tions ĝ(r) ≡

{
ĝµν(r)

}
→ ĝ′(r′) ≡

{
ĝ′µν(r′)

}
and ĝ′(r′) ≡

{
ĝ′µν(r′)

}
→ ĝ(r) ≡

{
ĝµν(r)

}
read, respectively, {

ĝ′αβ(r
′) = ĝµν(r(r′)) ∂rµ

∂r′α
∂rν

∂r′β

ĝµν(r) = ĝ′αβ(r
′(r)) ∂r′α

∂rµ
∂r′β
∂rν

, (3)

while the metric tensor fields ĝ(r) and ĝ′(r′) are required to satisfy the orthogonality conditions

ĝµν(r)ĝµη(r) = δ
η
ν , (4)

ĝ′µν(r
′)ĝ′µη(r′) = δ

η
ν . (5)

Finally, the Riemann distance in the two space-times
{

Q4, ĝ(r)
}

and
{

Q′4, ĝ′(r′)
}

is the same,
namely it is realized by means of a 4-scalar, so that ds2 = ĝµν(r)drµdrν = ĝ′µν(r′)dr′µdr′ν,
while any other 4-tensor, including the Ricci and Riemann tensors, transforms in accordance
with the well-known covariance 4-tensor transformation laws [10].

Given these premises, one of the main goals of the current research is to prove that, pre-
cisely under validity of PMC, a comprehensive classification of main literature variational
principles can be given. This is realized by pointing out the existence of two categories
to which the latter principles belong, respectively, referred to as constrained and uncon-
strained Lagrangian principles. A general mathematical procedure for the determination
of each variational approach is formulated. This in turn permits to unveil the difference
existing between the two sets of corresponding variational principles. In fact, it is shown
that this lies in the physical connotation that characterizes the generalized Lagrangian coor-
dinates, with particular emphasis on the normalization and/or orthogonality properties
required to be satisfied by the variational fields with respect to the analogous conditions
holding for the extremal fields. The treatment is developed initially for the case of vac-
uum Einstein equations, namely without external source fields, but with inclusion of the
cosmological constant term. The discussion about the extension of the formalism to the
treatment of external sources (i.e., the non-vacuum case) is then completed in a subsequent
separate section.

As a notable outcome, it is proved that only the unconstrained variational approach
provides a correct framework of general validity able to reproduce EFE as extremal equa-
tions. Among the possible realizations, this includes the synchronous Lagrangian vari-
ational principle disclosed in Ref. [23]. Instead, it is shown that the constrained class
can reproduce the Hilbert–Einstein formulation, which therefore realizes effectively a
constrained variational principle. The validity of such a derivation however demands
unavoidably violation of PMC. This provides a novel point of view on the physical origin
of the HE variational principle and its relationship with manifest covariance principle [3].
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On the other hand, this conclusion precludes the applicability of the constrained setting
with respect to the unconstrained one. This should be therefore regarded as the unique
and preferred variational framework for its consistency with the mathematical structure of
GR rooted on PMC and the tensor representation of observables and dynamical equations.
Hence, the theory of unconstrained variational principles promotes itself as the only viable
way for the establishment of Lagrangian approaches to classical GR that can permit also the
establishment of a related Hamiltonian formulation and, ultimately, to reach a consistent
theory of quantum gravity [24].

The present research is aimed at providing a novel theoretical framework for the
development of variational principles at the basis of classical GR and the understanding of
their physical significance. The subject in fact still represents a fertile field of research in
mathematical physics, General Relativity, field theory and Quantum Gravity, with potential
applications that might involve also the search of alternative gravitational theories beyond
classical GR. The motivations at the basis of the proposed research can be identified with
the following issues:

(1) The investigation of the role and conditions of applicability of PMC at the level
of variational principles for GR equations. In fact, the same principle is a pillar of the
foundational scheme of GR theory and the related tensorial representation of EFE. Therefore,
one should recover validity of PMC also at the variational level, namely characterizing the
definitions of variational principles, action functionals and Lagrangian fields associated
with the GR equations. The aim is to understand how PMC can be realized for consistency in
the variational domain and how this requirement places itself with respect to the properties
of alternative GR variational principles available in the literature.

(2) The physical interpretation of variational fields yielding GR equations in the
framework of PMC, in connection with the geometrical interpretation of metric tensor.
In fact, GR distinguishes itself from other continuum field theories for the fact that it
determines the gravitational field, its dynamics and simultaneously also the space-time
geometry. Namely, this refers to the background space-time on which the same field
dynamics is realized and in which interaction with other fields takes place. Because of
this physical and geometrical connotation, there remains to be ascertained how PMC can
be effectively realized at variational level when the notion of background (i.e., extremal)
metric tensor is required for its definition.

(3) To provide a classification of the variational approaches for EFE available in the
literature and point out their mutual relationship, namely their common aspects as well as
intrinsic differences. The task is met by means of the introduction of the concept of con-
strained and unconstrained variational principles. In particular, one of the main outcome is
to disclose the existence of a novel class of unconstrained Lagrangian variational principles
underlying the GR equations. The relevance of this kind of principles with respect to previ-
ous literature constrained principles is that they can be used to construct corresponding
unconstrained Hamiltonian formulations for EFE. In view of this application, the advantage
of the unconstrained approach lies in the fact that the unconstrained Hamiltonian structure
provides a viable setting for the construction of a quantum gravity theory.

(4) To establish a connection with classical mechanics and continuum field theory for
what concerns the identification of Lagrangian and Hamiltonian variational principles and
their formal representations.

2. Variational Approaches to EFE in the Literature

During the past decades, several alternative variational approaches were proposed in
this regard. Historically, the original formulation of the problem was reached in terms of
the Hilbert–Einstein (HE) variational theory [5], which is based on the action functional

SHE(g(r)) ≡
∫

Q4
dΩLHE(g), (6)
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where dΩ ≡ d4rδ
√
−|g(r)| is the invariant 4-volume element of the Riemann space-time{

Q4, g(r)
}

, with d4r ≡ ∏
i=0,3

dri being the canonical measure of Q4, and |g(r)| denoting here

the determinant of g(r). Furthermore, LHE(g) denotes the HE Lagrangian 4-scalar function
defined as

LHE(g) = VHE(g) + VF, (7)

where

VHE(g) = − c3

16πG
(

gµνRµν(g)− 2Λ
)
, (8)

with Λ > 0, G and c being, respectively, the cosmological constant, the Newton constant of
gravitation and the speed of light in vacuum. Instead, VF ≡ VF(g, r) is the non-vacuum
contribution due to possible external fields to be prescribed in terms of the field Lagrangian
LF as VF = 1

c LF. Hence, the quantity
√
−|g|LHE(g) identifies the corresponding varia-

tional Lagrangian density. According to the HE theory, the action SHE(g(r)) is considered
dependent only on the variational field g(r) ≡

{
gµν

}
, whose independent 4-tensor compo-

nents represent the generalized Lagrangian coordinates. Each g(r) belongs to a suitably
constrained functional setting {g(r)}C [3]. In fact, any 4-tensor g(r) ∈ {g(r)}C also realizes
a metric tensor, so that its countervariant and covariant components respectively raise
and lower tensor indices and thus necessarily must satisfy the orthogonality condition
gµνgµk = δk

ν, implying in turn the “normalization” condition gµν(r)gµν(r) = 4. For the
same reason, in the functional setting {g(r)}C, the tensor g(r) necessarily must also deter-
mine the Christoffel symbols Γ(g(r)) and the Ricci tensor Rµν(g), so that g(r) satisfies the
metric compatibility condition with vanishing covariant derivatives.

The asynchronous HE approach is characterized by a number of critical aspects which
rise potential mathematical and conceptual divergences both with standard variational
theory of continuum classical fields and the postulates of GR. These issues pertain primarily:

(1) The validity of the principle of manifest covariance, since the HE variational
Lagrangian density is not a 4-scalar because of the presence of the determinant |g(r)|.

(2) The non-standard character of LHE(g) which depends on second-order partial
derivatives of Lagrangian coordinate gµν(r) through the variations of the non-linear Ricci
tensor contributions. This means that the HE variational principle is not cast in so-called
first-order Lagrangian formalism. As a consequence, an appropriate treatment of differen-
tial fixed-point boundary terms generated in this way is required. Proposals of this kind
can be found in Refs. [9,10,25], while Ref. [3] provides a novel conceptually new point of
view for an alternative overcome of the problem that restores the customary first-order
formulation of least-action principles.

(3) The related missing canonical structure of the HE Lagrangian that is not expressed
as a customary sum of “kinetic” and “potential” terms. In contrast, the Ricci scalar can
be viewed as a sort of coupling term between the metric tensor and the Ricci tensor, a
feature which by itself appears peculiar in the framework of classical variational theory for
continuum fields.

(4) The violation of the fundamental gauge invariance properties to be satisfied by the
HE Lagrangian function [3,23].

In detail, concerning the variational calculus, the HE variational principle is expressed
by the requirement that for arbitrary variations δg(r) it must be

δSHE(g(r))|g=ĝ(r) =
d
dθ

SHE(ĝ(r) + θδg(r))
∣∣∣∣
θ=0

= 0, (9)

with the symbol δ denoting the Frechet derivative and ĝ(r) being the extremal classical
metric tensor, to be identified “a posteriori” with the solution of EFE. A characteristic feature
of the HE variational theory is that dΩ yields non-vanishing variational contributions to
δSHE(g(r)), since δdΩ = d4rδ

√
−|g|, where δ

√
−|g| = 1

2

√
−|g|gµνδgµν. This means that

the variation of the functional SHE(g(r)) does not preserve the space-time volume element.
Because of formal analogies of this property with the analogous occurrence arising in non-
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relativistic classical mechanics and adopting a similar nomenclature, the HE variational
principle is referred to as asynchronous [23]. One obtains that

δSHE(g(r))|g=ĝ(r) = δSHE(g)|expl + δSHE(g)|impl, (10)

where the implicit contribution is

δSHE(g)|impl =
∫

Q4
dΩ
[
− c3

16πG
ĝαβ

δRαβ

δgµν

]
δgµν, (11)

while the explicit contributions can be written as

δSHE(g)|expl =
∫

Q4
d4r
[
Aµν + Bµν + Cµν

]
δgµν, (12)

where Aµν, Bµν and Cµν are tensor densities defined as

Aµν ≡ LHE
δ
√
−|g|

δgµν , (13)

Bµν ≡ − c3

16πG

√
−|g|Rαβ

δgαβ

δgµν , (14)

Cµν ≡ 1
c

√
−|g| δLF

δgµν . (15)

As shown in Ref. [3], in order to recover the correct form of EFE, the constraint condition
δSHE(g)|impl = 0 must hold for arbitrary variations δgµν(r), so that the explicit contribu-
tions are sufficient to yield the correct Einstein equations

R̂µν −
1
2

R̂ĝµν + Λĝµν = κT̂µν, (16)

where R̂µν = Rµν(ĝ(r)) and R̂ = ĝµν(r)R̂µν ≡ R(ĝ(r)) denote, respectively, the background
Ricci 4-tensor and Ricci 4-scalar, T̂µν = Tµν(ĝ(r)) is the background stress-energy tensor
associated with the external source fields described by the external-field Lagrangian density
LF(g), and κ denotes the universal constant κ = 8πG/c4.

It must be stressed that multiple equivalent representations of the HE variational
theory were proposed in the literature starting from the initial work by Einstein, which
preserve the standard formulation of classical GR equations. These include in particular:

(1) Approaches such as those reported in Refs. [9,10,25] already mentioned above,
which differ for the way of treating fixed-points and boundary terms arising from varia-
tional calculus of the HE Lagrangian.

(2) Geometrical approaches referred to as tetrad formalism of differential geometry, in
which the metric tensor is represented in terms of so-called vielbeins [26,27].

(3) Non-manifestly covariant approaches, such as the Dirac approach, the ADM theory
and generally any 3+1 formulation based on preliminary decomposition of space-time into
the product of one time-like dimension and a three-space slice [16–18].

In addition, the quest for restoring a first-order formalism of the HE theory and
warranting at the same time a proper treatment of the Ricci-tensor variational contributions
led to the discovery of the so-called Palatini formulation of variational GR [9], in which
the differential connections (equivalently taken as the component fields of the covariant
derivative [25]) are treated as independent variational fields besides the metric tensor. The
resulting extremal equations are then identified with EFE plus the metric compatibility
condition prescribing the Christoffel symbols. However, this approach is intrinsically
non-manifestly covariant, since the connections do not possess by definition a tensorial
character. This feature can be viewed as another way of expressing the peculiar role taken
by the Ricci tensor in the HE variational theory, which depends on second-order partial
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derivatives of the metric tensor and therefore ultimately does not permit to satisfy the
first-order formalism of standard variational theories.

More recently, a novel approach to the issue, consistent with the deDonder–Weyl
manifestly covariant variational theory for continuum fields [11,12], has been proposed.
This is provided by the synchronous variational principle for the gravitational field out-
lined in Refs. [13,23]. The latter has the advantage of overcoming the problems of the HE
theory related to the violation of both manifest covariance and the first-order formalism.
In fact, the synchronous variational approach is characterized by a 4-scalar Lagrangian
function expressed in terms of superabundant variables gµν and ĝµν. In this setting, the vari-
ational tensor g ≡

{
gµν

}
is distinguished from a non-variational background metric tensor

ĝ ≡
{

ĝµν

}
, which defines the covariance properties of the theory and is ultimately assumed

to be determined “a posteriori” by the extremal EFE. Hence, ĝ expresses the geometric
character of the metric tensor, namely it satisfies the orthogonality condition ĝµν ĝµk = δk

ν,
so that it raises/lowers tensor indices, as well the metric compatibility condition ∇̂α ĝµν = 0,
so that it defines the standard Christoffel connections and curvature tensors of space-time.
On the contrary, in this framework the variational tensor g is such that gµνgµk 6= δk

ν. The
distinction between g and ĝ holds only at the variational level, since in the (extremal) EFE
the identity g = ĝ is restored. In the synchronous setting, hatted quantities depend on
the background metric tensor ĝ and do not contribute to the variational calculus. Thus,
denoting in particular the synchronous volume element as dΩ̂ = d4r

√
−|ĝ|, its variation

vanishes by construction so that δdΩ̂ = 0. This volume-preserving property under the
action of the operator δ justifies the name given to this approach as the synchronous vari-
ational principle, in contrast to the asynchronous theory. For completeness, it must be
noted that the synchronous setting exhibits similarities with other relevant literature ap-
proaches known as non-metric volume forms, or modified measures, defined for example
in Refs. [28,29], or the so-called non-Riemannian space-time volume elements [30]. These
works proposed variational models for the GR equations in which the volume elements
of integration in the action principles are metric independent and are rather determined
dynamically through additional degrees of freedom, such as the inclusion of additional
four scalar fields. Therefore, both synchronous and non-metric approaches do not treat the
volume element of integration as a variational quantity depending on a variational metric
tensor. This feature certainly represents a breakthrough in the variational approach to EFE
with respect to other literature models. However, the synchronous setting remains distiun-
guished because it does not rely on inclusion, nor does it predict the onset of additional
fields, but only the use of superabundant field variables which nevertheless coincide with
the unique observable space-time metric tensor in the extremal Einstein equations.

The synchronous Lagrangian action functional is defined as

Ss(g(r), ĝ(r)) =
∫

Q4
dΩ̂Ls(g, ĝ), (17)

where Ss(g(r), ĝ(r)) is considered a functional dependent only on the variational tensor (not
a metric tensor) g(r) ≡

{
gµν

}
. Here, Ls(g, ĝ) ≡ Ls(g(r), ĝ(r)) is the variational Lagrangian

and, in contrast to the asynchronous action functional (6), the volume element takes the
form dΩ̂. The variational Lagrangian is written as

Ls(g, ĝ) ≡ h(g, ĝ)L(g, ĝ), (18)

where the 4-scalar
h(g, ĝ) = 2− 1

4
gηβ(r)gµν(r)ĝηµ(r)ĝβν(r) (19)

identifies the variational weight-factor defined so that h(ĝ, ĝ) = 1. Instead, the 4-scalar
Lagrangian L(g, ĝ) takes the form

L(g, ĝ) = VG(g, ĝ) + VF(g, ĝ), (20)
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where now

VG(g, ĝ) = − c3

16πG

(
gµνR̂µν − 2Λ

)
, (21)

R̂µν ≡ Rµν(ĝ), (22)

and VF(g, ĝ) = 1
c LF(g, ĝ). Then, the synchronous Lagrangian action principle follows by

prescribing
δSs(g(r), ĝ(r))|g=ĝ = 0, (23)

for arbitrary variations δg(r), while noting that δĝ(r) ≡ 0. Here, the symbol δ denotes the
variation operator, i.e., the Frechet derivative

δSs(g(r), ĝ(r))|g=ĝ ≡
d
dθ

SL(ĝ(r) + θδg(r), ĝ(r))
∣∣∣∣
θ=0

. (24)

By noting that δh(g, ĝ) = − 1
2 ĝµν(r)δgµν, the evaluation of δSs(g(r), ĝ(r))|g=ĝ(r) is straight-

forward. In fact, in the synchronous setting, only explicit dependences on g give a contri-
bution, while the implicit ones carried by the Ricci tensor are now excluded. Hence, from
Equation (23) one recovers EFE in the correct form (16).

Finally, in view of the following developments, it is worth recalling another Lagrangian
formulation to EFE recently proved to hold and reported in Ref. [14]. This is based on
the implementation of the principle of manifest covariance, whereby the independent
variational field in the Lagrangian variational principle (i.e., the Lagrangian generalized
coordinate field) becomes identified with the Ricci tensor Rµν in place of the (metric) tensor
gµν. More precisely, in such a framework the realization of a consistent variational principle
requires the identification of the functional as

SR(ĝ(r), R(r)) ≡
∫

Q4
dΩ̂LR(ĝ, R), (25)

to be denoted as Ricci-functional. The latter is considered to depend only on the variational
tensor field R(r) ≡

{
Rµν(r)

}
, with R(r) belonging to a suitable synchronous variational

setting, while here the 4-tensor field ĝ(r) identifies the prescribed metric field tensor
solution of EFE, to be considered effectively as a metric tensor. The 4-scalar variational
Ricci Lagrangian function LR(ĝ, R) is taken of the form

LR(ĝ, R) ≡ − c3

16πG

(
1

2Λ
ρ + R− 1

4Λ
R2
)
+

1
2c

1
Λ

RµνT̂µν, (26)

with ρ ≡ RµνRµν, and R ≡ Rµν ĝµν denoting the corresponding variational Ricci 4-scalar. We
notice that the dimensional units are set so to make the Lagrangian LR(ĝ, R) homogeneous
with LHE and Ls, warranting that LR(ĝ, R) is an action. Accordingly, the stress-energy
tensor T̂µν has the same dimension of the external-field Lagrangian LF introduced above.
However, different from previous realizations of Lagrangian functions, now the Lagrangian
LR(ĝ, R) is a polynomial function that contains a linear and a quadratic contribution in
the Ricci 4-scalar R, a quadratic term in the Ricci tensor Rµν which enters through the
curvature 4-scalar ρ ≡ RµνRµν and a linear term in the Ricci tensor Rµν that carries the
coupling with external sources. The Ricci Lagrangian variational principle associated
with the action integral SR(ĝ(r), R(r)) can then be obtained by requiring that for arbitrary
variations δR(r) ≡ δRµν(r), it must be

δSR(ĝ(r), R(r))|R=R̂(r) =
d
dθ

SR(R̂(r) + θδR(r))
∣∣∣∣
θ=0

= 0, (27)
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with the symbol δ denoting again the Frechet derivative and the variation being performed
with respect to the independent tensor field Rµν(r). It is then immediate to verify that the
explicit algebraic calculation of the previous equation yields Equation (16) correctly.

This completes the short review of the most relevant literature approaches proposed
in the past for the establishment of a variational formulation of EFE in classical General Rel-
ativity. Their presentation and comment of main physical and mathematical properties are
useful for the following establishment of a general classification of Lagrangian variational
principles, to be carried out in terms of suitably defined constrained and unconstrained
principles, and to point out their mutual relationship.

3. General Formalism for Lagrangian Principles

In this section, we propose a theoretical method that permits one to obtain a Lagrangian
variational formulation of EFE which is necessarily consistent with PMC. This means that
the definition of the Lagrangian function and variational Lagrangian fields are such to be
always expressed in terms of 4-tensor or 4-scalar fields. The technique developed here
is instrumental for the following treatment as it provides the appropriate framework for
the distinction between constrained and unconstrained variational principles. In addition,
the same approach is general enough to be comprehensive of the variational formulations
developed in the previous literature and allows for a novel physical interpretation of their
relevance and mutual meaning.

The starting point is represented by the classical form of the vacuum tensor EFE with
non-vanishing cosmological constant Λ, which follow from Equation (16) setting T̂µν = 0.
As said above, in the first instance the treatment is restricted to the vacuum case in order to
single out the salient features of the theory. The extension to the inclusion of source fields
through the stress-energy tensor T̂µν appearing on the rhs of EFE will be discussed below
in a separate section in order to also provide a comprehensive comparison on how the issue
is handled among the different constrained and unconstrained variational approaches.
However, for later convenience, we define the covariant Einstein tensor Gµν as

Gµν ≡ R̂µν −
1
2

R̂ĝµν + Λĝµν, (28)

so that EFE can be written equivalently in compact form as

Gµν = 0. (29)

Then, invoking PMC, we construct a 4-scalar Z out of the tensor Gµν by index saturation
with a generic second-order controvariant symmetric tensor Zµν, namely

Z ≡ ZµνGµν. (30)

The representation of the tensor Zµν selects the kind of variational principle to be dealt with
and, without restrictions, it can be identified with any physically meaningful second-rank
tensor of GR. This issue will be exemplified in detail below.

In order to obtain the sought Lagrangian function, we then promote the tensor Zµν to
be the variational tensor. As a consequence, in case the controvariant tensor Zµν coincides
with one of the covariant tensors appearing in Gµν, namely one of the tensors of the set
ẑµν =(R̂µν, ĝµν), the latter must be assumed as well to be variational. In such a case, we
denote explicitly the dependence

Gµν = Gµν

(
Zµν,

{
ẑµν − Ẑµν

})
, (31)

where
{

ẑµν − Ẑµν

}
stands for the set ẑµν with the exclusion of the only tensor Ẑµν. This

warrants that equal tensors entering the scalar product in Equation (30) are always vari-
ational in both covariant and controvariant components. A fundamental element at this
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stage concerns the definition of the variational functional class {Z} to which Zµν belongs,
to be necessarily assigned for consistency with PMC. On general grounds, it expresses the
physical properties satisfied by the variational tensor Zµν and/or its extremal counterpart
Ẑµν, as well as possibly by corresponding differential tensors, to be denoted symbolically
as ∂Zµν. Remarkably, the mathematical representation of these tensorial properties can
equally identify suitable functional constraints for the variational fields and, in turn, also
for the same variational principle. In compact notation, the functional class {Z} can then
be written as

{Z} ≡
{

fi

(
Zµν, Ẑµν, ∂Zµν

)
= 0, i = 1, k

}
. (32)

However, we notice that it is not sufficient to trivially identify the Lagrangian function
with the 4-scalar Z. In fact, in order to warrant the procedure to work in full generality
and allow the formalism to reproduce the different literature formulations, the Lagrangian
function LZ must be assumed of the form

LZ = LZ(Z, αi). (33)

Here, αi, with i = 1, 3, identifies a suitable set of non-variational constant coefficients. Their
value must be set “a posteriori” to warrant the identity of extremal field equations with EFE
for each variational principle realized by the Lagrangian functions LZ. As shown below,
the solution for αi depends uniquely on the actual identification of the tensor Zµν and the
fundamental definition of the variational functional class {Z}.

Then, we introduce the action functional

SZ ≡
∫

Q4
dΩLZ(Z, αi), (34)

where dΩ ≡ d4rδ
√
−|ĝ| is the invariant 4-volume element of the Riemann space-time{

Q4, g(r)
}

and d4r ≡ ∏
i=0,3

dri its canonical measure. The corresponding variational prin-

ciple is then obtained by requiring that for arbitrary variations δZµν belonging to {Z} it
must be

δSZ =
d
dθ

SZ(LZ(Zµν + θZµν, αi))

∣∣∣∣
θ=0

= 0, (35)

with the symbol δ denoting the Frechet derivative. It must be stressed that this procedure
warrants the validity of PMC, which is found to be always satisfied identically according to
the previous definitions.

4. Unconstrained Ricci Lagrangian Principle

We consider a first application of the method outlined above. This concerns the
construction of so-called Ricci Lagrangian, namely the variational principle in which the
variational field is identified with the Ricci tensor. For consistency with PMC, the latter
field is regarded as an independent tensor, thus ignoring its functional dependence in
terms of Christoffel connections and partial derivatives of the metric tensor. Following the
prescriptions indicated in the previous section, we then start by assuming the identification

Zµν = Rµν, (36)

where Rµν denotes the variational Ricci tensor, with the corresponding extremal tensor
denoted as R̂µν. The evaluation of the 4-scalar Z according to Equation (30) then requires
considering the covariant Ricci tensor Rµν in Gµν to be variational as well, so that Zµν = Rµν,

while
{

ẑµν − Ẑµν

}
=
{

ĝµν

}
. The Ricci scalar becomes accordingly R = Rαβ ĝαβ. Hence, we

have formally that
Gµν = Gµν

(
Rµν, ĝµν

)
, (37)
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and correspondingly
Z = RµνGµν

(
Rµν, ĝµν

)
. (38)

Explicit calculation then gives

Z = RµνRµν −
1
2

(
Rαβ ĝαβ

)
Rµν ĝµν + ΛRµν ĝµν, (39)

namely

Z = ρ− 1
2

R2 + ΛR, (40)

where we have introduced the compact notation ρ ≡ RµνRµν and again R = Rαβ ĝαβ.
The Ricci Lagrangian function is identified with

LZ(Z, αi)→ LR = LR(Rµν, αi), (41)

where
LR(Rµν, αi) = α1ρ− α2

1
2

R2 + α3ΛR. (42)

Adopting analogous notation, the action integral becomes

SR ≡
∫

Q4
dΩLR(Rµν, αi), (43)

with LR(Rµν, αi) being given by Equation (42). The functional class of variations
{Z} → {R} is defined as

{R} ≡


Zµν ≡ Rµν

Rµν = Rαβ ĝµα ĝνβ

Rµν

∣∣
ĝµν
≡ R̂µν

. (44)

We notice the remarkable feature that in the class {R} the variational Ricci tensor is not
subject to any functional constraint. The only relationship is the customary one relating
covariant and controvariant tensors through the action of the extremal (i.e., background)
metric tensor ĝµν, for consistency with PMC. For this reason, the Lagrangian principle
considered here identifies an unconstrained principle, to be denoted as the unconstrained
Ricci Lagrangian principle.

Let us now calculate the Frechet derivative according to the definition (35):

δSR =
∫

Q4
dΩδLR(Rµν, αi) = 0. (45)

This yields (
2α1Rµν − α2Rĝµν + α3Λĝµν

)∣∣
Rµν=R̂µν

= 0, (46)

from which requirement of identity with EFE implies that necessarily the αi coefficients are

α1 = α2 =
1
2

, (47)

α3 = 1. (48)

In conclusion, the sought Ricci Lagrangian postulated in Equation (42) is found to be

LR(Rµν, αi) =
1
2

ρ− 1
4

R2 + ΛR. (49)

The notable features to highlight for this solution are:
(1) The consistency with PMC: the Ricci Lagrangian variational principle fully satisfies

the requirements set by PMC, to be realized by the fact that the independent variational
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Lagrangian field is a 4-tensor, while the Ricci variational Lagrangian function is a 4-scalar.
In addition, manifest covariance is consistently defined by the existence of a background
metric tensor, with respect to which 4-tensor properties as well as raising/lowering of
indices are defined.

(2) The Ricci Lagrangian principle is unconstrained, so that variations of the Ricci field
are not subject to any restriction. This feature is of potential advantage for the construction
of a corresponding Hamiltonian principle from the Lagrangian one by means of canonical
formalism (see Ref. [14] in this respect).

5. Metric-Tensor Lagrangian Principles

In this section, we consider a second realization of the general formalism introduced in
Section 3. This is obtained by identifying the tensor Zµν with the variational metric tensor
gµν. Two separate solutions can be envisaged in this respect, depending on whether the vari-
ational field is assumed to be subject to functional constraints or it remains unconstrained.
One obtains therefore two distinct variational principles, to be referred to, respectively, as
constrained and unconstrained metric Lagrangian principles. For completeness, we discuss
the two cases separately.

5.1. Constrained Metric Lagrangian Principle

The first occurrence is represented by the constrained Lagrangian principle, which is at
the basis of the Hilbert–Einstein (HE) principle. In this case, the variational field identifies
a metric tensor subject to precise functional constraints. The goal here is to prove that such
a framework is intrinsically incompatible with PMC, and therefore it fails in reproducing
EFE correctly. The validity of the principle, in fact, can only be restored at the expense of
violating PMC and implementing the formalism of the HE original approach.

In order to illustrate the issue, we start by setting the identification

Zµν = gµν, (50)

where gµν is not only a variational field, i.e., the generalized Lagrangian coordinate, but also
a metric tensor in itself. This means, in particular, that the same tensor raises/lowers tensor
indices and is subject to the normalization constraint gµνgµk = δk

ν. The variational metric
tensor therefore exhibits the same algebraic properties of the extremal (i.e., background)
metric tensor. The corresponding functional class of variations identifies the constrained
functional class {g}C given by the set

{g}C ≡


Zµν ≡ gµν

gµνgµk = δk
ν

ĝµν ĝµk = δk
ν

. (51)

The evaluation of the 4-scalar Z according to Equation (30) demands the covariant metric
tensor gµν in Gµν to be variational too, so that Zµν = gµν, while

{
ẑµν − Ẑµν

}
=
{

R̂µν

}
.

In particular, in such a framework the Ricci tensor must be regarded as an independent
tensor in order to warrant consistency with PMC. The Ricci scalar becomes accordingly
R = R̂αβgαβ. Hence, we have formally that

Gµν = Gµν

(
gµν, R̂µν

)
, (52)

and correspondingly
Z = gµνGµν

(
gµν, R̂µν

)
. (53)

Explicit calculation then gives

Z = gµνR̂µν −
1
2

(
R̂αβgαβ

)
gµνgµν + Λgµνgµν, (54)
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namely after straightforward algebra

Z = −gµνR̂µν + 4Λ, (55)

where we have made use of the normalization property of gµν, so that for index summation
gµνgµν = 4.

The constrained metric Lagrangian function is correspondingly identified with

LZ(Z, αi)→ LgC = LgC (gµν, αi), (56)

where
LgC (gµν, αi) = −α1gµνR̂µν + α24Λ, (57)

and in this case only two numerical coefficients appear. Adopting analogous notation, the
action integral becomes

SgC ≡
∫

Q4
dΩLgC (gµν, αi), (58)

with LgC (gµν, αi) being given by Equation (57). The Lagrangian principle that arises is
a constrained principle and is denoted as a constrained metric Lagrangian principle. If we
compute the Frechet derivative according to the definition (35), we have

δSgC =
∫

Q4
dΩδLgC (gµν, αi) = 0. (59)

However, it is immediate to see that this yields

−α1R̂µν = 0, (60)

where α2 remains indeterminate, and there is no choice of constant numerical coefficient α1
for which the previous equation can reproduce correctly the complete form of EFE. Hence,
it must be concluded that necessarily the requirements set by joint validity of PMC and the
variational framework represented by the constrained metric principle are incompatible.
In particular, the constrained principle cannot generate the Einstein tensor equations of
GR. The reason is that when the normalization condition gµνgµν = 4 is assumed in the
Lagrangian function, fundamental variational contributions that are quadratic in the metric
tensor are lost by assumption and can no longer be recovered in the Lagrangian (57).

There is only one possible way to restore the correct validity of the variational principle.
In order to recover the variational terms lost due to normalization of gµν, it is necessary
to assume that also the metric contribution to the volume element dΩ = d4r

√
−|g| is

variational. The route requires, however, the violation of PMC, since the dependence
contained in dΩ is through the determinant |g| which is not an invariant quantity by itself.
Hence, we define the Lagrangian density

LgC ≡
√
−|g|LgC , (61)

which is not a 4-scalar by construction, and the corresponding action integral as

SgC ≡
∫

Q4
d4rLgC (gµν, αi). (62)

The variational principle then requires

δSgC =
∫

Q4
d4rδLgC (gµν, αi) = 0. (63)

It is immediate to verify that the Lagrangian density LgC (gµν, αi) yields the correct form
of EFE for the set of coefficients α1 = −1 and α2 = −1/2. Indeed, the non-tensorial factor
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√
−|g| replaces the quadratic terms gµνgµν, which in the constrained framework are always

identically equal to four for both variational and extremal metric field tensors gµν. We
notice that:

(1) The simultaneous validity of conditions set by PMC and the constrained metric
variational principle are incompatible. The correctness of the constrained variational
principle can be restored only under violation of PMC, namely by treating the Lagrangian
density LgC , which is not an invariant quantity, instead of the 4-scalar Lagrangian LgC .
This amounts to effectively treating a constrained variational principle not preserving the
space-time volume element. According to the definitions given in Refs. [23], this realizes
an asynchronous variational principle.

(2) The solution reproduces the HE variational principle. In fact, as recalled in
Section 2, for the derivation of EFE in the framework of the HE principle, only the ex-
plicit dependences on gµν contained in the constrained Lagrangian effectively matter.
Instead, the implicit dependences carried by the Christoffel symbols in the Ricci tensor
do not contribute and, if present, should be suitably ruled out with appropriate boundary
conditions. Remarkably, these contributions determine the non-standard feature of the HE
Lagrangian, namely its so-called non-first-order character. In turn, the present derivation
provides a physical explanation on why such dependences are not essential for the correct
derivation of EFE.

(3) The constrained variational principle (63) violates manifest covariance as well
as the fundamental gauge-invariace properties characteristic of variational principles for
continuum fields of classical and relativistic mechanics. This feature is emphasized by the
fact that the 4-volume element must be variational, a feature that is peculiar of HE theory.

5.2. Unconstrained Metric Lagrangian Principle

The second occurrence is realized by the unconstrained Lagrangian principle, which
provides the theoretical framework for the synchronous variational principle introduced
in Section 2. In this case, the variational field is a second-order symmetric tensor denoted
with gµν, which does not identify a metric tensor, and for this reason it is not subject to
functional constraints. In contrast, the metric tensor represents a background space-time
metric tensor to be denoted by the symbol ĝµν, which raises/lowers tensor indices and
is subject to the normalization constraint ĝµν ĝµk = δk

ν. By definition, in the variational
principle, ĝµν remains distinguished from gµν. The goal in this case is to prove that such a
framework permits the realization of a variational theory in agreement with PMC which
correctly reproduces EFE.

In order to set the issue on a mathematical basis, we start by setting the identification

Zµν = gµν, (64)

where gµν is a variational field that does not exhibit the same algebraic properties of the
extremal (i.e., background) metric tensor, and therefore we require that gµν 6= ĝµν in the
variational principle. On the other hand, the two tensors are required to coincide in EFE,
namely gµν

∣∣
extr = ĝµν. The corresponding functional class of variations identifies the

unconstrained functional class {g}U defined by the set

{g}U ≡


Zµν ≡ gµν 6= ĝµν

gµνgµk 6= δk
ν

ĝµν ĝµk = δk
ν

gµν = ĝµα ĝνβgαβ

gµν

∣∣
extr = ĝµν

. (65)

The evaluation of the 4-scalar Z according to Equation (30) demands again the covariant met-
ric tensor gµν in Gµν to be variational too, so that Zµν = gµν, while{

ẑµν − Ẑµν

}
=
{

R̂µν

}
. For the same reason, consistent with PMC, also in such a frame-
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work the Ricci tensor must be regarded as an independent tensor. The Ricci scalar becomes
accordingly R = R̂αβgαβ. Hence, we have formally that

Gµν = Gµν

(
gµν, R̂µν

)
, (66)

and correspondingly
Z = gµνGµν

(
gµν, R̂µν

)
. (67)

Explicit calculation then gives

Z = gµνR̂µν −
1
2

(
R̂αβgαβ

)
gµνgµν + Λgµνgµν, (68)

where now the quadratic terms proportional to gµνgµν are retained according to the pre-
scriptions set by the functional class {g}U .

The unconstrained metric Lagrangian function is correspondingly identified with

LZ(Z, αi)→ LgU = LgU (gµν, αi), (69)

where
LgU(gµν, αi) = α1gµνR̂µν − α2

1
2

(
R̂αβgαβ

)
gµνgµν + α3Λgµνgµν. (70)

Adopting analogous notation, the action integral becomes

SgU ≡
∫

Q4
dΩLgU (gµν, αi), (71)

with LgU (gµν, αi) being given by Equation (70), and here the volume element depends on
the background metric tensor, namely dΩ = d4r

√
−|ĝ| ≡ dΩ̂. The Lagrangian principle

then identifies an unconstrained principle, which is denoted as the unconstrained metric
Lagrangian principle.

Let us now calculate the Frechet derivative according to the definition (35):

δSgU =
∫

Q4
dΩδLgU (gµν, αi) = 0. (72)

This yields after straightforward algebra(
(α1 − 2α2)R̂µν +

(
2α3Λ− α2R̂αβgαβ

)
gµν

)∣∣∣
gµν=ĝµν

= 0, (73)

from which the requirement of identity with EFE implies that necessarily the αi coeffi-
cients are

α1 = 2, (74)

α2 = α3 =
1
2

. (75)

Replacing the solution in Equation (70) yields the unconstrained metric Lagrangian in
the form

LgU(gµν, αi) = 2gµνR̂µν −
1
4

(
R̂αβgαβ

)
gµνgµν +

1
2

Λgµνgµν. (76)

Rearranging the terms and changing summed indices gives the compact representation

LgU(gµν, αi) =

(
2− 1

4
gαβgαβ

)
gµνR̂µν +

1
2

Λgµνgµν. (77)
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In order to highlight the connection with the synchronous variational principle recalled in
Section 2, we can then define the variational weight factor h(g) ≡ h

(
gµν, ĝµν

)
as

h
(

gµν, ĝµν

)
= 2− 1

4
gαβgαβ, (78)

so that we finally obtain the unconstrained or synchronous metric Lagrangian

LgU(gµν, αi) = h(g)gµνR̂µν +
1
2

Λgµνgµν. (79)

Equivalently, we can also write it in the more compact form

LgU(gµν, αi) = h(g)
(

gµνR̂µν − 2Λ
)

, (80)

which differs from Equation (79) only for a constant numerical factor.
The following comments are in order:
(1) The unconstrained metric Lagrangian principle and its realization in terms of

synchronous variational principle consistently satisfy PMC and the gauge-invariance
properties holding for classical variational principles of continuum fields.

(2) In the unconstrained framework, the invariant 4-volume element is treated as
extremal, namely as a function of the background metric tensor. This feature justifies the
use of the word “synchronous” to identify the principle, in analogy with a similar feature
arising for integration-time line-element in variational principles of classical mechanics.
This mathematical property of the variational principle marks a point of connection with
standard Lagrangian principles holding in continuum field theory, where variational
behavior pertains to the field Lagrangian function and not to the differential integration
element of the action integral. Furthermore, under the same assumption, the variational
Lagrangian remains necessarily identified with a 4-scalar, and not with a scalar density, so
that PMC remains automatically satisfied.

(3) Based on the unconstrained variational theory developed above, the construction
of the Lagrangian (79) characteristic of the synchronous variational principle allows one
to determine the unique form of the variational factor h(g) and to point out its physical
meaning. The choice of the form of h(g) is not arbitrary or a matter of fact, but follows
from precise physical and mathematical requirements at the basis of the unconstrained
Lagrangian principle. The role of h(g) is to warrant the derivation of the correct form of EFE
together with the simultaneous validity of PMC. It replaces the variational contributions
that in the constrained principle arise from variation of

√
−|g| in the volume element of

integration, but without violating PMC. Finally, as a matter of consistency, the extremal
value of h(g) is such that h(ĝ) = 1.

(4) In the unconstrained picture, the physical meaning of gµν and ĝµν remains distin-
guished. Thus, ĝµν is a geometric tensor which raises/lowers tensor indices, defines the
integration 4-volume element, the covariant derivatives as well as the Ricci tensor of the
background space-time. Instead, the variational tensor gµν plays the role of a physical ten-
sor associated with the gravitational field, for which “kinetic”, “potential” and “coupling”
terms can be assigned in the variational principle for the derivation of the corresponding
dynamical evolution equations. Remarkably, consistent with the principles of GR, the
physical and geometrical properties of space-time are realized in terms of a single tensor in
the extremal field equations, namely EFE, by means of the identification gµν

∣∣
extr = ĝµν.

6. Tangent 4-Vectors Lagrangian Principles

In this section, we explore further the validity of the general formalism introduced
above for the variational formulation of EFE and its realization in terms of constrained and
unconstrained principles. The outcome of this analysis will be useful to draw conclusions
about the physical relevance and correctness of unconstrained Lagrangian principles with
respect to the constrained ones. To this aim, we consider two additional GR symmetric
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tensors that can be used to construct corresponding admissible Lagrangian functions. The
first one is associated with the 4-velocity ûµ tangent to subluminal geodesic curves of
space-time. Thus, we assume that in the background space-time there exists a geodesic
curve whose tangent unit 4-vector ûµ ≡ drµ

ds , with s denoting the geodetic proper-time,
satisfies the normalization condition

ĝµνûµûν = 1. (81)

The symmetric dyadic tensor ûµûν can then represent a plausible tensor for our purpose.
Similarly, the second tensor of interest is associated with the null wave 4-vector k̂µ ≡ drµ

dλ ,
with dλ denoting a suitable parameter varying along a light-ray. The latter 4-vector by
definition satisfies the 4-scalar identity (orthogonality condition)

ĝµν k̂µ k̂ν = 0, (82)

so that also the symmetric tensor k̂µ k̂ν provides an admissible choice for the present task.
Therefore, we can consider separately the role of the two tensors ûµûν and k̂µ k̂ν, respectively,
for the validity of constrained and unconstrained Lagrangian principles for EFE.

6.1. Constrained Tangent 4-Vectors Lagrangian Principles

We start again analyzing the case of constrained Lagrangian principles for the two sets
of variational tensors uµuν and kµkν, which are accordingly taken to be subject to precise
functional constraints. The goal is to prove that such a framework fails to reproduce EFE as
extremal equations, in formal analogy with the case of the constrained metric Lagrangian
principle. To proceed with the proof, we start by making the identification

Zµν = uµuν, (83)

where uµuν represents the variational tensor. The corresponding functional class of varia-
tions identifies the constrained functional class {u}C given by the set

{u}C ≡


Zµν ≡ uµuν

ĝµνuµuν = 1
ĝµνûµûν = 1

. (84)

This means that both the extremal and the variational 4-vectors uµ and ûµ are subject to the
same normalization condition. We further notice that the tensor ûµûν does not belong to
the set ẑµν, so that we can write

Gµν = Gµν

(
ĝµν, R̂µν

)
, (85)

and correspondingly
Z = uµuνGµν

(
ĝµν, R̂µν

)
. (86)

Explicit calculation then gives

Z = uµuνR̂µν −
1
2

R̂uµuν ĝµν + Λuµuν ĝµν, (87)

where R̂ = R̂αβ ĝαβ, so that according to {u}C one obtains

Z = uµuνR̂µν −
1
2

R̂ + Λ. (88)

The constrained Lagrangian function is correspondingly identified with

LZ(Z, αi)→ LuC = LuC (u
µuν, αi), (89)
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where
LuC (u

µuν, αi) = α1uµuνR̂µν − α2
1
2

R̂ + α3Λ, (90)

while the action integral becomes

SuC ≡
∫

Q4
dΩLuC (u

µuν, αi), (91)

with LuC (u
µuν, αi) being given by Equation (90). Application of the Frechet derivative

according to the definition (35) gives

δSuC =
∫

Q4
dΩδLuC (u

µuν, αi) = 0, (92)

which determines the constrained unit 4-vector Lagrangian principle, with uµuν being the
variational tensor field. However, it is immediate to see that this yields

α1R̂µν = 0, (93)

where both α2 and α3 remain indeterminate and there is no choice of constant numerical
coefficient α1 for which the previous equation can reproduce correctly the complete form of
EFE. Hence, it must be concluded that in such a case the constrained variational principle
fails.

A similar conclusion can be inferred in case one would pick up the tensor Zµν = kµkν

as variational field. The corresponding constrained functional class of variations {k}C is
given by the set

{k}C ≡


Zµν ≡ kµkν

ĝµνkµkν = 0
ĝµν k̂µ k̂ν = 0

. (94)

Explicit calculation of the 4-scalar Z then gives

Z = kµkνR̂µν −
1
2

R̂kµkν ĝµν + Λkµkν ĝµν, (95)

so that according to {k}C two terms disappear, and one obtains simply

Z = kµkνR̂µν. (96)

The constrained metric Lagrangian function is correspondingly identified with

LZ(Z, αi)→ LkC = LkC (k
µkν, αi), (97)

where
LkC (k

µkν, αi) = α1kµkνR̂µν, (98)

while the action integral becomes

SkC ≡
∫

Q4
dΩLkC (k

µkν, αi), (99)

with LkC (k
µkν, αi) being given by Equation (98). The corresponding constrained null 4-vector

Lagrangian principle gives

δSkC =
∫

Q4
dΩδLkC (k

µkν, αi) = 0. (100)

Again, it is immediate to see that under the present assumptions this yields

α1R̂µν = 0, (101)
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where both α2 and α3 remain indeterminate, and there is no choice of constant numerical
coefficient α1 for which the previous equation can reproduce correctly the complete form
of EFE. Hence, it must be concluded that also in such a case the constrained variational
principle fails.

We notice that the situation depicted here is exactly analogous to the case of con-
strained metric Lagrangian principle. The negative output is a consequence of the as-
sumption of validity of normalization/orthogonality conditions applying to either uµuν

or kµkν, both for their variational and extremal realizations. However, while in the case
of the metric principle the problem could be circumvented by assuming the volume ele-
ment to be variational too, thus violating PMC, in the present case an alternative of this
type is no longer possible. On the other hand, the choices Zµν = uµuν or Zµν = kµkν are
admissible ones, which means that the only point of weakness in such a framework can
only be the same concept of constrained principle associated with PMC. Namely, the fact
that, in the constrained functional classes, the variational tensor fields possess the same
normalization/orthogonality conditions characteristic of their corresponding extremal
fields. It is evident at this stage that this kind of assumption is critical and must be aban-
doned, considering also the fact that there is no compelling physical reason supporting
its adoption.

6.2. Unconstrained Tangent 4-Vectors Lagrangian Principle

As a final step, we evaluate the unconstrained variational framework for the two sets
of variational tensors uµuν and kµkν. The goal here is to prove that this represents the
correct approach for the establishment of the variational theory for EFE that satisfies PMC.
As shown below, in the unconstrained formalism the two tensors uµuν and kµkν behave the
same in the variational principle. We start again by identifying Zµν = uµuν, where uµuν is
the variational tensor, not to be subject to functional constraints.

The corresponding unconstrained functional class of variations {u}U is given by

{u}U ≡


Zµν ≡ uµuν

ĝµνuµuν 6= 1
ĝµνûµûν = 1

, (102)

where uµ and ûµ are the variational and the extremal 4-vectors, respectively. Since
Gµν = Gµν

(
ĝµν, R̂µν

)
, we have that

Z = uµuνGµν

(
ĝµν, R̂µν

)
. (103)

Explicit calculation for uµuν ∈ {u}U then gives

Z = uµuνR̂µν −
1
2

R̂uµuν ĝµν + Λuµuν ĝµν, (104)

where R̂ = R̂αβ ĝαβ. The unconstrained Lagrangian function is correspondingly identified
with

LZ(Z, αi)→ LuU = LuU (u
µuν, αi), (105)

where
LuU (u

µuν, αi) = α1uµuνR̂µν − α2
1
2

R̂uµuν ĝµν + α3Λuµuν ĝµν, (106)

while the action integral becomes

SuU ≡
∫

Q4
dΩLuU (u

µuν, αi), (107)
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with LuU (u
µuν, αi) being given by Equation (106). The unconstrained unit 4-vector Lagrangian

principle is then written as

δSuU =
∫

Q4
dΩδLuU (u

µuν, αi) = 0. (108)

Thanks to the linear dependence of LuU (u
µuν, αi) on uµuν, straightforward algebra yields

α1R̂µν − α2
1
2

R̂ĝµν + α3Λĝµν = 0, (109)

from which requirement of identity with EFE implies that necessarily the αi coefficients are

α1 = α2 = α3 = 1. (110)

Replacing the solution in Equation (106) gives the final representation of the unconstrained
Lagrangian in the form

LuU (u
µuν, αi) = uµuνR̂µν −

1
2

R̂uµuν ĝµν + Λuµuν ĝµν. (111)

Finally, the case of null 4-vector is formally the same, apart from the change of normal-
ization condition with orthogonality condition in the functional class. Briefly, if we now set
Zµν = kµkν, the corresponding unconstrained functional class of variations {k}U for the
null 4-vector is given by

{k}U ≡


Zµν ≡ kµkν

ĝµνkµkν 6= 0
ĝµν k̂µ k̂ν = 0

. (112)

The unconstrained Lagrangian function is correspondingly identified with

LZ(Z, αi)→ LkU = LkU (k
µkν, αi), (113)

while the action integral becomes

SkU ≡
∫

Q4
dΩLkU (k

µkν, αi). (114)

The unconstrained null 4-vector Lagrangian principle then is written as

δSkU =
∫

Q4
dΩδLkU (k

µkν, αi) = 0. (115)

Algebraic calculation analogous to that carried out for uµuν then gives in conclusion the
representation of the unconstrained Lagrangian in the form

LkU (k
µkν, αi) = kµkνR̂µν −

1
2

R̂kµkν ĝµν + Λkµkν ĝµν. (116)

We notice that, contrary to the constrained setting, the unconstrained framework
works because no normalization conditions are imposed a priori on the variational tensor
fields. The latter conditions are required to be satisfied only by the extremal fields, i.e.,
the physically observable fields, and not by the virtual variational fields. The positive
outcome of the unconstrained approach against the failure of the constrained one also
for the set of variational tensors uµuν and kµkν marks a remarkable point of contact with
the theory of metric Lagrangian principles. In particular, both derivations exclude the
possibility to obtain constrained variational principles that satisfy PMC and reproduce EFE.
Therefore, according to the present theory and the mathematical proofs reported above,
only the unconstrained variational principles possess the correct properties for a consistent
manifestly covariant variational formulation of EFE.
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7. Treatment of External Sources

In previous sections, we have focused on development of variational principles cor-
responding to vacuum EFE, namely in the absence of external sources. This is obtained
by setting in Equation (16) T̂µν = 0. It is necessary now to establish how the treatment of
external sources can be dealt with in the frameworks of constrained and unconstrained
variational principles. The goal is the proof that the novel unconstrained theory is compat-
ible with the existence of source fields, to be described either in terms of corresponding
Lagrangian functions or through their stress-energy tensor. In particular, in this respect the
following two possibilities can be envisaged:

(1) Stress-energy tensor of source fields—The first realization is achieved by assigning
directly the symmetric stress-energy tensor T̂µν of the source field, to be assumed known
and prescribed. For the validity of the general formalism introduced in Section 2, the tensor
T̂µν must be regarded as an independent tensor not depending on variational fields. Hence,
possible functional dependences carried by T̂µν on variational fields (such as for example
gµν in the metric Lagrangian principle) must be excluded in the present formalism. For this
reason, we retain the notation of the stress-energy tensor with the hat recalling it represents
a given background field. Then, given these premises, the inclusion of T̂µν in the formalism
for the construction of variational principles proceeds in the same way as for the tensor
Gµν. In particular, one takes the index saturation with the tensor Zµν corresponding to each
case discussed above, and simply includes the term κZµνT̂µν in the Lagrangian function
LZ(Z, αi). Given the linearity of the product with Zµν, there is no need to multiply this
term by any coefficient αi. The variational calculus with respect to the variational field Zµν

then delivers the correct form of non-vacuum EFE, preserving the validity of PMC. The
conclusions drawn above on the validity of constrained and unconstrained Lagrangian
principles remain unaltered. Thus, in particular, all unconstrained principles (e.g., the
Ricci and metric Lagrangian principles) admit this type of treatment of external source
fields and they warrant the correct derivation of EFE. Instead, the constrained principles
must be excluded among available theories, also with the inclusion of stress-energy tensor
contributions, since they intrinsically fail to recover EFE as proved above. Finally, as a
side comment, we notice that unconstrained Lagrangian principles depending directly
on the stress-energy tensor T̂µν can provide a convenient theoretical framework for the
treatment of external source fields . This type of dependence in fact can be an advantage in
cases in which the source Lagrangian function of the same fields is missing or unknown,
while nevertheless the tensor T̂µν can be obtained, e.g., through symmetry or conservation
law properties.

(2) Lagrangian function of source fields—The second type of possible realization is the cus-
tomary literature one achieved by assigning the Lagrangian function LF of the source fields.
However, this approach can only apply in the case of metric Lagrangian functions. More
precisely, it represents the only viable formulation for the constrained theory exemplified
by the asynchronous variational principle. Instead, in the case of the unconstrained theory
realized by the synchronous variational principle it can work in alternative to the stress-
energy tensor formalism. In both cases, the functional dependences carried by LF in terms
of metric tensor must be regarded as variational. It is immediate to prove the validity of the
Lagrangian function approach in the two settings. In fact, for the asynchronous principle
one must consider the variational Lagrangian density LF ≡

√
−|g|LF

(
gµν

)
, which again

is not a 4-scalar and therefore violates PMC. Instead, for the unconstrained synchronous
approach it is sufficient to consider the 4-scalar h(g)LF

(
gµν

)
, since the factor h(g) replaces

the contribution carried by
√
−|g|, preserving PMC.

From this analysis the superiority of the unconstrained metric Lagrangian principle
over the constrained one emerges clearly. In fact, the unconstrained metric Lagrangian
principle realized by the synchronous principle represents the only method among those
discussed above for which either the source stress-energy or source Lagrangian function
theories are allowed and can apply. This promotes the novel synchronous metric principle



Entropy 2023, 25, 337 22 of 27

to be a complete and physically relevant framework for investigating the variational theory
of EFE.

8. Physical Relevance of Unconstrained Principles

In this section, we discuss the physical relevance of the theory of unconstrained La-
grangian principles for EFE. The focus is on the relationship of the theory with an analogous
formulation holding in classical mechanics and the implication for the formulation of clas-
sical Hamiltonian and quantum gravitational theories. More precisely, the following issues
are considered as application:

(1) Comparison with the theory of constrained and unconstrained variational princi-
ples in classical mechanics.

(2) Unconstrained Lagrangian principles as the natural setting for the formulation of
unconstrained Hamiltonian principles.

8.1. Unconstrained Variational Principles in Classical Mechanics

In this section, we point out a relevant connection existing between the theory of
constrained and unconstrained Lagrangian principles for EFE and an analogous distinction
arising in classical relativistic mechanics for single point-particle Lagrangian dynamics.
In particular, this involves the realization of constrained and unconstrained principles
in terms of asynchronous and synchronous Lagrangian theories, respectively, in the two
settings, namely for EFE and classical mechanics. To start with, we denote by rµ(s) the
Lagrangian world-line trajectory of a charged point particle with rest mass mo, charge qo

and proper time s, so that the corresponding 4-velocity is uµ(s) = drµ(s)
ds , while

ds2 = gµν(r(s))drν(s)drµ(s). (117)

Here, the metric tensor gµν(s) ≡ gµν(r(s)) and the Faraday tensor Fµν = ∂µ Aν − ∂ν Aµ of
the external EM fields, with Aµ(s) ≡ Aµ(r(s)), are considered prescribed functions of r,
namely extremal fields, where we omit for brevity in this section the hatted notation.

We consider first the definition of asynchronous principle reported for example in
Ref. [10]. This represents the most commonly known version of variational theory in
classical mechanics. The action functional in this case is identified with

SpA(r) = −
∫ s2

s1

ds
(

gµν(s)
drν(s)

ds
+ qAµ(s)

)
drµ(s)

ds
, (118)

where q ≡ qo
moc2 is the normalized charge and s1 and s2 are fixed boundary values. In

the functional SpA(r), the function rµ(s) is assumed to belong to the asynchronous func-
tional class:

{rµ}A =


rµ(s) ∈ C2(R)

δ(ds) 6= 0
rµ(sk) = rµ

k , k = 1, 2

, (119)

where necessarily

δ(ds) = δ
(√

gµν(s)drν(s)drµ(s)
)

, (120)

and δ denotes again the Frechet derivative. The asynchronous Hamilton variational princi-
ple follows from the variational equation

SpA(r) ≡
d

dα
Ψ(α)

∣∣∣∣
α=0

= 0, (121)
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to hold for arbitrary displacements δrµ(s). Here, Ψ(α) is the smooth real function
Ψ(α) = SpA(r + αδr), being α ∈ ]−1, 1[ to be considered independent of r(s) and s. The
corresponding Euler–Lagrange equation are found to be

δSpA(r)
δrµ(s)

≡ gµν
D
Ds

drν(s)
ds

− qFµν
drν(s)

ds
= 0. (122)

However, also in classical mechanics, it is possible to introduce a corresponding
synchronous variational principle [9]. In this case, the functional is expressed in terms of
superabundant variables rµ(s) and uµ(s) as

SpS(r, u) = −
∫ s2

s1

dsLpS

(
r(s),

dr(s)
ds

, u(s)
)

, (123)

where LpS ≡ LpS

(
r(s), dr(s)

ds , u(s)
)

is the 4-scalar Lagrangian function

LpS ≡
(
uµ(s) + qAµ(s)

)drµ(s)
ds

− 1
2

uµ(s)uµ(s),

which is linear in dr(s)
ds . In addition, the functions rµ(s) and uµ(s) are required to belong to

the synchronous functional class defined as

{rµ, uµ}S =


rµ(s), uµ(s) ∈ C2(R)

δ(ds) = 0
uµ(s)uµ(s) 6= 1

rµ(sk) = rµ
k , k = 1, 2

uµ(sk) = uµ
k , k = 1, 2

. (124)

Notice that the generic variational functions uµ(s) in {rµ, uµ}S are not required to
satisfy the kinematic constraint uµ(s)uµ(s) = 1, while the line element ds is by construction
required to be determined by Equation (117) in which rµ(s) is an extremal curve (see defini-
tion below). Therefore, the synchronous variational principle realizes an unconstrained
Lagrangian principle for classical mechanics. This principle is analogous to the uncon-
strained metric Lagrangian principle introduced above for EFE. Here, rµ(s) and uµ(s) are
considered independent, so that δrµ(s) and δuµ(s) are independent too. In this case, it is
immediate to show that the corresponding synchronous Hamilton variational principle
takes the form

δSpS(r, u) ≡ d
dα

Ψ(α)

∣∣∣∣
α=0

= 0, (125)

to hold for arbitrary independent displacements δrµ(s) and δuµ(s). Here,Ψ(α) is the smooth
real function Ψ(α) = SpS(r + αδr, u + αδu), being α ∈ ]−1, 1[ to be considered independent
of r(s), u(s) and s. In this case, the corresponding Euler–Lagrange equations deliver

δSpS(r, u)
δrµ(s)

≡ D
Ds

uµ − qFµνuν = 0, (126)

δSpS(r, u)
δuµ(s)

≡ uµ − gµν
drν(s)

ds
= 0, (127)

which can be combined to recover Equation (122) and imply also the kinematic constraint
uµ(s)uµ(s) = 1 to hold for extremal curves. Then, Equations (126) and (127) determine
the extremal curves rµ(s) and uµ(s) which belong to the functional class {rµ, uµ}S and are
solutions of the same equations.

From this treatment, it follows that the meaning of unconstrained Lagrangian princi-
ples (or equivalently, synchronous principles) has a wider validity that is not restricted only
to the variational theory for EFE. This proves the transversal relevance of the unconstrained
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approach, which arises as a fundamental connotation of the nature of variational theory in
discrete and continuum classical field theory. It is important to underline in this respect the
following remarks on the connection between synchronous principles in classical mechanics
and gravitational field theory:

(1) A basic feature of the synchronous approach lies in the adoption of superabundant
variables, which coincide only for extremal curves.

(2) The two approaches are similar for the treatment of the differential integration
element, respectively, ds and dΩ, which are held fixed in the synchronous principles, in the
sense that δds = 0 and δdΩ = 0 .

(3) The normalization constraint is satisfied identically only by the extremal curves
and not by generic variational (i.e., virtual) curves of {rµ, uµ}S. Therefore, Equation (125)
should be regarded in a proper sense as an unconstrained variational principle.

(4) A crucial physical motivation behind the adoption of synchronous variational
principles rather than asynchronous ones lies in the fact that only the unconstrained syn-
chronous Lagrangian approach permit to achieve a corresponding Hamiltonian variational
formulation (see discussion below).

8.2. Unconstrained Hamiltonian Principles

The second aspect of physical relevance that characterizes the unconstrained La-
grangian principles concerns the possibility of admitting corresponding unconstrained
Hamiltonian theories. The issue is not a marginal one and has relevant potential implica-
tions both in classical and quantum gravity. In fact, first we notice that, given a Lagrangian
principle, the existence of a Hamiltonian principle could not represent a compelling fact. In-
deed, either in classical mechanics or continuum field theories, one must prove the existence
of a Hamiltonian structure and a Hamiltonian theory starting from a Lagrangian formu-
lation. In addition to this, it is well-known that unconstrained Lagrangian principles are
always to be preferred with respect to constrained ones, since the treatment of constraints
to fix the Hamiltonian structure of a theory might be a difficult task. Hence, unconstrained
principles are better suited for the establishment of classical Lagrangian and Hamiltonian
theories. More specifically, in the case of Lagrangian treatment of EFE the most famous
historical approach to the problem was based on the constrained Hilbert–Einstein approach,
and its fundamentals were due to the pioneering work by Dirac, who first developed the
theory of constrained Hamiltonian dynamics. The latter violates PMC, and therefore it
represents intrinsically a non-manifestly covariant Hamiltonian theory. A comprehensive
presentation of the subject can be found for example in Ref. [17].

However, the proof of existence of a class of unconstrained Lagrangian variational
principles yielding EFE provides a novel framework for the investigation about the formula-
tion of unconstrained Hamiltonian theories underlying GR and the space-time metric tensor
dynamics. Given the validity of PMC by the unconstrained Lagrangian framework, also the
associated Hamiltonian theory should be characterized by the same manifest-covariance
character. In turn, the subject can certainly have relevant implications in quantum gravity
theory for the problem of mathematical and physical quantization of gravitational field and
its connection with classical GR theory. The issue has been already recently proposed and
discussed in the framework of synchronous Lagrangian variational principles realized by
the unconstrained metric and Ricci theories (see Refs. [13,14] respectively). Nevertheless,
given the proof of existence of an entire class of unconstrained principles, it is useful to
recall the basic formalism for the establishment of corresponding Hamiltonian theories.

In the case of continuum fields, the appropriate formalism is provided by the DeDonder–
Weyl Lagrangian and Hamiltonian treatments [11,12]. Such an approach was originally formu-
lated for fields defined on the Minkowski space-time. The setting provided by unconstrained
Lagrangian principles for EFE, together with the intrinsic validity of manifest covariance,
permit the straightforward extension of the DeDonder–Weyl formalism to include also the
gravitational field dynamics. In full generality, the starting point is the definition of the
unconstrained variational Lagrangian function. Using a compact notation and without pos-
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sibility of misunderstandings, the latter is denoted by L
(

Z, ∇̂Z, Ẑ
)
≡ L

(
Zµν, ∇̂αZµν, Ẑµν

)
and is assumed for completeness to depend on the tensorial variational field Zµν, its covari-
ant derivative ∇̂αZµν and a set of extremal tensor fields Ẑµν. The corresponding canonical

momenta are defined as in classical mechanics as Π ≡ Πα
µν =

∂L(Z,∇̂Z,Ẑ)
∂(∇̂αZµν)

so that the

canonical state can be represented as {x} = {Z, Π}. The Hamiltonian density H = H(x, x̂)
associated with the Lagrangian L

(
Z, ∇̂Z, Ẑ

)
is then provided by the Legendre transform

L
(

Z, ∇̂Z, Ẑ
)
≡ Πα

µν∇̂αZµν − H(x, x̂). (128)

Then, given the definition of a suitable functional class of variations for the canonical state
variables, the Hamiltonian action functional is written as

SH(x, x̂) =
∫

dΩL(x, x̂)

=
∫

dΩ
[
Πα

µν∇̂αZµν − H(x, x̂)
]
, (129)

while the corresponding synchronous Hamiltonian variational principle becomes

δSH(x, x̂) ≡ d
dα

Ψ(α)

∣∣∣∣
α=0

= 0, (130)

which is defined in terms of the Frechet derivative and is required to hold for arbitrary inde-
pendent variations δZµν and δΠα

µν in the respective functional classes. The corresponding
variational derivatives yield the continuum Hamilton equations

δSH(x, x̂)
δZµν ≡ −∂H(x, x̂)

∂Zµν − ∇̂αΠα
µν = 0, (131)

δSH(x, x̂)
δΠα

µν
≡ ∇̂αZµν − ∂H(x, x̂)

∂Πα
µν

= 0. (132)

Written explicitly, these become

∇̂αΠα
µν = −∂H(x, x̂)

∂Zµν , (133)

∇̂αZµν =
∂H(x, x̂)

∂Πα
µν

, (134)

which are equivalent to the Euler–Lagrange equation provided by the Lagrangian principle.
This short derivation shows the convenience of implementing unconstrained La-

grangian principles as far as the construction of corresponding Hamiltonian theories is
concerned. The DeDonder–Weyl formalism is simultaneously consistent with classical
mechanics and PMC, while the absence of constraints makes the theory easy to implement
and understandable from the physical point of view. In conclusion, this feature represents a
further advantage of the implementation of unconstrained principles in place of constrained
and non-manifestly covariant ones. Remarkably, this feature pertains both classical and
quantum gravity theories, see for example the discussion proposed in Ref. [3].

9. Conclusions

A fundamental requisite that should be satisfied by physical laws of classical, quantum
and relativistic mechanics as well as continuum field theories concerns the possibility of
expressing the dynamical equations in terms of least-action variational principles. In fact,
the existence of variational formulations is usually considered a property of mathematical
consistency and correctness for the same physical laws. In particular, the representations
in terms of Lagrangian and Hamiltonian settings are essential to understand the phys-
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ical properties of classical and quantum fields, including, for example, their degrees of
freedom and gauge properties, the role of constraints, the disclosure of symmetries and
conservation laws.

In this paper, a systematic theoretical formulation of Lagrangian variational principles
yielding the continuum gravitational field dynamics of classical General Relativity (GR)
has been presented. The problem has been cast in the framework of validity of the Principle
of Manifest Covariance (PMC), namely the requirement that variational and extremal (i.e.,
observable) fields and equations must exhibit a 4-tensor character with respect to the group
of local point transformations characteristic of GR theory. A general formalism for the
construction of Lagrangian functions and corresponding action principles yielding the
Einstein field equations (EFE) has been illustrated. As a remarkable aspect, it has been
shown that the latter equations can be equivalently obtained through multiple Lagrangian
functions exhibiting different physical meanings and mathematical connotations. The cor-
responding variational principles can be classified in two categories, respectively, referred
to as constrained and unconstrained Lagrangian principles. They are distinguished on
the basis of the constraints that can possibly be imposed on variational tensor fields, to be
realized, for example, by normalization or orthogonality conditions.

Explicit realizations of several Lagrangian principles have been proposed, which are
referred to here as Ricci, metric-tensor and tangent 4-vectors Lagrangian principles. For all
of them, it has been proved that only the unconstrained framework can satisfy PMC cor-
rectly and reproduce EFE as extremal equations. Remarkably, the synchronous variational
principle recently disclosed in Ref. [23] has been shown to belong to the unconstrained
category. As discussed here, due to its physical meaning and the formal analogy with
the case of classical mechanics, this also provides a promising route for the formulation
of a consistent Hamiltonian theory and corresponding canonical quantum description of
the gravitational field. In contrast, it has been shown that the original Hilbert–Einstein
formulation can only be couched in the framework of a constrained Lagrangian principle
together with the condition of violation of PMC. As a consequence, the Hilbert–Einstein
theory arises as a constrained principle that is intrinsically non-manifestly covariant, with
critical implications for the formulation of a corresponding constrained Hamiltonian theory
based on the Dirac theory of constrained dynamics.

The outcome of the present research permits us to state the excellence of the uncon-
strained Lagrangian principles as preferred settings for the variational formulation of EFE,
with respect to the constrained ones. The conclusion is in agreement with the tensorial
mathematical structure and conceptual meaning of GR. The unconstrained variational set-
ting therefore arises as a natural framework for the Lagrangian formulation of classical EFE,
with notable implications on the corresponding Hamiltonian theory and the consequent
establishment of a consistent canonical quantum gravity theory.
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