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Abstract: This paper shows that some commodity currencies (from Chile, Iceland, Norway, South
Africa, Australia, Canada, and New Zealand) predict the synchronization of metals and energy
commodities. This relationship links the present-value theory for exchange rates and its connection
with commodity export economies’ fundamentals, where prospective commodity price fluctuations
affect exchange rates. Predicting commodity market return synchronization is critical for dealing
with systemic risk, market efficiency, and financial stability since synchronization reduces the benefits
of diversification and increases the probability of contagion in financial markets during economic and
financial crises. Using network methods coupled with in-sample and out-of-sample econometrics
models, we find evidence that a fall in the return of commodity-currencies (dollar appreciation)
predicts an increase in commodity market synchronization and, consequently, in commodity market
systemic risk. This discovery is consistent with a transitive capacity phenomenon, suggesting that
commodity currencies have a predictive ability over commodities that extend beyond the commodity
bundle that a country produces. The latter behavior would be exacerbated by the high financialization
of commodities and strong co-movement of commodity markets. Our paper is part of a vigorously
growing literature that has recently measured and predicted systemic risk caused by synchronization,
combining a complex systems perspective and financial network analysis.

Keywords: commodity markets; returns synchronization; networks analysis; forecasting models;
commodity currencies

1. Introduction

Financial integration has recently increased due to significant economic openness
and extensive commercial integration among markets and countries. Capital markets
are not the exception since a broad interconnectedness coupled with significant size and
complexity transformed them into extensive complex systems. As a result, financial markets
become highly interconnected with cross-border links and interdependencies among their
constituencies, which easily amplify and transform economic, financial, or sanitary shocks
into global and comprehensive extended events [1–3].

In this new context, synchronization of the returns of financial assets becomes critical.
Synchronization impacts systemic risk and the aggregated behavior of capital markets,
making it a relevant factor in assessing the risk of financial contagion, the stability of
markets, and the cost and effectiveness of diversification as a tool for risk management.
The latest crisis episodes in the capital markets, such as the Subprime Crisis of 2007–8
and the COVID-19 outbreak in 2020, show that investors desperately seek risk-free assets.
Consequently, risk appetite fades, provoking the liquidity of risky assets to practically
disappear. Consequently, episodes of simultaneous and widespread declines in the prices
of financial assets in different markets and countries are easily observable during the high
synchronization of returns [4].

Entropy 2023, 25, 562. https://doi.org/10.3390/e25040562 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040562
https://doi.org/10.3390/e25040562
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1380-6938
https://doi.org/10.3390/e25040562
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040562?type=check_update&version=1


Entropy 2023, 25, 562 2 of 18

The literature has studied the synchronization phenomenon extensively. Works on
interconnectedness show its dual impact on systemic risk; on the one hand, it could improve
financial robustness when it contributes to absorbing shocks. However, on the other hand,
it could also generate contagion when shocks spread among the components of a financial
system. For example, evidence shows that during high-volatility stock market periods, the
correlation between stocks rises, increasing the synchronization of returns, threatening the
benefits generated by diversification, and lessening the financial system’s stability [5,6].

Understanding the synchronization of returns is highly relevant in financial markets
because, under episodes of contagion, market volatility spurs, changing the correlation
coefficients among financial assets [7]. Moreover, economic structural similarities between
the structure of national and regional economies, coupled with global factors, explain
markets’ co-movement, which eventually generates financial contagion on a large scale [8].
For example, at the stock market level, Lavin, Valle, and Magner [4] find that during global
equity synchronization episodes, regional stock markets react in the same direction as
global markets, but with different sensitivity to a shock that spurs global synchronization.

Synchronization behavior is not exclusive to equity or bond markets; there is also
rising interconnectedness in international commodity markets. After the global financial
crisis of 2008, there was a significant increase in connectedness risk in global commodity
markets, which depicts a growing interdependence among them [9]. This new scenario
of larger interconnectedness among commodities imposes new challenges on investors
mandated to manage portfolios that include commodities and policymakers required to
anticipate periods of extreme price instability [10]. Moreover, evidence indicates that
interconnections among capital markets vary over time, an uneven phenomenon among
countries and regions [11].

Commodity prices have experienced pronounced shifts over the last few years. The
literature notes that price dynamics have changed since 2000, particularly around the
2007–8 Global Financial Crisis. The growing path of cross-commodity correlations and
the correlation of commodity prices with the prices of other financial asset classes have
attracted greater interest. For example, Cheng and Xiong [9] found that correlations passed
from −0.2 to 0.2 in 2004 to a peak of 0.7 in 2008. Even across sectors, they document that
commodity prices have tended to move together as the same class since the 2000s. Similarly,
correlations of commodity prices with prices in other asset classes trended upward from
2004 to 2008, increasing significantly since 2008. These authors also point out that this latter
behavior is consistent with the notion that commodity prices have shared a typical boom
and bust cycle due to the growing financialization of commodity markets [9].

Evidence shows that commodities behave in a correlated way. For instance, Pincheira and
Hardy [12] found that copper correlates with aluminum, lead, nickel, tin, and zinc. They argue
that this phenomenon is because all these metals have industrial manufacturing uses and
global consumption. Additionally, all these commodities are traded daily on the London Metal
Exchange (LME), the New York Mercantile Exchange (NYMEX), and the Chicago Mercantile
Exchange (COMEX), where they are connected by commodities indexes and derivatives
contracts such as options and futures. These market connections and economic and financial
elements cause co-movement behavior and synchronization phenomenon [13].

Given the importance of exchange rates to future economic expectations, a large body
of literature assesses commodity currencies’ predictive ability. In a seminal paper, Chen,
Rogoff, and Rossi [14] observed that the currencies of five commodity-exporting economies
(Australia, Canada, Chile, New Zealand, and South Africa) can predict the prices of the
commodities they export. In particular, they built commodity indices based on their export
baskets. Chen, Rogoff, and Rossi [15] repeated the exercise with agricultural commodities,
finding quite a bit of predictability. These works show the pervasive relationship between
commodity currencies and their prospective ability on the price of commodities.

The economic mechanism that explains the predictive capacity of commodity cur-
rencies relates to the present value model for determining exchange rates [16,17]. This
literature, named the “Commodity Currency Hypothesis (CCH),” has attracted the at-



Entropy 2023, 25, 562 3 of 18

tention of practitioners and scholars worldwide. Gargano and Timmermann [18] found
evidence of CCH using the Australian dollar and the Indian rupee. According to Pincheira
and Hardy [12], the Chilean exchange rate can predict the return of aluminum, copper,
lead, nickel, tin, and zinc. The authors explain their results based on plausible explanations
that may rely on strong co-movement of commodity returns, which is a novel aspect of this
result. Chile only produces copper on this list, so it is reasonable to expect that it should
only be able to predict copper returns.

Similarly, Pincheira and Hardy [19] observed that six commodity currencies (Australia,
Canada, Chile, Iceland, New Zealand, and South Africa) can predict aluminum quite well,
even though some of these countries are not even aluminum producers or exporters. In
this way, Pincheira, Hardy, and Betancor [20] showed that the Chilean currency can predict
fuel prices, although Chile does not produce fuels. Altogether, these findings point to a
transitive capacity phenomenon, in which commodity currencies have the predictive ability
over commodities that extend beyond the commodity bundle that a country produces.

Predictive ability could go beyond the present value relationship derived from a lever-
age effect, a dollar effect, and the relationship between the currency and its fundamentals.
Groen and Pesenti [21] use ten alternative commodity indices to those of Chen Rogoff, and
Rossi [14], finding results that only partially support the CCH. Finally, Bork, Kaltwasser,
and Sercu [22,23] and Lof and Nyberg [22,23] use the same data as Chen Rogoff, and
Rossi [14] and give different arguments to support that there is no predictive relation-
ship. As these previous works show, there is still room for a deeper understanding of the
predictive capacity of commodity currencies on the behavior of commodity prices.

Moreover, to the best of our understanding, there is no evidence regarding the pre-
dictive abilities of these currencies on the synchronization behavior of global commodity
markets and, consequently, on their possible impact on the stability of commodity markets.
Accordingly, we contribute to closing a gap in the literature to gain a deeper understanding
and assessment of commodity markets’ behavior and impact in terms of their prices’ co-
movements. Because they are an essential component of the global economy, it is critical to
comprehend how risk reallocation and information transmission from commodity markets
due to synchronization shocks affect the real economy and global financial markets.

As a result, this study demonstrates commodity currency predictive ability on the
synchronization behavior of commodity market returns, considering base metals, precious
metals, and energy commodities. The network comprises the following commodities:
aluminum, copper, lead, nickel, tin, zinc, gold, platinum, silver, palladium, gasoline, wti,
brent, heating oil, and natural gas. For this, we used asset correlation network methods
(Minimum Spanning Tree Length, MSTL [24]) to measure commodity synchronization
and standard econometric forecasting models to test the predictive ability of commodity
currencies on commodity market synchronization.

We conjecture that this association is in line with the commodity currency hypothesis
(CCH), which points out that the currencies of highly exporting economies can anticipate
movements of certain commodity prices. As a base for the above, commodity currencies
are strongly forward-looking since they embody information about future movements in
the commodity markets that cannot easily be captured by simple time series models [25].

Our analysis covers two aspects: the relationship between the network of commodities
and commodities-currencies and their relationship over time. First, our findings agree
with [12,15,19,26], who reported a robust predictive ability of commodity currencies over
commodity returns. Second, our results are consistent with findings from Magner, Lavin,
Valle, and Hardy [27] and Lavin, Valle, and Magner [28], who pointed out that stock
networks tighten up in times of crisis during periods of lower returns and higher volatility.

Additionally, our out-of-sample tests reported some striking results for predictability.
Specifically, our models statistically outperformed the respective benchmarks in 42% of
the exercises. Moreover, Norway’s currency, for instance, outperformed most benchmark
models across all estimation window definitions, reaching significance in 20 of 21 exercises,
followed by models using Canada’s currency, which reached significance in 13 of 21 exercises,



Entropy 2023, 25, 562 4 of 18

and models using Australia’s currency, which achieved significance in 10 of 21 exercises.
Additionally, regarding the behavior of the stability of the previous relationships through time,
our results are consistent with previous literature (see [29]), indicating that the predictive ability
of financial assets seems to be unstable, with sharp swings in magnitude and significance
when considering different estimation/forecasting window periods.

Finally, we implemented a directional accuracy test to examine the accuracy of commod-
ity currencies in anticipating changes in direction of commodity market synchronization. All
of our exercises were statistically significant, with a 1% level. Furthermore, the average hit
rate was about 74%, which is in stark contrast to a “pure luck” 50% probability. Based on the
evidence above, our core models are effective instruments for forecasting commodity market
synchronization and, as a result, their financial behavior and stability performance.

Our work is important in several aspects. First, at the macroeconomic level, it allows
for predicting the synchronization behavior of the international commodity markets. It is
helpful for regulators in monitoring international risk contagion and its impact on financial
stability. The argument is that an increase in the probability of synchronization is directly
related to an increase in the risk of financial contagion threatening the financial stability of
both the financial and commodity markets.

Second, at the investor level, our work helps to anticipate commodity market synchro-
nization episodes using commodity currencies as input. This anticipation ability will allow
investors and market participants to adapt their portfolios to optimize diversification and
manage financial risk better.

Finally, our work contributes to the growing literature that, in recent years, measures
and studies systemic risk by applying complex system insights and financial network
analysis in conjunction with advanced forecasting time-series models. We contribute to a
better assessment of the impact of commodity markets.

Our results have practical implications for practitioners dealing with market synchro-
nization risk:

i. Synchronization is crucial for systemic risk and financial stability in economic and
financial crises. When synchronization in the financial market increases, it reduces
the benefits of diversification and increases the probability of contagion.

ii. As the benefits of international diversification diminish, risk management strategies based
on investing abroad and combining multiple financial asset classes with commodities
require a proper redesign to include this risk factor in the decision-making criteria.

iii. The emergence of synchronization risk imposes on global investors the task of properly
managing this element. Accordingly, global financial agents, such as investment
banks, pension funds, mutual funds, and hedge funds, must innovate and develop
new financial engineering products that properly help market participants manage
this risk.

iv. From a broad perspective, our results show the relevance of financial stability within
global markets. Well-functioning and stable capital markets are necessary to fulfil
the prominent roles of financial markets. Consequently, practioners and portfolio
managers ought to incorporate these new perspectives and insights to improve the
coordination of the markets before new global shocks again jeopardize the stability of
capital markets.

The paper is structured as follows: Section 2 reviews network methods. Section 3 discusses
the data, preliminary findings, and applied econometric methods. Section 4 presents the
empirical results. Finally, we concludes and extends the findings.

2. Materials and Methods
2.1. Data

We consider the daily closing prices of fifteen commodities (aluminum, copper, lead,
nickel, tin, zinc, gold, platinum, silver, palladium, gasoline, wti, brent, heating oil, and
natural gas) and seven exchange rates of strong commodity exporting economies (Chilean
peso, Icelandic krona, Norwegian krone, South-African rand, Australian dollar, Canadian
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dollar, and New Zealand dollar). Additionally, to control for implied volatility effects, we
used six implied volatility indices. Specifically, we used Oil 3M index volatility, Copper 3M
Index volatility, Gold 3M Index volatility, Aluminum 3M Index volatility, Silver 3M Index
Volatility, and CBOE VIX index. The commodity indices’ volatility is based on real-time
prices of options on oil, copper, gold, aluminum, and silver, respectively, and is designed to
reflect investors’ consensus view of future (3-months) expected commodity price volatility.
Similarly, the Cboe Volatility Index® (VIX®) is based on real-time prices of options on
the S&P 500® Index (SPX) and is designed to reflect investors’ consensus view of future
(30-day) expected stock market volatility. These volatility indices are often referred to as
the market’s “fear gauge”. We used closing prices to avoid any concern about spurious
autocorrelations induced by taking the averages of intra-day prices [19,22,30,31]. Finally,
following Magner et al. [32], we included implied volatility indices in our models as part of
the out of the sample analysis.

2.2. Network Method—The Minimum Spanning Tree Length (MSTL)

We measured commodity market synchronization using the minimum spanning tree
length (MSTL). Following the standard procedure described by [24,27,28,32–34], we calcu-
lated the correlations between commodities and built the asset trees based on commodity
returns. The closing commodities prices i at time date τ is Pi(τ). The return of commodity
i is given by ri(τ) = ln Pi(τ)− ln Pi(τ − 1), for a consecutive sequence of trading days. For
each commodity i daily returns are calculated within a time window of 1 month. Let be rt

i
the commodity returns vector of the month t, then:

ρt
ij =
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rt

ir
t
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〉
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〈
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ρt
ij is the correlation coefficient between the commodity i and j where 〈I〉 indicates

the average over all the trading days of the month t. In this way, a N × N symmetrical
matrix Ct of correlations between commodities (N is the number of commodities) with
values −1 ≤ ρij ≤ 1.

Then, we converted the correlations of Ct in distances dij = (2
(

1− ρij

)
)

1/2
to repre-

sent the distance between the commodity i and j. Thus, a correlation ρij = −1 indicates a
maximum distance of dij = 2, whilst ρij = 1 indicates a minimum distance of dij = 0.

The Minimum Spanning Tree (hereafter, MST) is a tree structure graph that connects
the N commodities through N− 1 edges avoiding loops and clicks, and where the path
to connect all the nodes (in this case commodities) is minimal. The MST was constructed
using the Prim algorithm [35]. In this way, MST reduces the information space of the entire
network by connecting all nodes with N(N− 1)/2 edges, to a tree with N− 1 edges. Finally,
we estimate the normalized length of the MST (MSTL) as:

L(t) =
1

N − 1 ∑dt
ij∈Tt dt

ij (2)

The sum of the edges of the resulting tree Tt calculated for each month t forms a
time series. The variation in the MSTL is calculated as ∆L(t) = ln L(t)− ln L(t− 1), which
allows us to work with a stationary time series. With this specification, we obtain a dynamic
commodities metal tree based on their correlations.

2.3. Forecasting Methods

We used two strategies to evaluate the forecasting power of commodity currencies
over commodity market synchronization. First, we implemented an in-sample test using
time series models (see Table 1 Panel A). Second, to avoid concerns about overfitting, we
implemented two out-of-sample tests comparing the benchmark models (Table 1 panel
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C) with our out-of-sample core models (Table 1 Panel B). Following [32], we built our
benchmark models considering autoregressive components of commodity market synchro-
nization and lags of six j implied volatility indices (Oil 3M index volatility, Copper 3M
Index volatility, Gold 3M Index volatility, Aluminum 3M Index volatility, Silver 3M Index
Volatility, CBOE VIX index). We include these indices as benchmark controls since previous
research [32] suggests that implied volatility can be used to predict return synchronization.
We employed this benchmark because, in forecasting, the AR(p) models are difficult to
beat [36,37], and previous evidence [27] suggests that return synchronization is strongly au-
tocorrelated and persistent, implying that the AR(p) benchmark model is more appropriate
than a random walk model.

Table 1. Main econometric models for both the core and benchmark models.

Panel A: In-the-sample core model
(3) ∆ln(MSTLt) = c + ∑3

n=1 βn∆ln(MSTLt−n) + δ∆Vol_Indexj, t−1 + γ ∑3
n=1 ∆ln(Pi, t−n) + εt

Panel B: out-of-sample core models
(4) ∆ln(MSTLt) = c + ∑3

n=1 βn∆ln(MSTLt−n) + γ∆ln(Pi, t−1) + εt
(5) ∆ln(MSTLt) = c + ∑3

n=1 βn∆ln(MSTLt−n) + +δ∆Vol_Indexj,t−1 + γ∆ln(Pi, t−1) + εt

Panel C: Out-of-sample benchmark models
(6) ∆ln(MSTLt) = c + ∑3

n=1 βn∆ln(MSTLt−n) + εt
(7) ∆ln(MSTLt) = c + ∑3

n=1 βn∆ln(MSTLt−n) + δ∆Vol_Indexj,t−1 + εt

Source: authors’ elaboration.

In Table 1, ∆MSTLt is the log-difference of commodity market synchronization at time
t and we considered three lags of ∆MSTLt as benchmark controls. Pi,t is the exchange rate
price of the economy i at time t. Finally, εt are error terms. The number of lags considered
in our econometrics models (see Table 1) is not economically based but purely empirical.

Table 2 exhibits the correlogram for MSTL and a cross-correlation analysis between
MSTL and commodity currencies; as expected, the correlation (in absolute value) rapidly
decays with a greater lag. For instance, Table 2 column 2 shows that partial autocorrelation
(PAC) is surprisingly high: −0.401. Moreover, the PAC in the second and third lags is
−0.142 and 0.053, respectively. Table 2, columns 3–9, suggests a similar result: the cross-
correlations between MSTL and each commodity currency rapidly decay with longer lags.
Specifically, we chose the first lag of the commodity currencies to simplify our econometrics
models, especially for our out-of-sample test.

As mentioned, our purpose was to evaluate the predictive ability of commodity
currencies over commodity market synchronization measured by the MSTL. Using the
in-the-sample core model (see Table 1 Panel A), we test the null hypothesis Ho : γ = 0
through a simple t-statistic. This null hypothesis posits that commodity currencies do
not have predictive ability over commodity synchronization. We use log returns because
financial prices are unit-root processes, and their first differences (log returns) are covariance
stationary. In this sense, we require a proper estimation of the long-run variance to apply
the central limit theorem; for this reason, we use HAC standard errors. In particular, Newey
and West [38] proposed a Barlett kernel to ensure a positive definite variance matrix, and
Newey and West [39] considered automatic selection for the lag truncator parameter.

For out-of-sample evaluations, we compare the predictive performance of our out-
the-sample core model (see Table 1 Panel B) against our benchmark models (see Table 1
Panel C). The null hypothesis Ho : γ = 0 indicates that our model reduces to an AR(p). We
split our sample into two windows: an estimation window (of size R), and an evaluation
window (of size P); of course, T = P + R, where T is the total number of observations. We
considered three completely different window sizes to avoid any concerns about overfitting.
Rossi and Inoue [40] explained that the results from only one ad hoc window size may still
be highly controversial because predictability may be confined to one particular sub-sample
and hence not robust to different window sizes. In the first evaluation, we used P/R = 0.2,
which was equivalent to estimating our model with 170 observations, and compared
the prediction with benchmark models with 34 observations. In the second exercise, we
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used P/R = 0.4, which employed 145 observations to the out-of-sample core model, and
59 observations to evaluate its forecasting power with respect to benchmark models. In
the final window, we used P/R = 0.6, which was equivalent to estimating our model with
128 observations and comparing the prediction with benchmark models with 76 observations.

Table 2. Correlogram and cross-correlation analyses.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lag MSTL Chilean

Peso
Icelandic

Krona
Norwegian

Krone
South African

Rand
Australian

Dollar
Canadian

Dollar
New Zealand

Dollar

Panel A: Ret(−1)

0 −0.009 −0.014 −0.106 −0.129 −0.130 −0.137 −0.093
1 −0.401 0.096 0.133 0.248 0.175 0.233 0.196 0.222
2 −0.142 0.034 −0.090 −0.060 0.063 −0.050 −0.045 −0.105
3 0.053 −0.031 0.075 −0.007 −0.018 0.001 0.019 −0.013
4 0.067 0.032 −0.009 0.028 0.039 0.048 −0.050 0.025
5 −0.050 0.008 0.006 −0.020 −0.029 −0.026 0.064 0.047
6 −0.039 0.029 0.046 0.013 0.017 0.040 0.039 0.005
7 0.062 −0.005 −0.179 −0.036 −0.017 −0.032 −0.068 −0.042
8 −0.118 0.060 0.113 0.071 0.019 0.037 0.020 0.053
9 0.071 −0.141 0.028 −0.089 −0.094 −0.077 −0.015 −0.063
10 0.063 −0.023 −0.026 −0.065 0.037 −0.025 −0.023 −0.036
11 −0.045 0.061 −0.020 0.104 0.030 0.066 0.005 0.103
12 −0.028 −0.047 −0.006 −0.056 −0.018 −0.068 −0.015 −0.182

Panel B: Ret(−1)+Ret(−2)+Ret(−3)

0 0.055 0.066 0.109 0.125 0.108 0.102 0.064
1 −0.401 0.019 −0.012 −0.021 0.047 −0.001 −0.049 −0.058
2 −0.142 0.004 0.040 0.002 −0.005 0.015 0.019 0.036
3 0.053 0.042 0.023 0.012 0.015 0.035 0.031 0.049
4 0.067 0.015 −0.067 −0.023 −0.021 −0.011 0.019 0.006
5 −0.050 0.048 −0.009 0.030 0.008 0.026 −0.007 0.010
6 −0.039 −0.051 −0.021 −0.032 −0.049 −0.039 −0.036 −0.035
7 0.062 −0.055 0.058 −0.054 −0.019 −0.041 −0.009 −0.027
8 −0.118 −0.064 −0.009 −0.029 −0.015 −0.019 −0.019 0.001
9 0.071 −0.002 −0.030 −0.012 0.029 −0.017 −0.020 −0.071
10 0.063 0.022 −0.005 0.055 0.002 0.026 0.042 −0.010
11 −0.045 −0.020 0.027 0.003 0.035 0.045 0.034 0.039
12 −0.028 0.009 0.004 −0.003 0.003 0.014 −0.007 0.081

Note: Column 2 shows partial autocorrelations of MSTL. Columns 3–9 show the Pearson correlation coefficients
between the contemporaneous MSTL and the lags of each commodity currency. Source: Authors’ elaboration.

2.4. Out-of-Sample Test

To evaluate the difference between our models in the context of nested models, we
used the ENCNEW test proposed by Clark and McCracken [41]. Additionally, following
Pincheira and Neumann [42], we implemented a mean directional accuracy test to assess
the accuracy of commodity currencies in anticipating the direction change in commodity
market synchronization. Since the results of the Wild Clark West test proposed by Pincheira,
Hardy, and Muñoz [43] and the ENCt test proposed by Clark and McCracken [41] reached
conclusions similar to those of the ENCNEW test, we decided not to report the results of
these tests. They can be obtained upon request.

2.4.1. Encompassing Test ENCNEW

For out-of-sample evaluations with nested models, we used the Clark and McCracken
ENCNEW test [41]. According to these authors, the asymptotic distribution of nested models
is generally non-standard, but the functionals of quadratic Brownian motions depend on
how parameters are updated (rolling, recursive, or fixed), the number of excess parameters
in the large nesting model, and the P/R limit (where P is the number of observations in the
prediction window, and R the number of observations in the estimation window [41,44]:

ENCNEW = P
P−1 ∑T−1

t=R ê1,t+1(ê1,t+1 − ê2,t+1)

P−1 ∑T−1
t=R ê2

2,t+1

(8)
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where ê1 is the forecasting error of the benchmark model, ê2 is the forecasting error of
our proposed model and λ is equal to the limit of R/T, when R and T go to infinity. The
asymptotic distribution of the ENCNEW under the null of no predictability was:

ENCNEW P,R→∞→ λ−1
∫ 1

λ
{W(s)−W(s− λ)}′dW(s), (Rolling) (9)

Clark and McCracken [41] simulated these integrals of quadratic brownian motions
and establish the relevant critical values for different numbers of excess parameters (in our
case, k2 = 1), different schemes to estimate our parameters (in our case, one parameter),
and different divisions of the database (in our case P/R = 1, 2, and 4). These critical values
can be found in their paper.

2.4.2. Mean Directional Accuracy

In this analysis, we examined the accuracy of commodity currencies in anticipating
the direction change of commodity market synchronization. In the literature on forecasting,
this type of analysis is also frequently used; for example, see [42,45].

Using a test based on the average of the following variable Wt, we examine the accuracy
of our forecasts in estimating whether commodities market synchronization would rise or
decrease in the forthcoming month:

Wt =

{
1
0

i f (∆ln(MSTLt))( ft−1) > 0
(∆ln(MSTLt))( ft−1) ≤ 0

(10)

where ft−1 represents a generic forecast for the one-period change of commodity mar-
ket synchronization ∆ln(MSTLt). Our variable computes a “hit” whenever signals an
equivalent movement in ∆ln(MSTLt).

3. Empirical Findings and Discussion
3.1. Descriptive Analysis

In this section, we show a description of our main variables of interest during the
period of analysis, namely the MSTL network, MSTL evolution, currencies evolution,
commodities evolution, and the temporal association between MSTL and currencies.

3.1.1. Minimum Spanning Tree and Commodity Market Synchronization

We perform a brief comparison of the MSTL networks that comprise base metals,
precious metals, and energy commodities during three different periods (See Figure 1);
namely, during the Great Financial Crisis or Subprime Crisis (October 2008), during the
aftermath of the Subprime Crisis (May 2009), and finally, during the COVID-19 outbreak
(February 2020). Our evidence shows that the shapes of the networks change over time.
These findings indicate that the synchronization behavior of the network of our sample
of commodities is time dynamic and captures the market conditions present in financial
markets in those episodes.
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dynamic over time, with clear cycles and pathways reaching maximum levels near De-

cember 2019 and minimum levels near December 2009. Regarding the monthly variation 

of the MSTL, we appreciate mild periods of change combined with high fluctuations that 

broadly range from +30% to −30% monthly. In addition, in terms of the volatility of the 

monthly variations, the data show two broad periods. The first, with high oscillations near 

the Great Financial Crisis of 2008–09 and its aftermath, and the second period, with lower 

volatility variations in the years after. 

Figure 1. Commodities Minimum Spanning Trees (MST). These figures depict the networks formed
by base metals, precious metals, and energy commodities in three different periods of time. The green
figure shows the MST in the Subprime Crisis (October 2008), the yellow figure shows the resulting
MST in a low volatility period (May 2009), and the gray figure shows the MST during the COVID-19
outbreak (February 2020).

3.1.2. Dynamic Behavior of Commodity Market Synchronization

We analyzed the time evolution of commodity market synchronization. Figure 2
exhibits the monthly evolution and the monthly variation of the minimum spanning
tree length (MSTL) for the total commodities of our sample for the period October 2005–
November 2022. In terms of the behavior of the MSTL, we observe that the time series
is dynamic over time, with clear cycles and pathways reaching maximum levels near
December 2019 and minimum levels near December 2009. Regarding the monthly variation
of the MSTL, we appreciate mild periods of change combined with high fluctuations that
broadly range from +30% to −30% monthly. In addition, in terms of the volatility of the
monthly variations, the data show two broad periods. The first, with high oscillations near
the Great Financial Crisis of 2008–09 and its aftermath, and the second period, with lower
volatility variations in the years after.

Entropy 2023, 25, x FOR PEER REVIEW 11 of 20 
 

 

resulting MST in a low volatility period (May 2009), and the gray figure shows the MST during the 

COVID-19 outbreak (February 2020). 

3.1.2. Dynamic Behavior of Commodity Market Synchronization 

We analyzed the time evolution of commodity market synchronization. Figure 2 ex-

hibits the monthly evolution and the monthly variation of the minimum spanning tree 

length (MSTL) for the total commodities of our sample for the period October 2005–No-

vember 2022. In terms of the behavior of the MSTL, we observe that the time series is 

dynamic over time, with clear cycles and pathways reaching maximum levels near De-

cember 2019 and minimum levels near December 2009. Regarding the monthly variation 

of the MSTL, we appreciate mild periods of change combined with high fluctuations that 

broadly range from +30% to −30% monthly. In addition, in terms of the volatility of the 

monthly variations, the data show two broad periods. The first, with high oscillations near 

the Great Financial Crisis of 2008–09 and its aftermath, and the second period, with lower 

volatility variations in the years after. 

 

Figure 2. Minimum spanning tree length (MSTL). This figure represents the evolution and variation 

of the minimum spanning tree length for the sample of commodities for the period Oct2005–

Nov2022. 

3.1.3. Commodity Currencies and Commodity Market Synchronization 

We studied the time association among commodity currencies and the synchroniza-

tion of our sample of commodities. Figure 3 depicts a heat map with correlations between 

the return of commodity currencies and the variation of the MSTL formed by the sample 

of base metals, precious metals, and energy commodities for October 2005 and November 

2022. The black (khaki) color represents the period’s minimum (maximum) values. We 

can observe the following: 

(a) There was a positive correlation among the sample of currencies, indicating that they 

tended to move in the same direction during the analysis period. 

(b) There was a wide range of correlations among the currencies for the period 2005–

2022, with a maximum level equal to 0.85 and a minimum equal to 0.34, indicating 

heterogeneous reactions to market conditions among the baskets of currencies. 

(c) The correlation between the variation in the MSTL that groups the sample of com-

modities and the currencies was negative, suggesting the existence of a negative re-

lationship between the synchronization of the commodities and the variations of the 

currencies against the USD. 

Figure 2. Minimum spanning tree length (MSTL). This figure represents the evolution and variation
of the minimum spanning tree length for the sample of commodities for the period Oct2005–Nov2022.



Entropy 2023, 25, 562 11 of 18

3.1.3. Commodity Currencies and Commodity Market Synchronization

We studied the time association among commodity currencies and the synchronization
of our sample of commodities. Figure 3 depicts a heat map with correlations between the
return of commodity currencies and the variation of the MSTL formed by the sample of
base metals, precious metals, and energy commodities for October 2005 and November
2022. The black (khaki) color represents the period’s minimum (maximum) values. We can
observe the following:

(a) There was a positive correlation among the sample of currencies, indicating that they
tended to move in the same direction during the analysis period.

(b) There was a wide range of correlations among the currencies for the period 2005–2022, with
a maximum level equal to 0.85 and a minimum equal to 0.34, indicating heterogeneous
reactions to market conditions among the baskets of currencies.

(c) The correlation between the variation in the MSTL that groups the sample of com-
modities and the currencies was negative, suggesting the existence of a negative
relationship between the synchronization of the commodities and the variations of
the currencies against the USD.
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Figure 3. Correlation heatmap. This figure shows the resulting heatmap correlation among the sample
of commodity currencies and the MSTL formed by the sample of base metals, precious metals, and
energy commodities for the period October 2005 and November 2022. Source: Authors’ elaboration.

Finally, complementing the above evidence, Figures 4 and 5 exhibit the monthly varia-
tions in the returns of the sample of commodities and commodities-currencies for October
2005 and November 2022. Again, the black (khaki) color represents the period’s minimum
(maximum) values. As Figure 4 shows, for the case of commodities, the returns change
widely over time, with monthly variations in the range of −25% and +15%. Interestingly,
the highly negative values coincide with the 2008–9 Great Financial Crisis and the 2020
COVID-19 Outbreak, periods characterized by extreme swings in the financial markets and
high levels of uncertainty. Similarly, as Figure 5 depicts, there are significant variations



Entropy 2023, 25, 562 12 of 18

for the commodity currencies, but different from commodities, their behavior shows less
monthly variations, in the range of −5% and +15%.
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Our preliminary evidence indicates that commodity synchronization is dynamic over
time; it is negatively related to commodity currencies and tends to coincide with market
turmoil periods observed in financial markets during episodes such as the Great Financial
Crisis and the Outbreak of the COVID-19 pandemic.

3.2. In-Sample Analysis

Table 3 shows the in-sample baseline results based on the econometric specification
from panel A in Table 1. The constant and beta from the autoregressive components were
omitted from the report to preserve space, but they are still available upon request. The
results provide substantial evidence that a rise in the return of commodity currencies
predicts a decline in commodity market synchronization. The dependent variable is the
MSTL, and the higher it is, the less synchronized the commodity market is.

In 86% of the exercises, all of the currency return coefficients were positive and
significant, ranging from 0.136 to 0.409, with an average of 0.26, implying a robust negative
association between commodity currency return and commodity market synchronization.
The currencies of Chile, Australia, Canada, Norway, and South Africa always do well with
this association, whereas New Zealand and Iceland currencies have a less strong association.
These findings are consistent with multiple previous studies that have revealed commodity
currencies’ predictability [12,15,18,20,26,46].
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Table 3. Forecasting commodity market synchronization with commodity currencies: in-sample analysis.

Australia Canada Chile Iceland Norway New Zealand South Africa

ER(−1) + ER(−2) + ER(−3) 0.233 *** 0.344 * 0.189 ** 0.156 *** 0.233 ** 0.174 0.190 *
(0.085) (0.184) (0.073) (0.057) (0.126) (0.130) (0.107)

IVOL Aluminum (−1) −0.045 ** −0.046 ** −0.042 ** −0.042 ** −0.043 −0.044 ** −0.045 **
(0.018) (0.019) (0.017) (0.018) (0.018) (0.017) (0.018)

Obs 189 189 189 189 189 189 189
R2 0.356 0.357 0.349 0.349 0.356 0.348 0.355

ER(−1) + ER(−2) + ER(−3) 0.277 *** 0.409 ** 0.236 *** 0.130 0.297 ** 0.161 0.262 **
(0.103) (0.174) (0.078) (0.084) (0.117) (0.147) (0.103)

IVOL Cooper (−1) −0.124 *** −0.118 *** −0.112 *** −0.107 ** −0.115 −0.110 ** −0.120 ***
(0.045) (0.041) (0.041) (0.042) (0.042) (0.045) (0.045)

Obs 202 202 202 202 202 202 202
R2 0.346 0.347 0.338 0.331 0.347 0.331 0.353

ER(−1) + ER(−2) + ER(−3) 0.214 ** 0.337 ** 0.186 *** 0.090 0.255 ** 0.102 0.223 **
(0.090) (0.169) (0.071) (0.095) (0.116) (0.151) (0.095)

IVOL Crude Oil (−1) −0.004 ** −0.003 0.001 0.007 −0.006 0.003 −0.003
(0.031) (0.029) (0.031) (0.032) (0.032) (0.034) (0.031)

Obs 202 202 202 202 202 202 202
R2 0.324 0.326 0.319 0.314 0.327 0.313 0.332

ER(−1) + ER(−2) + ER(−3) 0.293 0.396 ** 0.231 *** 0.136 * 0.301 ** 0.171 0.262 ***
(0.085) (0.164) (0.070) (0.081) (0.117) (0.130) (0.099)

IVOL Gold (−1) −0.180 *** −0.165 *** −0.161 *** −0.161 *** −0.167 *** −0.165 *** −0.170 ***
(0.054) (0.057) (0.057) (0.059) (0.057) (0.052) (0.057)

Obs 202 202 202 202 202 202 202
R2 0.362 0.36 0.352 0.345 0.362 0.346 0.367

ER(−1) + ER(−2) + ER(−3) 0.303 *** 0.393 ** 0.218 *** 0.135 0.302 ** 0.179 0.256 **
(0.101) (0.178) (0.074) (0.086) (0.121) (0.139) (0.104)

IVOL Silver (−1) −0.186 *** −0.166 *** −0.159 *** −0.162 *** −0.169 *** −0.169 ** −0.168 ***
(0.055) (0.050) (0.050) (0.051) (0.053) (0.050) (0.049)

Obs 202 202 202 202 202 202 202
R2 0.365 0.336 0.351 0.346 0.362 0.347 0.367

ER(−1) + ER(−2) + ER(−3) 0.236 ** 0.351 ** 0.206 *** 0.098 0.267 ** 0.115 0.232 **
(0.096) (0.175) (0.072) (0.090) (0.122) (0.146) (0.100)

VIX(−1) −0.031 −0.024 −0.026 −0.019 −0.027 −0.020 −0.026
(0.030) (0.029) (0.029) (0.028) (0.030) (0.029) (0.029)

Obs 202 202 202 202 202 202 202
R2 0.327 0.329 0.322 0.315 0.33 0.315 0.334

ER(−1) + ER(−2) + ER(−3) 0.211 *** 0.334 ** 0.187 *** 0.092 0.251 ** 0.104 0.222 **
(0.088) (0.166) (0.070) (0.091) (0.114) (0.141) (0.095)

Obs 202 202 202 202 202 202 202
R2 0.324 0.326 0.319 0.313 0.327 0.313 0.332

Note: ER(−1) + ER(−2) + ER(−3) is the cumulative return of the one trimester lag of each commodity currency.
The table exhibits estimations of equation presented in Table 1 panel A, with HAC estimators of the long-run
variance according to [38,39]. We do not report the constant terms and lags of MSTL for space. Standard deviation
is in parentheses. * p < 10%, ** p < 5%, *** p < 1%. Source: Authors’ elaboration.

Additionally, using the present-value model, Campbell and Shiller [16] explained how
exchange rates are determined. Notably, commodities are essential building blocks for these
economies, so the causal relationship is expected to go in the direction of commodity prices,
dictating the nation’s exchange rate. Nevertheless, the present-value model implies that
Granger causality goes the other way, with the country’s currencies forecasting commodity
prices, which many studies have empirically supported [12,20,31,46].

Interestingly, even though these countries do not produce all commodities that com-
prise the synchronization network, we still find that most commodity currencies predict
commodity market synchronization. It is noteworthy that all these commodities find
widespread use in industry, making it reasonable to assume that their demand will grow as
global manufacturing expands. Moreover, they are traded daily and connected through a
complex web of trade indices and future contracts.

The main component of Chile’s commodity export bundle, for instance, is copper,
which accounts for more than half of the country’s exports and close to 45% of FDI, causing
swings in the copper price to influence Chilean peso [12]. Moreover, copper is only 1
of 18 commodities considered in our synchronization bundle, accounting for 5.6% of the
commodities used. Nevertheless, our findings demonstrate that Chilean currency can
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strongly forecast the synchronization of the commodity markets, with the majority of the
coefficients significant at 5%.

Our results support a cutting-edge line of research into the extended and broader
predictability of commodity currencies and build on earlier findings that some country-
specific exchange rates can forecast price fluctuations in their own country’s export bundle
of commodities [14–16]. Based on this same conjecture, some novel empirical evidence
has shown that the exchange rate of nations that are not producers of fuel and some base
metals can still be used to forecast the price of these commodities [12].

Evidence from Pincheira and Hardy [12], Pincheira and Hardy [19], and Pincheira,
Hardy, and Betancor [20] point to a transitive capacity phenomenon, in which they found that
commodity-currencies have a predictive ability over commodity return that extends beyond
the commodity bundle that a country produces [12]. Furthermore, our results demonstrate that
this predictive ability of commodity currencies can extend to commodity market synchroniza-
tion, which is very plausible given that commodity prices exhibit strong co-movement [47,48].

Other empirical features of Table 3 merit discussion. As Magner et al. [27] predicted, the
MSTL exhibits high persistency; the first three lag delays are statistically significant in all cases
at the 1% significance level (to keep things simple, we left these results unreported, but they
are available upon request). Next, despite these being predictive relationships, the R2 ranged
from 0.33 to 0.367, with an average of 0.326. This finding is significantly higher than what is
typically reported in the literature on commodity price prediction. Finally, commodity VIX
volatility indices delivered mediocre results, with only 36% of the exercises yielding significant
results. However, all significant coefficients are negative, implying that higher idiosyncratic
volatility predicts periods of higher commodity market synchronization.

3.3. Out-of-Sample Analysis

This section presents two out-of-sample tests: ENCNEW (Table 4) and Mean Direc-
tional Accuracy Out-of-Sample Analysis (Table 5).

Table 4. Forecasting commodity market synchronization with commodities-currencies: Out-of-
sample analysis with the ENCNEW test.

ENCNEW Australia Canada Chile Iceland Norway New Zealand South Africa

P/R: 0.2

AR(3) + IVOLAluminum(−1) 0.261 0.857 ** 0.365 −0.025 1.276 ** 0.233 0.287
AR(3) + IVOLCCop(−1) 0.563 * 1.275 ** 0.822 ** 0.100 1.926 *** 0.465 0.720 *

AR(3) + IVOLCrudOil(−1) 0.303 0.900 ** 0.344 −0.012 1.340 ** 0.274 0.291
AR(3) + IVOLGold(−1) 0.653 * 1.294 ** 0.685 * 0.178 2.006 *** 0.565 * 0.969 **
AR(3) + IVOLSilver(−1) −0.490 0.752 ** 0.233 −0.300 0.959 ** −0.107 0.438

AR(3) + VIX(−1) 0.443 0.932 ** 0.574 * 0.026 1.501 *** 0.289 0.435
AR(3) 0.144 0.743 * 0.320 −0.019 1.194 ** 0.176 0.254

P/R: 0.4
AR(3) + IVOLAluminum(−1) 0.992 * 0.982 0.795 0.104 1.656 0.492 1.695

AR(3) + IVOLCCop(−1) 1.658 ** 1.427 ** 1.332 ** 0.363 2.432 ** 0.959 2.293 ***
AR(3) + IVOLCrudOil(−1) 0.892 * 0.865 * 0.676 0.039 1.585 ** 0.405 1.431 **

AR(3) + IVOLGold(−1) 1.472 ** 1.210 ** 1.155 ** 0.386 2.272 *** 0.882 2.352 ***
AR(3) + IVOLSilver(−1) 0.737 * 0.781 * 0.653 0.104 1.650 ** 0.504 1.935 **

AR(3) + VIX(−1) 1.153 ** 0.997 * 0.947 * 0.120 1.812 ** 0.505 1.682 **
AR(3) 0.923 * 0.896 * 0.744 * 0.091 1.634 ** 0.424 1.541 **

P/R: 0.6
AR(3) + IVOLAluminum(−1) 0.538 0.475 0.433 −0.165 1.062 * 0.209 0.761

AR(3) + IVOLCCop(−1) 0.385 0.274 0.316 −0.291 1.146 * 0.158 0.368
AR(3) + IVOLCrudOil(−1) 0.385 0.333 0.310 −0.259 0.930 * 0.072 0.449

AR(3) + IVOLGold(−1) 0.650 0.379 0.612 0.056 1.299 * 0.215 1.243 *
AR(3) + IVOLSilver(−1) −0.215 0.089 0.122 −0.357 0.818 * −0.308 0.811 *

AR(3) + VIX(−1) 1.024 * 0.726 0.784 −0.101 1.507 ** 0.298 1.006 *
AR(3) 0.523 0.459 0.416 −0.201 1.092 * 0.149 0.642

Notes: Each entry reports the EncNew statistic with a recursive schem. The null hypothesis evaluated by the
ENCNEW test posits that γ from Equations (4) and (5) in Table 1 Panel B is equal to zero. Then, a rejection of
the null hypothesis means that the currency is improving the forecasting accuracy of the model compared to its
benchmark. This table compares the predictive ability of our out-of-sample core models (see Table 1 Panel B) with
the predictive ability of the benchmark models (see Table 1 panel C). We report three estimation windows with
the following critical values: P/R: 0.2 used critical values 0.473, 0.744, and 1.397 for p < 10%, p < 5%, and p < 1%,
respectively. P/R: 0.4 used critical values 0.685, 1.079, and 2.098 for p < 10%, p < 5%, and p < 1%, respectively. P/R:
0.6 used critical values 0.791, 1.312, and 2.662 for p < 10%, p < 5%, and p < 1%, respectively. * p < 10%, ** p < 5%,
*** p < 1%. Source: Authors’ elaboration.
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Table 5. Mean Directional Accuracy when Forecasting commodity market synchronization with
commodity currencies.

Hit Rate Australia Canada Chile Iceland Norway New Zealand South Africa

P/R: 0.2
AR(3) + IVOLAluminum(−1) 0.765 *** 0.794 *** 0.765 *** 0.735 *** 0.765 *** 0.735 *** 0.794 ***

AR(3) + IVOLCCop(−1) 0.765 *** 0.794 *** 0.735 *** 0.735 *** 0.824 *** 0.765 *** 0.794 ***
AR(3) + IVOLCrudOil(−1) 0.765 *** 0.794 *** 0.765 *** 0.765 *** 0.794 *** 0.765 *** 0.794 ***

AR(3) + IVOLGold(−1) 0.765 *** 0.765 *** 0.765 *** 0.735 *** 0.794 *** 0.765 *** 0.794 ***
AR(3) + IVOLSilver(−1) 0.765 *** 0.765 *** 0.735 *** 0.706 *** 0.765 *** 0.765 *** 0.735 ***

AR(3) + VIX(−1) 0.794 *** 0.824 *** 0.765 *** 0.765 *** 0.824 *** 0.765 *** 0.794 ***
AR(3) 0.794 *** 0.794 *** 0.794 *** 0.765 *** 0.794 *** 0.765 *** 0.794 ***

P/R: 0.4
AR(3) + IVOLAluminum(−1) 0.746 *** 0.746 *** 0.746 *** 0.729 *** 0.729 *** 0.729 *** 0.712 ***

AR(3) + IVOLCCop(−1) 0.763 *** 0.729 *** 0.712 *** 0.695 *** 0.780 *** 0.746 *** 0.746 ***
AR(3) + IVOLCrudOil(−1) 0.729 *** 0.763 *** 0.746 *** 0.746 *** 0.763 *** 0.712 *** 0.763 ***

AR(3) + IVOLGold(−1) 0.695 *** 0.729 *** 0.712 *** 0.695 *** 0.763 *** 0.695 *** 0.729 ***
AR(3) + IVOLSilver(−1) 0.712 *** 0.712 *** 0.678 *** 0.695 *** 0.729 *** 0.712 *** 0.729 ***

AR(3) + VIX(−1) 0.746 *** 0.746 *** 0.763 *** 0.729 *** 0.780 *** 0.746 *** 0.763 ***
AR(3) 0.746 *** 0.763 *** 0.746 *** 0.729 *** 0.746 *** 0.729 *** 0.763 ***

P/R: 0.6
AR(3) + IVOLAluminum(−1) 0.711 *** 0.684 *** 0.711 *** 0.697 *** 0.697 *** 0.697 *** 0.697 ***

AR(3) + IVOLCCop(−1) 0.697 *** 0.658 *** 0.658 *** 0.658 *** 0.724 *** 0.684 *** 0.711 ***
AR(3) + IVOLCrudOil(−1) 0.697 *** 0.697 *** 0.711 *** 0.724 *** 0.724 *** 0.697 *** 0.737 ***

AR(3) + IVOLGold(−1) 0.658 *** 0.697 *** 0.671 *** 0.671 *** 0.711 *** 0.658 *** 0.697 ***
AR(3) + IVOLSilver(−1) 0.684 *** 0.671 *** 0.658 *** 0.684 *** 0.697 *** 0.684 *** 0.711 ***

AR(3) + VIX(−1) 0.711 *** 0.684 *** 0.724 *** 0.711 *** 0.724 *** 0.724 *** 0.737 ***
AR(3) 0.711 *** 0.697 *** 0.711 *** 0.711 *** 0.711 *** 0.711 *** 0.737 ***

Each entry in this table indicates the rate at which our core models correctly forecast the sign of commodity market
synchronization changes. To determine statistical significance, we used the t-test of [49,50] against a 50% pure
luck benchmark. The HAC standard errors were used and defined based on [38,39]. The star signals represent
one-tail significance levels based on the following critical values: 1.28, 1.645, and 2.33 for p < 10%, p < 5%, and
p < 1%, respectively. *** p < 1%. Source: Authors’ elaboration.

The in-sample results in Table 3 suggest that a higher commodity currency return can
predict a decline in commodity market synchronization. However, Rossi and Inoue [40]
criticized in-sample studies for possible data mining and overfitting issues. As a result, we
conducted out-of-sample exercises to determine whether these conclusions were held in an
out-of-sample scenario.

For out-of-sample evaluations, we compare the predictive performance of our out-of-
sample core models (see Table 1 Panel B) against the out-of-sample benchmark models (see
Table 1 Panel C). The null hypothesis Ho : γ = 0 indicates that our model reduces to an
AR(p), as depicted in Equation (4) (Table 1 Panel B), or to an AR(p) nested and controlled
by implied indices of market volatility (Equation (5) of Table 1, in Panel B). We divided our
sample into two windows: estimation (size R) and evaluation (size P); of course, T = P + R,
where T is the total number of observations. According to Rossi and Inoue [40], the results
from only one ad hoc window size may still be highly controversial because predictability
may be confined to one sub-sample and therefore not robust to different window sizes.
Therefore, to avoid any concerns about overfitting, we considered three completely different
window sizes (P/R = 0.2, 0.4, and 0.6, which correspond to estimating our model with 83%,
71%, and 62% of the sample observations, respectively).

Table 4 reports the results from the ENCNEW test to evaluate the prediction ability
of the core models (Table 1 panel B) compared to the benchmark models (Table 1 panel C).
Consistent with the in-sample analysis, the core models outperformed the benchmark
in 42% of the exercises. For instance, models using Norway’s currency outperformed
most benchmark models across all estimation windows, reaching significance in 20 of
21 exercises, followed by models using Canada’s currency, which reached significance in 13
of 21 exercises, and models using Australia’s currency, which reached significance in 10 of
21 exercises. On the other hand, models employing Icelandic currency failed to outperform
even a single benchmark model across all estimate window set specifications.

The results point to more significant null hypothesis rejections when considering the
models with the largest estimation window. The estimation window set of P/R = 0.4
yielded the most significant results, with significance found in approximately 59% of the
exercises, followed by the estimation window set of P/R = 0.2, with significance found
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in approximately 45% of the exercises, and finally, with the estimation window set of
P/R = 0.6, yielding only 22% of significant results across all the exercises.

Mean Directional Accuracy

Table 5 shows the success hit rate, or Mean Directional Accuracy (DA), of predictions
made using the core models (Equations (4) and (5) of Table 1, panel B). To assess statistical
significance, we calculated the hit rate as a simple average of Wt, where we compare the
null hypothesis is H0 : E(Wt) ≤ 0.5 against the alternative hypothesis H1 : E(Wt) > 0.5.
To compare the results to a “pure luck” benchmark, we evaluated these hypotheses using
the Diebold and Mariano [49] and West [50] test statistic (DMW t-stat). Rejecting the null
hypothesis means that our models have a higher success rate than a 50% “pure luck”
forecast rate.

The results in Table 5 are impressive because all the models incorporating commodity
currencies presented hit rates above 50%. Furthermore, considering all exercises, the
average hit rate was 74%, which contrasts markedly with a “pure luck” 50% chance. These
results imply that our core models can be a helpful tool for forecasting future changes in
the synchronization of commodity markets.

Table 5 contains some additional empirical features worth noting. First, all results were
statistically significant at the 1% level. Second, the estimation window specification set of
P/R = 0.2 produced the highest average hit rate of 77%, followed by the estimation specifica-
tion set of P/R = 0.4, which produced a 73% hit rate, and finally, the estimation specification
set of P/R = 0.6, which produced a 70% hit rate average. Interestingly, the model estimated
until the COVID-19 outbreak (P/R = 0.2) produced the highest average success hit rate, con-
sistent with previous research indicating increased currency predictability during periods
of extremely low returns [12].

4. Conclusions

This study documents that commodity currencies have a predictive ability on the
synchronization behavior of commodity market returns, considering base metals, precious
metals, and energy commodities. Our findings support the commodity currency hypoth-
esis and show yet another instance in which currencies of major commodity exporting
economies can predict changes in the aspect of commodity prices.

We expand the use of asset networks, which have been widely applied in stock markets,
to analyze the synchronization phenomenon of commodities. The methodology of this
paper provides an important empirical reference point for the application of network
analysis methods and forecasting techniques to study the phenomenon of commodity
market synchronization of returns and its impact on systemic risk.

Our research adds to the growing empirical literature on systemic risk derived from
the synchronization of returns in financial assets by examining the predictability ability of
commodity currencies in the commodity network’s synchronizing behavior. Our findings
are useful for practitioners dealing with synchronization risk, which reduces the benefits of
diversification while increasing the risk of contagion. Our research shows that considering
commodity currencies can be useful when making decisions related to commodity market
synchronization risk [14].

Future research could broaden our tests to include other commodities and explore
predictions with shorter- and longer-term durations.
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