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Abstract: A model of learning as a generalization of the Eigen’s quasispecies model in population
genetics is introduced. Eigen’s model is considered as a matrix Riccati equation. The error catastrophe
in the Eigen’s model (when the purifying selection becomes ineffective) is discussed as the divergence
of the Perron–Frobenius eigenvalue of the Riccati model in the limit of large matrices. A known
estimate for the Perron–Frobenius eigenvalue provides an explanation for observed patterns of
genomic evolution. We propose to consider the error catastrophe in Eigen’s model as an analog of
overfitting in learning theory; this gives a criterion for the presence of overfitting in learning.
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1. Introduction

In the present paper we discuss the relation of three different areas, such as statistical
physics, learning theory, and theory of biological evolution. This relationship has been
already widely discussed in the literature. In particular, the relationship between the theory
of evolution and learning theory was mentioned by A.Turing [1] (learning is the minimiza-
tion of risk and biological evolution is optimization of fitness). The relationship between
statistical physics and evolutionary theory was discussed in [2,3]. The consideration of
biological evolution as a learning problem for functional programming was discussed
in [4–8] and various aspects of relation of statistical physics, learning and evolution was
considered in [9–11]. In this paper, we consider the application of population genetics in
learning theory.

Universal patterns of genome evolution found in genomics [2,3] were discussed by E.
Koonin as a manifestation of the Gibbs distribution of a model of “interacting gas of genes”.
Here, we discuss a model of population genetics given by a matrix Riccati equation, which
is a generalization of the Eigen’s quasispecies model [12]. Patterns of genome evolution [2]
in our model correspond to known estimates of the Perron–Frobenius eigenvalue. Eigen’s
“error catastrophe” for this model takes the form of divergence of the Perron–Frobenius
eigenvalue of the matrix Ricatti equation in the limit of large matrices. Error catastrophe
describes the regime of ineffective purifying selection in population genetics in the case
of high mutation rates. From the point of view of learning theory, the “error catastrophe”
describes the transition to overfitting in the corresponding learning model.

Biological evolution was compared with the statistical physics of disordered systems
(or spin glass theory, in particular, frustration in biology and spin glasses were mentioned)
in [9]; these authors also discuss the relation of evolution and learning [10,11]. Let us note
that in [10,11], solvability of learning problems in evolution was taken for granted and
here we address exactly this problem of solvability (in the form of problem of overfitting
in learning).
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The exposition of this text is as follows. In Section 2 of this text we discuss the Eigen’s
quasispecies model and error catastrophe; introduce our generalization of this model (a
kind of matrix Riccati model); describe the error catastrophe as divergence of the Perron–
Frobenius eigenvalue of the matrix Riccati model in the limit of large matrices; and describe
from this point of view known patterns of genomic evolution. In Section 3, we introduce a
population genetics-type learning model and discuss the relation of the error catastrophe
to overfitting in learning. In Appendix A (the Appendices), the Perron–Frobenius theorem,
matrix Riccati equations, and basic definitions of statistical learning theory are discussed.

2. Generalization of Eigen’s Model in Population Genetics

The Eigen’s model in population genetics. Here we consider the Eigen’s quasispecies
model following [12] (for a discussion of relation to other models of population genetics
see [13], in particular, Moran’s model was introduced in [14]). We investigate a family of
different “genotypes” with populations xi ≥ 0, i = 1, . . . , n; the total population is normed:
∑n

i=1 xi = 1.
The following system of equations [12] describes the dynamics, where Q is a matrix

with positive matrix elements. The non-linear term describes the competition of genotypes

d
dt

xi(t) =
n

∑
j=1

Qijxj(t)− E(t)xi(t), E(t) =
n

∑
i,j=1

Qijxj(t). (1)

Diagonal matrix elements of Q describe reproduction rates of genotypes, off-diagonal
matrix elements describe mutation rates.

The analog of the Eigen’s model with discrete time is as follows

xi(t + 1) =
1

E(t)

n

∑
j=1

Qijxj(t), E(t) =
n

∑
i,j=1

Qijxj(t).

In Eigen’s paper [12], genotypes are enumerated by strings of characters. The length
of the genome is denoted by ν, the size of the alphabet is denoted by k (in particular for
nucleotides k = 4). The fidelity of reproduction of a single nucleotide is q, 0 < q < 1. In
this case, the accuracy of reproduction of a genome is Rii = qν. Mutation rates in Eigen’s
model are equal to

Qij = εd(i,j)Rii, ε =
q−1 − 1

k− 1
. (2)

Here, d(i, j) is the number of different nucleotides in the i-th and j-th genotypes (called the
Hamming distance). The reproduction and mortality rates of the i-th genotype are denoted
Pi and Di correspondingly, which gives for diagonal matrix elements Qii = PiRii − Di > 0.

The Eigen’s model is a matrix Riccati Equation (A2) (see Appendix A.2), where A4 = Q,
A1 = 0, A3 = 0, A2 = e†Q, and e is a vector with unit coordinates. By the Perron–
Frobenius theorem, see Appendix A.1, the dynamics of this model reduces to convergence
to a stationary solution (which for Eigen’s model is called quasispecies) given by the Perron–
Frobenius eigenvector corresponding to the Perron–Frobenius eigenvalue of matrix Q (the
largest eigenvalue of a matrix with positive matrix elements).

Error threshold. Eigen considered the behavior of the stationary solution of (1) (the quasis-
pecies) depending on the mutation rate in the frameworks of perturbation theory by small
mutation rates (i.e., by small off-diagonal matrix elements of Q). Let us denote I the most
fit genotype for the PF eigenvector of Q (i.e., the sequence with the maximal population).
Then, if the matrix Q is diagonal (there are no mutations), one has xI = 1 and xi = 0, i 6= I.
If mutations are small but non-zero (first-order perturbation of the stationary solution), one
has xi = x(0)i + x(1)i , x(0)I = 1, for i 6= I : x(0)i = 0, first-order corrections are given by

(Qii −QI I)x(1)i + QiI = 0, x(1)i =
QiI

QI I −Qii
. (3)
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The correction x(1)I satisfies

x(1)I + ∑
i 6=I

x(1)i = 0,

therefore
x(1)I = −∑

i 6=I

QiI
QI I −Qii

. (4)

Expressions (3) and (4) give coordinates of the PF vector for the stationary solution
of (1) in the first order of perturbation theory by small mutation rates.

The correction x(1)I is small if the series for the rates of mutations is small

∑
i 6=I

QiI , (5)

and if there are no small denominators in the above Formula (4), i.e., QI I −Qii > δ > 0 for
some δ, this condition is sufficient.

For Eigen’s choice of mutation rates (2), this series can be estimated by a geometric
progression. Therefore, if the reproduction accuracy q is not close to one, this series will be
large (actually we discuss finite but long progressions). The regime when the stationary
state (the quasispecies) for Eigen’s model loses localization is called the error catastrophe.
The corresponding error catastrophe mutation rate separates regimes of effective and
ineffective purifying selection in population genetics.

It is easy to see that ∑i QiI is the estimate (A1) for the Perron–Frobenius eigenvalue for
matrix Q (and xi = QiI , i 6= I are estimates of coordinates of the PF vector in the first order
of perturbation theory, if we ignore denominators in (3)). Therefore, Eigen’s model is a variant
of the matrix Riccati equation and error catastrophe is the divergence of the Perron–Frobenius
eigenvalue of the model in the limit of large matrices.

Generalization of Eigen’s model. Let us introduce a generalization of Eigen’s model. We
consider a space of possible genotypes and a set of possible mutations E = [e1, . . . , en]. Here,
es are not necessarily point mutations, mutations may include duplications, insertions,
deletions, etc. Let us put in correspondence to a mutation es a weight w(es) > 0 as
“evolutionary effort” to produce the mutation. The Boltzmann factor e−αw(es) (α > 0 is a
parameter of the kind of inverse temperature for mutations) is the analog of the mutation
rate for a single mutation 1 − q in Eigen’s model. We define the transition rate from
genotype i to genotype j in the model of population genetics under consideration as

Qji = ∑
p:i→j

e−α ∑k∈p w(es(k)), (6)

where summation over p runs over paths p : i→ j of generation of j from i and summation
over k runs over mutations along the path p (i.e., k-th mutation at the path p is es). This sum
over k weights of mutations is the analog of the Hamming distance in (2), the summation
over paths takes into consideration retinal evolution (possibility to access j from i taking
mutations in different order).

We define diagonal matrix elements Qii by the functional R, which describes fitness
(β > 0 is the inverse temperature for selection, temperatures for selection and mutations
can be different)

Qii = e−βR[i]. (7)

Then, we define the model of population genetics by using equations of the Eigen’s
model (1) with more general mutation and survival matrix (6), (7) and more general family
of mutations, this allows us to explain patterns of genomic evolution (9) and (10); see the
discussion below.
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The condition for effective purifying selection for this model is the condition of conver-
gence of the estimate (A1) of the Perron–Frobenius eigenvalue of the model, if we exclude
in this estimate the diagonal matrix element and reduce the corresponding series to (5),
we get

Z = ∑
j

∑
p:i→j

e−α ∑k∈p w(es(k)). (8)

This expression has the form of a statistical sum over iterated mutations. Here, i
is the starting point of evolution (the ancestral genome). Critical phenomena for this
statistical sum (transition between convergence and divergence of (8) depending on the
inverse temperature α) describe the transition between regimes of effective and ineffective
purifying selection in population genetics (the error catastrophe). Let us note that all
possible mutations give contributions to this expression. Even if only point mutations are
taken into account, this gives a contribution of order of the length of a genome. Therefore,
to keep (8) small, the mutations rates should be sufficiently low. This observation also puts
limitations on learning without overfitting, see the discussion in Section 3.

Laws of genomic evolution, population genetics, and statistical physics. Let us consider
two examples of genomic evolution discussed in [2,3] and show that patterns of genomic
evolution can be considered as a manifestation of the statistical sum (8).

Orthologous proteins in different species are related by common origin. For such
proteins the logarithm of amino acid substitution frequency is distributed according to
normal law. Let us consider for orthologous proteins the evolution by random independent
amino acid substitutions with probability of substitution A→ B depending only on amino
acids A, B. The coordinates of the PF vector, by perturbation theory (3), can be estimated
by mutation rates (6), which gives for the coordinates

e−α ∑k Ek , (9)

where Ek are weights of mutations in the process of protein generation from the ancestor
(summation with respect to k is the summation along the path of evolution). For inde-
pendent mutations (this is the assumption that the evolution is neutral) we obtain the
lognormal distribution for protein occurrences in the orthologous family (coordinates of
the PF vector).

Genes in the same genome generated by duplication events are called paralogous.
Let us consider evolution by gene duplication, each duplication corresponds to a con-
tribution in (6) (evolutionary effort) E. Then, for a family of N paralogous genes, the
“evolutionary effort” contribution is NE; thus, the expression for a coordinate of the PF
vector corresponding to a family of N paralogous genes will be equal to

e−αNE, (10)

i.e., one obtains the degree distribution for sizes N of families of paralogs.
Therefore, the statistical sum (8) explains known patterns of genomic evolution. For

discussion of these patterns, E.V. Koonin conjectured [2,3] an idea of “interacting gas of
genes”, i.e., the evolution of genomes should be explained by the Gibbs distribution of
some model of statistical physics with interaction of genes. This hypothetical model was
also called “the third evolutionary synthesis”. In [9–11], following these ideas, the relation
between statistical physics, learning, and evolution was discussed. In these papers, the
authors applied the approach of [15,16], where evolution phenomena were explained using
the structure of the fitness landscape (i.e., the diagonal part of the selection–mutation matrix
in the above model).

In our approach, the mutation off-diagonal part of this matrix was applied, universal
genomic evolution patterns follow from the universality of the mutation matrix (6). From
the point of view of learning theory, see the next Section, the universal form of mutation
rates looks like universal regularization in learning. The above generalization of Eigen’s
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model (6) and (7) can be considered as a possible candidate for the “interacting gas of genes”
model (the corresponding Gibbs distribution is (8), or the PF eigenvalue estimate).

3. Learning Theory and Population Genetics

Learning is the minimization of the risk functional (or loss functional) R over the hy-
pothesis space F of the system, see, in particular, [17] and Appendix A.3. Analogy between
learning and Darwinian evolution, i.e., between minimization of risk and optimization of
fitness, was mentioned by A. Turing [1] in 1950, now this idea attracts attention [4,5,8,10,11].
From this point of view, it is natural to apply in evolution theory different ideas of learning
theory and vice versa. In particular, regularization, an important idea in learning, looks
promising for evolution theory, as was shown at the end of the previous Section, universal
regularization (by mutation rates) in learning problems of evolution gives universal distri-
butions in genomics. The analogy between evolution and learning goes even further—in
a discussion by R. Fisher [18], selection was considered as a random phenomenon (ran-
dom weather conditions, etc.). These arguments look similar to the statistical learning
theory (where training data are randomly chosen, see Appendix A.3). In a more standard
discussion of evolution theory, training data are considered as fixed (selection is fixed).

The analogy between optimization and selection can be considered as an application
in the learning of Darwinism, or the first evolutionary synthesis. Modern evolution theory
is the population genetics, or the second evolutionary synthesis. In population genetics,
an ensemble (population) instead of a single object is considered. One of the central
achievements of population genetics is the explanation of purifying selection. Purifying
selection was discussed by R. Fisher [18]; it is related to competition of different genotypes
and prevents degradation of the fitness by mutations. Learning in population genetics
can be defined as the convergence of the population of hypotheses to a peak around
the minimum of the risk functional. The transition from learning a single hypothesis
to learning a population of hypotheses is analogous to the transition from mechanics to
statistical mechanics (where ensembles are studied). Using this analogy, we propose to
discuss error catastrophe, or transition to ineffective purifying selection, as a model of
overfitting in learning.

We formulate the learning model as the analog of the considered above generalization
of Eigen’s model. Let x f (t) ≥ 0, ∑ f x f (t) = 1 be a normed distribution on the hypothesis
space F of the learning system (the “space of genotypes” or hypotheses). Let us consider
the analog of mutations in genetics—a list of partially defined maps E = [e1, . . . , en],
es : F → F of the hypothesis space. Hypotheses are generated from the initial hypothesis
(in biology, ancestral genome) by an iterated application of hypothesis transformation
operations (in biology, mutations).

The model of learning by population genetics is given by the following matrix Riccati
equation (an analog of (1))

d
dt

x f (t) = ∑
g

Q f gxg(t)− x f (t)∑
f ,g

Q f gxg(t) (11)

where mutation rates Q f g, f 6= g have the form (6) used in the discussed above general-
ization of Eigen’s model with the defined above mutations (hypotheses transformations)
E = [e1, . . . , en] and corresponding weights w(es) > 0 (efforts to perform mutations), diago-
nal matrix elements are given by (7), where R is the risk functional of the learning problem
under consideration.

The discrete time analog of (11) is

x f (t + 1) =
∑g Q f gxg(t)

∑ f ,g Q f gxg(t)
.

One of the central problems in learning theory is overfitting, which is a strong de-
pendence of the results of learning on the training sample—if the learning system is too
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complex it can overreact to small details of the data, hence a large subset of the hypoth-
esis space contribute to learning. Therefore, overfitting is related to high entropy of the
hypothesis space, to control overfitting a regularization is applied, see, in particular, VC
theory [17].

In the above model of learning by population genetics, overfitting can be considered an
error catastrophe, or transition to the regime of ineffective purifying selection, or divergence
of the statistical sum (8), which gives the estimate for the Perron–Frobenius eigenvalue of
the model as a matrix Riccati equation (actually, the estimate of the PF eigenvalue minus the
diagonal matrix element in (A1)). Divergence of (8) means that the large subset of the space
of genomes contribute to the population, and selection can not isolate the most fit genotype.
This implies the divergence of (8) due to the large entropy of the hypothesis space F (the
Boltzmann factor in (6) decays slowly with additional mutations). Convergence of (8) is
provided if this decay is fast; this can be considered a regularization in the learning problem.

The condition of convergence of the statistical sum (8) can be satisfied for a wide choice
of learning models and sufficiently low temperatures (large α). This condition is much less
restrictive than the condition of the finite VC dimension in VC theory. This gives a criterion
of the presence of overfitting in a population genetics-type learning problem. This criterion
is a thermodynamic type effect and can be understood only if an ensemble (population) of
learning systems is considered. The author does not claim that this statement about control
of overfitting in learning by population genetics is mathematically proven, the idea is to
exploit physical (and biological) intuition in the learning theory.

In the above discussion, we considered the fixed risk functional R (i.e., fixed training
sample). In principle, one can vary the sample (use test data instead of training data); this
will modify the risk functional R (selection) and diagonal matrix elements (7), but will not
change the off-diagonal matrix elements (6) (mutations) and the statistical sum (8); hence,
predictions on overfitting will be the same.

Relation to “complexity as energy”. The theory of “complexity as energy” was discussed
by Yu.I. Manin [19]. In this approach, the Gibbs distribution with the Hamiltonian equal to
the Kolmogorov complexity was applied to explain the power Zipf’s law of word frequency
distribution in texts. The sum of weights of hypothesis generation operations in (6) can
be discussed as a weighted upper bound for the Kolmogorov complexity of generation
of a hypothesis. Therefore, statistical sum (8) is an example (of approximation) of the
“complexity as energy” approach.

Relation to GAN. Generative Adversarial Network (or GAN) is a learning model which
works by contest of two neural networks, generator and discriminator [20]. Modification
and competition of networks at each step of the contest can be considered as analogs of
mutation and selection correspondingly. From this point of view, this looks like a kind
of the predator–prey model with mutations; moreover, GANs are described by minimax
models similar to evolutionary game theory [21]. It is a general opinion of biologists that
the predator–prey competition accelerates evolution greatly and this can be considered as
an explanation why GANs are very successful. It looks like different models of population
genetics might contribute to learning theory, in particular, the generalization of Eigen’s
model introduced in the present paper. One can also mention genetic algorithms as an
example of applications of biological ideas in learning.

Summary. In the present paper, we introduced a generalization of the Eigen’s model in
population genetics and described the error catastrophe (transition to ineffective purifying
selection) as a divergence of the Perron–Frobenius eigenvalue of the mutation–selection
matrix of the model. The introduced model explains known patterns of genomic evolution.
We propose to consider this population genetics model as a model of learning, where:
the learning model is an ensemble (population) of learning models (a distribution on the
hypothesis space); the risk functional in learning is described by fitness in population
genetics; mutation rate matrix in population genetics corresponds to a set of hypothesis
transformation operations and corresponding matrix of transformation (mutation) rates;
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learning reduces to convergence of the population of hypotheses to a peak around the
minimum of the risk functional. Then, overfitting in learning can be described as the error
catastrophe in population genetics, this criterion of overfitting can be understood only
using ensembles (populations) of hypotheses.

Funding: This work was performed at the Steklov International Mathematical Center and supported
by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-
2022-265).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.
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Appendix A

Appendix A.1. Perron–Frobenius Theorem

Let A = (aij) be a square matrix with positive matrix elements, then:

(1) The largest in modulus eigenvalue r (Perron–Frobenius eigenvalue) is real and positive;
(2) This eigenvalue is simple (non-degenerate);
(3) There exists an eigenvector (Perron–Frobenius vector), corresponding to r with strictly

positive coordinates, all other eigenvectors do not have this property;
(4) limk→∞

Ak

rk = P, where P is a projection to the Perron–Frobenius vector;
(5) Eigenvalue r satisfies inequalities

min
i

∑
j

aij ≤ r ≤ max
i

∑
j

aij. (A1)

For a matrix with non-negative matrix elements, the analogous properties are satisfied
(these properties can be obtained as limits of the above properties, in particular the highest
eigenvalue can be degenerate and some coordinates of the corresponding eigenvector can
be zeros).

Appendix A.2. Matrix Riccati Equation

In [22], an approach to analysis of texts based on matrix Riccati equations is discussed.
Namely, the matrix is considered

A =

(
A1 A2
A3 A4

)
,

where A4 is a (N − 1)× (N − 1)–matrix, A1 is a number, A2 and A3 correspondingly are
row and column of length N − 1.

The corresponding map of the projective space PN−1 is investigated

A : ym =

(
1

xm

)
7→ ym+1 =

(
1

xm+1

)
, xm+1 =

A3 + A4xm

A1 + A2xm
.

This discrete time dynamical system (iteration of the map above) can be considered as
a discretization of the matrix Riccati equation

d
dt

x(t) = A3 + A4x(t)− x(t)A1 − x(t)A2x(t). (A2)

The corresponding flow converges to a stationary point defined by the Perron–Frobenius
theorem (under corresponding constraints for matrix A).
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Appendix A.3. Basic Definitions of the Statistical Learning Theory [17]

Learning theory discusses extracting patterns from data. In particular, the definition
of a supervised learning problem is as follows: let us consider a training sample (i.e., a
set of labeled data) zi = (xi, yi), xi ∈ X, yi ∈ Y. We have to find a function (hypothesis)
f : X → Y in the hypothesis space F related to the training sample.

Let p(x, y) be a probability distribution in X × Y. To evaluate a hypothesis, we will
consider the loss (or risk) function V( f (x), y) with non-negative values. The expected risk
functional is defined as an average of the risk function

R[ f ] =
∫

X×Y
V( f (x), y)p(x, y)dxdy.

The problem of statistical learning is to find a hypothesis that gives the minimum of
the risk functional

f = arg min
h∈F

R[h].

The empirical risk functional

Remp[ f , data] =
1
n

n

∑
i=1

V( f (xi), yi),

where data = {zi} = {(xi, yi)}, i = 1, . . . , n is a training sample generated by the probabil-
ity distribution, p(x, y), should approximate the expected risk functional.

The supervised learning problem is to find the optimal hypothesis defined by the
training sample

f [data] = arg min
h∈F

Remp[h, data].

Classification problem. Let yi = 0, 1, a hypothesis f belongs to a family of characteristic
functions (i.e., f (x) = 0 or f (x) = 1), and the risk function V( f (x), y) = | f (x) − y|
is as follows: it is equal to zero for f (x) = y and to one otherwise. In this case, the
empirical risk functional is given by the average number of errors of the risk function at
the training sample:

Remp[ f , data] =
1
n

n

∑
i=1
| f (xi)− yi|.

Problem of overfitting. The following situation is possible: it is possible that the optimal hy-
pothesis f [data] computed for the training sample data will give high values of the empirical
risk functional if we would compute this functional for a control sample data′ different from
data. This phenomenon is called overfitting. According to the Vapnik–Chervonenkis theory
(or VC theory) [17], overfitting is explained by high entropy of the hypothesis space.

A general approach to control overfitting is the application of regularization: one can
add a non-negative regularizing term depending on the hypothesis to the functional of
empirical risk

H[ f , data] = Remp[ f , data] + Reg[ f ], (A3)

then, the learning problem will have the form

fReg[data] = arg min
h∈F

H[h, data]. (A4)

If a regularization term corresponds to some potential well in the hypothesis space,
the optimization problem will be restricted to this well. In this way, the entropy of the
hypothesis space will be limited.
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