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Abstract: Photon-counting LiDAR encounters interference from background noise in remote tar-
get detection, and the statistical detection of the accumulation of multiple pulses is necessary to
eliminate the uncertainty of responses from the Geiger-mode avalanche photodiode (Gm-APD).
The cumulative number of statistical detections is difficult to select due to the lack of effective
evaluation of the influence of the background noise. In this work, a statistical detection signal
evaluation method based on photon statistical entropy (PSE) is proposed by developing the de-
tection process of the Gm-APD as an information transmission model. A prediction model for
estimating the number of cumulative pulses required for high-accuracy ranging with the back-
ground noise is then established. The simulation analysis shows that the proposed PSE is more
sensitive to the noise compared with the signal-to-noise ratio evaluation, and a minimum PSE
exists to ensure all the range detections with background noise are close to the true range with
a low and stable range error. The experiments demonstrate that the prediction model provides
a reliable estimation of the number of required cumulative pulses in various noise conditions.
With the estimated number of cumulative pulses, when the signal photons are less than 0.1 per pulse,
the range accuracy of 4.1 cm and 5.3 cm are obtained under the background noise of 7.6 MHz and
5.1 MHz, respectively.

Keywords: photon-counting LiDAR; photon statistical entropy; signal evaluation; prediction model

1. Introduction

Photon-counting LiDAR, equipped with a Geiger-mode avalanche photodiode (Gm-
APD), has a high capability for photon-efficient sensitivity and picosecond-level time
resolution and the potential for range detection and 3D imaging for remote targets [1–7].
Affected by the probabilistic response of the Gm-APD, the detection process of photon-
counting LiDAR is statistical, which requires the accumulation of multiple pulses to locate
the echo signal [8–10]. Nevertheless, in scenarios with strong background noise, the selec-
tion of the number of cumulative pulses is a common problem. The main reason for this is
the lack of an effective metric to evaluate the quality of the statistical detection.

In detection theory, the signal-to-noise ratio (SNR) is a universal metric for evaluating
signal quality. Since Pellegrini et al. introduced SNR into photon-counting LiDAR [11], it
has been widely used in the signal quality assessment of photon-counting statistical detec-
tion. Researchers have proposed various schemes to define the SNR according to the differ-
ent application requirements and the system’s characteristics, e.g., a definition from the per-
spective of a photon-counting histogram [12], a definition based on the continuous time at
which the detector responds to the first echo photon [13], and a definition given by the num-
ber of signal photoelectrons and noise photoelectrons [14]. These schemes follow the same
formula: the SNR is equal to the ratio of the mean of the signal to the Poisson fluctuation.
Mccarthy et al. used the defined SNR to analyze a scanning LiDAR prototype and build
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a prediction model for photon-counting LiDAR under different working environments.
The prediction model determined the minimum SNR required to reliably lock on to the
actual target range, estimated the maximum resolvable range under different dwell times,
and analyzed the detection performance for underwater targets [15–17]. At present, the SNR
metrics in photon-counting LiDAR are limited to the low-flux region, and the abovemen-
tioned research used SNR to evaluate the signal quality in the scenes where the return
counting rate was no more than 10 kHz (or counts/s) [13,14]. The applicability of the SNR
metrics in a high background-noise environment (up to MHz level) remains to be tested.
Additionally, another commonly used evaluation metric in photon-counting statistical
detection is the so-called signal-to-background ratio (SBR) [18–20], whose definition is the
ratio of the mean of the signal to the mean of the background noise. Unfortunately, the SBR
cannot indicate the influence of the number of cumulative pulses on the signal quality of
the statistical detection.

In fact, detection probability is the most objective metric to evaluate the signal quality
of photon-counting statistical detection, which is determined by the nonlinear response
characteristics of the Gm-APD; that is, the signal detection probability is affected by all the
noise arriving before the signal [21,22]. Based on the analysis of the detection probability of
the Gm-APD, Gatt et al. proposed an SNR scheme with a detection probability and analyzed
the influence of the detectors’ deadtime and noise rate on the SNR in statistical detection [23].
However, it is more important for the detection probability to be analyzed in each time
bin, which is difficult to achieve in photon-counting LiDAR for remote targets because the
target’s range is always unknown. Therefore, this version of SNR is not convenient in the
practical application.

To summarize, an effective signal quality evaluation method needs to be developed
for photon-counting LiDAR working in background noise. Entropy involves higher-order
statistics compared with the conventional counting statistics and probability statistics.
It is an important quantitative tool to evaluate the uncertainty of information generation,
transmission, and reception. In recent years, many studies using entropy as an evaluation
metric to improve performance have emerged in various fields, such as image quality
assessment [24,25], beam complexity analysis [26], laser chaotic signal evaluation [27,28],
fuzzy clustering [29,30], quantum communication [31,32], etc. In photon-counting LiDAR,
the process of range measurement can be regarded as an information transmission model,
and the uncertainty of the distribution of the signal and noise is completely different.
The noise is uniformly distributed with high uncertainty, while the signal is distributed
in pulses with lower uncertainty. Therefore, it is possible to utilize entropy as a metric to
analyze the uncertainty of the distribution of the echo photons for signal evaluation in
photon-counting LiDAR.

In this work, with the analysis of the detection probability of the Gm-APD, a signal
quality evaluation method for photon-counting LiDAR based on photon statistical entropy
(PSE) is proposed; then, a prediction model for determining the number of cumulative
pulses in high background-noise scenarios is established. Specifically, the detection process
of the Gm-APD is developed as an information transmission model, and the PSE is proposed
as the signal evaluation metric. Additionally, the number of required cumulative laser
pulses for targets’ ranging with background noise is estimated using the minimum PSE
reference. The simulation and experiment demonstrate that compared with the SNR
evaluation in statistical detection, the proposed PSE metric is more sensitive to indicating
the influence of the noise, and the PSE-based prediction model provides a good estimation
of the number of cumulative pulses required for high-accuracy ranging for photon-counting
LiDAR working in MHz-level background noise.

2. PSE Evaluation in Photon-Counting LiDAR
2.1. Forward Probability Model in Photon-Counting LiDAR

In the photon-counting LiDAR system, often, a pulsed laser is triggered to illuminate
the target, a Gm-APD is synchronized to respond to the echo photons reflected from
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the target, and a time-to-digital module is used to record and output the time difference
between the emission and the arrival of the laser pulse. For typical Gaussian laser pulses,
the echo optical flux at time t is expressed as

s(t|τ) = Ns
1√
2πσ

exp

(
− (t− τ)2

2σ2

)
+ fn, (1)

where
Ns =

Et

hν

Ar

2πR2 ρηrτ2
a

denotes the number of echo signal photons [33,34], which is determined by the single-pulse
energy Et; the single photon energy hν, defined by the Planck constant h and the laser
frequency ν; the receiving system’s area Ar and transmittance ηr; the target’s reflectivity ρ
and range R; and the transmittance of atmosphere τa. fn denotes the total counting rate of
the noise that consists of the background noise and the dark count. σ is the mean square
root of the Gaussian pulse. τ = 2R/c is the time of flight of the laser pulses, in which c is
the speed of light. In a practical system, the variate t is often discretized into time bins,
with a width of ∆t for each bin. In the jth bin, the forward probability, i.e., the probability
that the Gm-APD responds to the echo photons, is

P(j|i) = exp
(
−
∫ (j−1)∆t

0
ηs(t|τ)dt

)
×
(

1− exp
(
−
∫ j∆t

(j−1)∆t
ηs(t|τ)dt

))
, (2)

where η is the quantum efficiency of the Gm-APD; i = τ/∆t is the ith bin after the same
discretization to τ; and i = 1, · · · , N, j = 1, · · · , N, in which N = Tg/∆t, the number
of time bins, is determined by the width of range gate Tg. Equation (2) is derived from
Poisson statistics [22], and it explains the response probability in the jth bin, when the
target is located in the ith bin. The response of the Gm-APD probabilistically occurs in
every possible bin due to the influence of noise. Assuming that there exists only one target
in the scene, the forward probability matrix that indicates the capacity of photon-counting
statistical detection is obtained by the traversal of all i and j

Pt|τ = [P(j|i)], i = 1, · · · , N and j = 1, · · · , N, (3)

where the square bracket means Pt|τ is a matrix. Equation (3) describes the response
probability of the Gm-APD in each bin, with the consideration of all possible cases of the
target location in the range gate. Based on Equations (2) and (3), the detection process of the
photon–electron conversion of the Gm-APD is built as an information transmission model.

2.2. PSE for Single-Pulse Detection

On the foundation of Equation (3), the PSE for single-pulse detection is defined in the
form of mutual information [35]

IS = EPt,τ

(
logPt,τ − logPτ(Pt)

T
)

, (4)

where Pt,τ = [P(j, i)] denotes the joint probability of the target location and the distribution
of the Gm-APD’s responses; EPt,τ (·) is the expectation operation of the joint probability
Pt,τ ; Pτ = [P(i)]T denotes the probability of the target location or the prior probability;
and Pt = [P(j)]T denotes the probability of the distribution of the Gm-APD’s responses
or the post probability, in which the superscript means the transpose operation, and the
formula P(j, i) = P(j|i)P(i), i = 1, · · · , N, j = 1, · · · , N is satisfied. The target location
before the detection ending is completely unknown by the LiDAR system, and the target is
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possibly located in any bin within the range gate; so, the prior probability is assumed to be
a uniform distribution, i.e.,

P(i) =
1
N

, i = 1, · · · , N. (5)

The probability of the distribution of the Gm-APD’s responses is given in the litera-
ture [36]; then, the discretized post probability is

P(j) =

(
Ns∆t√

2πσ
exp

(
− (j∆t)2

2σ2

)
+ fn

)

× exp
(
−Ns

2

(
1 + erf

(
j∆t√

2σ

))
− fn j∆t

)
, (6)

where erf(·) is the Gauss error function, and j = 1, · · · , N. Substituting Equations (2), (5),
and (6) into Equation (4), the proposed PSE for single-pulse detection is obtained to evaluate
the signal quality of the photon-counting LiDAR. Equation (4) provides a quantitative
description of the eliminated uncertainty of the target range after one pulse is received,
given the number of signal photons Ns and the noise rate fn.

2.3. PSE for Multiple-Pulse Detection

In photon-counting LiDAR, multiple-pulse accumulation is essential to avoid the
detection uncertainty introduced by the inevitable noise. In this case, the mentioned PSE
for single-pulse detection cannot describe the influence of the cumulative pulses on the
signal quality; so, the PSE needs to be extended for multiple-pulse detection. For a Gm-APD
with long deadtime, as the width of the laser pulse is much less than the width of the range
gate, the responses in each individual echo pulse are independent from each other. Thus,
the forward probability matrix for single-pulse detection is extended into

PK
t|τ =

[
K

∏
k=1

P(jk|ik)
]

, (7)

where ik = 1, · · · , N, jk = 1, · · · , N, the superscript K means K accumulation of pulses,
and PK

t|τ with the dimension of Nk × Nk is the extended forward probability matrix for
multiple-pulse detection. The extended forward probability matrix describes the capacity
of multiple-pulse statistical detection under the premise of traversing all possibilities of the
target location.

Similarly, the extension is operated according to the prior probability and the post
probability; that is,

PK
τ =

[
K

∏
k=1

P(ik)

]T

, (8)

and

PK
t =

[
K

∏
k=1

P(jk)

]T

, (9)

where PK
τ and PK

t denote the extended probability of the target location and that of the
distribution of the GM-APD’s responses, respectively. Substituting Equations (7)–(9) into
Equation (4), the PSE for multiple-pulse detection is

IM = EPK
t,τ

(
logPK

t,τ − logPK
τ

(
PK

t

)T
)

, (10)
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where PK
t,τ is the extended joint probability. According to information theory, due to the

independence of each laser pulse, the PSE for multiple-pulse detection satisfies

IM = KIS, (11)

from which there is a linear relationship between the PSE for multiple-pulse detection
and that for single-pulse detection. Equation (11) describes the quantity of the eliminated
uncertainty of the target’s range after multiple-pulse accumulation. Based on the estab-
lished information transmission model, this work uses the PSE defined in Equations (4)
and (11) as the statistical metrics to evaluate the signal quality of photon-counting LiDAR;
then, a prediction model is proposed to estimate the number of cumulative pulses in high
background-noise environments.

3. Simulation Analysis

In this section, we describe the simulation and analysis of the characteristics of the
PSE. The simulation parameters were as follows: the wavelength of the laser was 532 nm,
the width of the laser pulse was 4 ns, the width of a time bin was 64 ps, and the width of
the range gate was ∼65.5 ns; the target was located in the 760th time bin.

For single-pulse detection, the characteristics of the PSE evaluation were firstly simu-
lated and compared with the SNR evaluation. The SNR was calculated within the signal
duration using the definition in [14]. Figure 1 shows the comparison of the SNR evaluation
with the PSE evaluation under various signal and noise conditions, in which the SNR and
PSE were both normalized by their maximums. The results in Figure 1a,b show that the
SNR and PSE both increased with the number of signal photons. However, in the weak
signal region, the SNR decreased slightly with the noise, but the proposed PSE decreased
rapidly to a very low level. In photon-counting LiDAR, limited by the Gm-APD’s dead-
time, the signal response is affected by all the noise in front of the signal within the range
gate, resulting in the nonlinear influence of the noise on the statistical detection, which is
depicted by the normalized detection probability. The normalized detection probability
is defined as Pd,n =

1−exp(Ns)
1−exp(Nsn)

that indicates the ratio of the signal response probability to
the total response probability, with the number of signal photons Ns and the number of
total echo photons Nsn. As shown in Figure 1c,f, in the region of Ns < 0.2, the normalized
detection probability decreased obviously with the increase in noise, and according to
Figure 1d,e, the proposed PSE was consistent with the normalized detection probability,
but the SNR was not. Therefore, the PSE based on the information transmission model
was more sensitive to the noise and described the influence of the noise on the statistical
detection more objectively.

For multiple-pulse detection, the range accuracy index is discussed as the function of
the SNR and the PSE. The definition of the range accuracy is

σa =
1
M

M

∑
i=1
|Ri − Rreal|, (12)

where Rreal is the true range of the target, Ri is the ith measured target range, and M is the
number of repeated ranging experiments. In the simulation, the ranging experiment was
realized by a Monte Carlo method, and the target range was estimated by the matched filter
method, due to its good anti-noise performance. The range accuracy indicates the mean
error between the measured ranges and the true range. It is mainly determined by the
uncertainty of the noise distribution (with a variance of T2

g /12) when there are not enough
cumulative pulses, and it is mainly determined by the uncertainty of the signal distribution
(with a variance of σ2) under a large number of accumulated pulses. According to Poisson
statistics, the SNR for multiple-pulse detection is easily derived from its definition

γM =
√

KγS, (13)
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where γS and γM denote the SNR for single-pulse detection and multiple-pulse detec-
tion, respectively.

Figure 1. The comparison of the PSE and SNR with a normalized detection probability. (a) The SNR
under various signal and noise conditions; (b) the PSE under various signal and noise conditions; (c)
the normalized detection probability under various signal and noise conditions; (d–f) are the results
of some selected signal conditions from (a–c), respectively. The SNR and PSE are both normalized by
their maximums.

Using Equations (11)–(13), the results of the range accuracy in the simulation of the
SNR evaluation and the PSE evaluation in a weak signal region are shown in Figure 2.
Under the same noise conditions, the trends for the SNR and PSE were the same, i.e., the
range accuracy decreased with an increasing SNR and PSE, which was a consequence of
the accumulation. However, when comparing any two or more noise conditions in the
SNR or PSE evaluation, the trends of the difference between the range accuracy curves
differed. In the SNR evaluation, the curves of the range accuracy intersected before the
range accuracy trend became stable. With the same stable range accuracy, the larger
the noise rate was, the better the SNR. More specifically, there always existed a higher
noise level, for which the range accuracy curve was located at the right side of the shown
curves. It was difficult to choose an SNR as the reference to ensure all the range accuracy
under different noise conditions remained near the stable values. In contrast, in the PSE
evaluation, the curves of the range accuracy did not intersect before the stable range
accuracy. This means that with a stable range accuracy, the lower the noise rate, the larger
the PSE, which infers that there is a minimum PSE reference, i.e., the PSE under zero noise,
to ensure all range accuracy under different noise conditions remain close to the stable
range accuracy. Exploiting this characteristic, we propose a prediction model for estimating
the number of cumulative pulses required for high-accuracy ranging for targets in different
background environments.
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Figure 2. The range accuracy versus the SNR and PSE in multiple-pulse detection. (a–c) are the results
of the SNR evaluation when Ns = 0.05, 0.1, and 0.15; (d–f) are the results of the PSE evaluation
when Ns = 0.05, 0.1, and 0.15.

In fact, the results shown in Figure 2 are both the x-axis transformations of the curves
of the range accuracy varying with the number of cumulative pulses. Figure 2a–c are the
nonlinear transformation and unequal-proportion scaling, while Figure 2d–f are the linear
transformation and unequal-proportion scaling. According to Equations (11) and (13),
in multiple-pulse detection, the necessary but insufficient conditions for range accuracy
curves intersecting in the SNR evaluation and PSE evaluation are

Ki
Kj

=
(

γS,j
γS,i

)2
, SNR evaluation

K′ i
K′ j

=
IS,j
IS,i

, PSE evaluation
, (14)

where Ki and Kj are the number of cumulative pulses when the range accuracy and the
SNRs are both equal under any two noise conditions, while K′ i and K′ j are that when the
range accuracy and PSEs are both equal. γS,i and γS,j are the SNRs for single-pulse detection
under two noise conditions, while IS,i and IS,j are the PSEs for single-pulse detection under
two noise conditions, respectively. Since the proposed PSE is not analytic, a numerical
analysis was performed on Equation (14). Based on the results in Figure 1, the conditions
in Equation (14) are visualized in Figure 3, from which IS,j/IS,i was about one to two

orders of magnitude larger than
(
γS,j/γS,i

)2. Then, we derived that
∣∣Ki − Kj

∣∣� ∣∣K′ i − K′ j
∣∣,

which indicated that the difference in the number of cumulative pulses when the PSEs
were equal was much larger than that when the SNRs were equal. The results shown
in Figure 3 avoided the intersection of the range accuracy curves in the PSE evaluation
under different noise conditions before the range accuracy became stable and provided a
numerical demonstration of the following prediction model.
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Figure 3. Numerical image of the necessary but insufficient condition for range accuracy curves
intersecting when Ns = 0.05.

4. The Prediction Model for Estimating the Number of Cumulative Pulses

According to the simulation analysis, the PSE under zero noise is the reference to
ensure the range detection in high background noise remains close to the true range with a
low and stable range error. In this section, a prediction model to estimate the number of
cumulative pulses is proposed in the following three steps.

(i) Pre-measurement. First, we conducted a pre-measurement to estimate the noise
rate and the number of signal photons. Since the signal is not usually located in the front of
the range gate, the data in the first q bins in the photon-counting histogram were used to
estimate the noise rate

f̂n = −1
q

log

(
1− 1

Ka

q

∑
i=1

yi

)
, (15)

where yi means the photon-counting data in the ith time bin, and Ka is the number of
cumulative pulses in the premeasurement. The number of signal photons was estimated by
regarding the total counts minus the mean noise counts as the signal counts

N̂s = − log

(
1−

(
N

∑
i=1

yi − Ka

(
1− exp

(
−N f̂n∆t

)))
/Ka

)
, (16)

where N = Tg/∆t is determined by the width of the range gate Tg and the width of the
time bin ∆t.

(ii) Estimation of the minimum PSE reference. In a zero noise condition, the response
of the Gm-APD must be generated from the signal photons, and the range accuracy must be
determined by the signal uncertainty, i.e., the range measured when the Gm-APD generates
only one photon count approaches the true range with the stable range accuracy discussed
in the simulation. Then, the minimum PSE reference is

IR =
1

1− exp
(
−N̂s

) IS
(

N̂s, 0
)
, (17)

where the term 1
1−exp(−Ns)

means the number of required cumulative pulses when the

Gm-APD generates one photon count, and IS
(

N̂s, 0
)

is the PSE for single-pulse detection
with the signal photons of N̂s and the noise rate of 0.

(iii) Estimation of the number of cumulative pulses. Using the minimum PSE reference
and Equation (11), the number of cumulative pulses required for high-accuracy ranging in
high background noise is

Kd =
IR

IS

(
N̂s, N f̂n∆t

) , (18)
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where IS

(
N̂s, N f̂n∆t

)
is the PSE for single-pulse detection with the signal photons of N̂s

and the noise rate of f̂n.
The prediction model was experimentally verified. The experimental ranging data

were obtained from the photon-counting ranging system established in our previous
work [37]. Table 1 lists the key system parameters and pre-measurement setup for the ex-
perimental verification. Using the given experimental parameters, the theoretical prediction
of the number of cumulative pulses under various signals and noise is shown in Figure 4,
which indicates that the cumulative pulses increased quasiexponentially with the noise,
and a large number of cumulative pulses was required for high-accuracy ranging in a weak
signal and strong noise conditions. Table 2 shows the prediction results in two different
experimental noise cases. Referencing the PSE where the Gm-APD generated one photon
count in zero noise, the high-accuracy range detection required 22,200 and 7220 cumulative
pulses under the background noise of 7.6 MHz and 5.1 MHz, respectively. Figure 5 shows
the results of 50 repeated ranging experiments with the estimated numbers, 22,200 and 7220,
of cumulative pulses for the two noise cases. The measured ranges in the two cases both
concentrated near the true range, with the range accuracy of 4.1 cm and 5.3 cm, respectively,
and the standard derivations of 3.8 cm and 3.9 cm, respectively. Figure 5 demonstrates that
the proposed PSE prediction model effectively estimated the number of cumulative pulses
required for high-accuracy ranging in a MHz-level background.

Table 1. Parameters for the experimental verification. Ka is the number of cumulative pulses from
the premeasurement, and q is the number of bins for estimating the noise rate.

Item Parameters

System

pulse width 4 ns
bin width 64 ps
range gate 102.4 ns

target range 9.3 m

Pre-measurement Ka 1000
q 200

Figure 4. The theoretical prediction of the number of cumulative pulses under the given experimen-
tal parameters.
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Table 2. The estimation results of the prediction model. f̂n, N̂s, IR, and Kd are the estimated noise
rate, the estimated number of signal photons, the PSE reference, and the estimated number of
cumulative pulses, respectively.

Case 1 Case 2

f̂n 7.6 MHz 5.1 MHz
N̂s 0.08 0.1
IR 1761.0 1422.8
Kd 22200 7220

Figure 5. The results of the ranging experiments under the estimated number of cumulative laser
pulses. (a) The comparison of the measured ranges and the true range with a background noise of
7.6 MHz; (b) the comparison of the measured ranges and the true range with a background noise of
5.1 MHz.

In addition, the relationship between the range accuracy with the number of cumula-
tive pulses under the two noise cases was explored to test the sampling time cost, as shown
in Figure 6. The range accuracy measured after accumulating 22,200 and 7220 pulses under
the two noise cases were both close to the stable range accuracy, and comparing the results
in Figure 6b,e with Figure 6c,f, the measured ranges had poor performance when there
were not enough cumulative pulses. In Case 1, the threshold cumulative number where
the range accuracy became stable was about 15,000, as shown in Figure 6a, where the
range accuracy was ∼4.4 cm, and the standard deviation was ∼4.5 cm. Similarly, in Case 2,
the threshold cumulative number was about 3500, as shown in Figure 6d, where the range
accuracy was ∼6.1 cm, and the standard deviation was ∼6.4 cm. It can been seen that
the predicted cumulative numbers were increased by 7000 and 3500 extra accumulations,
respectively, over the thresholds. The possible reasons are that on the one hand, an estima-
tion error could be introduced by the crude method of estimating the Ns and Nn, and on
the other hand, the thresholds are also not precise values as they are the results of multiple
averaging, which cannot ensure that the accumulations reach the thresholds in all cases to
obtain the same ranging error. In consideration of the performance of the LiDAR sampling
time, when the photon-counting LiDAR system uses a laser with low repetition frequency
(kHz level), the increasing time cost for one realization of range detection is about several
seconds, which greatly reduces the real-time performance of the system. Fortunately, when
using a laser at MHz repetition frequency, the increasing time cost is reduced to about
several microseconds, which influences the real-time performance only a little. In addition,
the extra accumulations provide robustness to eliminate the influence of noise on range
measurement of remote targets in background noise. The proposed PSE prediction model
is reliable for estimating the number of cumulative pulses required for high-accuracy rang-
ing in high background noise for photon-counting LiDAR with a high repetition frequency.
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Therefore, the results in Figures 5 and 6 demonstrate that the PSE prediction model is
helpful to guide the quasioptimal real-time performance for photon-counting LiDARs
working in environments with background noise.

Figure 6. The experimental relationship between the range accuracy and the number of cumulative
laser pulses. (a,d) are the range accuracy and the standard deviation of the measured ranges when
the background noise rate is 7.6 MHz and 5.1 MHz, respectively; (b,c) are the range histograms under
the marked number of cumulative pulses in (a); (e,f) are the range histograms under the marked
number of cumulative pulses in (d). The marked cumulative numbers are the half and the whole of
the threshold cumulative number 0.5Kt and Kt, respectively, and the predicted cumulative number
Kd. The range histograms depict the distributions of the measured ranges, and the first bin and last
bin represent the interval <9.1 m and >9.4 m, respectively.

5. Conclusions

In conclusion, a PSE-based signal evaluation method was proposed to evaluate the
signal quality of the statistical detection for photon-counting LiDAR working in background
noise; then, a prediction model for estimating the number of cumulative laser pulses
required for high-accuracy ranging was established. First, the detection process of the
Gm-APD was developed as an information transmission model, and the PSE was defined
to quantitatively describe the eliminated uncertainty of the targets’ range after the echo
photons responded to evaluate the signal quality of the photon-counting LiDAR. Then,
referencing the PSE of the high-accuracy ranging under the zero noise condition, the number
of required cumulative laser pulses for targets’ ranging with background noise was
estimated. The simulation analysis showed that the proposed PSE was more sensitive
to describing the influence of the noise on the statistical detection, and the minimum
PSE reference was obtained under zero-noise conditions to ensure all range detections
in the background noise were close to the true range with a low and stable range error.
The experiments demonstrated that the prediction model provided a good estimation of
the number of required cumulative pulses in various noise conditions. When the signal
photons were less than 0.1 per pulse, the range accuracy of 4.1 cm and 5.3 cm were obtained
with the estimated number of cumulative pulses in the background noise of 7.6 MHz and
5.1 MHz, respectively. The extra accumulations for one realization of range detection under
the estimated number of cumulative pulses only costs several microseconds when using a
laser at MHz repetition frequency, but they provide robustness to eliminate the influence of
background noise. The PSE evaluation method and the prediction model have the potential
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to guide the selection of the cumulative number under a satisfactory range accuracy, which
is helpful to improve the real-time performance of photon-counting LiDAR and may be
applied in LiDAR system design and remote target ranging with background noise.
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