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Abstract: In the past decade, a large amount of important digital data has been created and stored
in the form of color images; the protection of such data from undesirable accesses has become an
important problem in information security. In this paper, a new approach based on an evolutionary
framework is proposed for the secure encryption of color images. The image contents in a color
image are first fully scrambled with a sequence of bit-level operations determined by a number of
integer keys. A scrambled image is then encrypted with keys generated from an evolutionary process
controlled by a set of chaotic systems. Analysis and experiments show that the proposed approach
can generate encrypted color images with high security. In addition, the performance of the proposed
approach is compared with that of a few state-of-the-art approaches for color image encryption. The
results of the comparison suggest that the proposed approach outperforms the other approaches
in the overall security of encrypted images. The proposed approach is thus potentially useful for
applications that require color image encryption.
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1. Introduction

With the rapid development of information technologies, a tremendous amount of
image data has been created for the analysis, storage and transmission of important infor-
mation. In practice, undesirable accesses to certain image data often need to be prevented
and encryption is a computational technique extensively utilized to enhance the security
of such images [1]. Since images encrypted by traditional encryption methods generally
cannot reach the security levels required by many applications [2], researchers have pro-
posed numerous methods that can encrypt images with improved security [2–7]. Most
of the existing approaches use techniques from one of three major classes of methods for
image encryption. These classes consist of approaches that apply the permutation of pixel
positions [7,8], techniques that transform gray values of pixels [5,9,10] and methods that
encrypt images with chaotic systems [6,11].

An important method for image encryption permutes the positions of pixels to
generate a cipher image. For example, a skew tent map system is combined with a
permutation–diffusion architecture in [7] for image encryption. In [8], cipher images are
generated by changing both gray values and locations of pixels. The approach proposed
in [12] utilizes ergodic matrices to change the locations of pixels for image encryption. The
approach proposed in [13] uses an elliptic curve random generator and an AES to improve
the security of cipher images. Peano–Hilbert curves are used in [14] to relocate pixels such
that spatial correlations can be eliminated in cipher images. In [15], edge maps generated
based on source images are used along with a number of different permutation techniques
for image encryption.

Gray value transformation is another technique that has been extensively used for
image encryption. The image contents in each pixel of an image are processed by a
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transformation and new pixel values are generated for the pixel. The approach proposed
in [9] encrypts an image multiple times with the fractional Fourier Transform (FRFT). In [5],
images are iteratively encrypted by an approach that uses gyrator transform and random
phase encoding. The approach proposed in [16] encrypts an image with a combination of
Arnold transformation and gyrator transformation. In [8], the hue(H), saturation(S) and
intensity(I) components of a color image are processed with discrete fractional random
transform (DFRNT) and Arnold transform for encryption. In [17], image encryption is
performed based on a new category of Discrete Fractional Fourier Transforms (DFrFs)
with eigensystems generated by a new random-matrix scheme. The approach proposed
in [18] uses DNA encoding to diversify the Elliptic Curve Cryptography (ECC) to obtain
cipher images with improved security. A novel modular approach is proposed in [19] to
construct a nonlinear S-box for image encryption. Self-adaptive permutation–diffusion
and deoxyribonucleic acid (DNA) random encoding are combined in [20] for the adaptive
encryption of images. The work in [21] encrypts images with an approach that uses both
compressive sensing and information hiding. In [22], an approach that integrates Arnold
map, DNA sequence operations with a Mandelbrot set are proposed to securely encrypt
color images. Recently, DNA coding and compressive sensing have been combined to
obtain cipher images with improved security [23]. The work in [24] proposes a novel
layer-based image steganography method that can hide a color image into color images.

A large number of approaches have been proposed to perform image encryption with
chaotic systems [3,6]. Such approaches generally utilize outputs of chaotic systems for the
generation of cipher images. Since a tiny amount of change in initial values can alter the
behavior of a chaotic system significantly, the exact initial values of these systems must be
obtained to decipher a cipher image. The security of a cipher image can thus be significantly
enhanced when chaotic systems are used for encryption. Chaotic systems are used in [4] to
generate chaotic sequences that can change the locations of pixels for encryption. In [10],
three sets of pseudo random sequences are generated with a simple perception and a
high-dimensional chaotic system to encrypt images. In [25], images are encrypted with a
pseudo-random key stream sequence generated by a piecewise linear chaotic map. In [26],
an image is encrypted with two sets of one-dimensional logistic systems designed for pixel
relocation and gray value transformation, respectively. The work in [27] designs a neotype
chaotic product trigonometric map (PTM) system for image encryption. The approach
proposed in [28] combines chaotic systems with particle swarm optimization algorithm
to improve the security of color image encryption. In [29], a dual permutation and dual
substitution framework that utilizes cellular automata, chaos theory and image mixing
is proposed for color image encryption. The work in [30] proposes an Enhanced Logistic
Map (ELM) that can be combined with chaotic maps and simple encryption techniques to
improve the security of cipher images.

Recently, numerous methods that combine DNA operations with chaotic systems have
been developed for image encryption [22,31–33]. The approach proposed in [31] encrypts
images with a combination of DNA sequence operations and chaotic systems. The work
in [34] performs image fusion encryption with an approach based on hyper-chaotic systems
and DNA sequence operations. A hybrid model is proposed in [35] to combine DNA
masking, Lorenz system and a Secure Hash Algorithm SHA-2 for image encryption. In [36],
highly secure cipher images are obtained by combining DNA sequence operations with
various types of chaotic systems. The work in [33] proposes a method that performs image
encryption with a 5D hyper chaotic system and DNA technology.

Research results have shown that using chaotic systems together with other encryption
approaches can also improve the security of cipher images. In [37], global chaotic pixel
diffusion is used together with fractal sorting matrices (FSM) for image encryption. The
approach proposed in [38] applies the Knuth–Durstenfeld algorithm with a hidden attractor
chaos system to improve the security of cipher images. In [39], color images are encrypted
with a two-dimensional logistic tent modular map (2D-LTMM). In [40], chaotic systems
are integrated with a permutation–substitution (SP) network to achieve improved security
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for image encryption. In [41], images are encrypted by chaotic data generated with Mixed
Linear–Nonlinear Coupled Map Lattices (MLNCML).

Existing methods for image encryption have significantly improved the overall security
of cipher images. However, most of the state-of-the-art approaches for image encryption
only change the locations of pixels to reduce the local correlations among pixels. The image
contents associated with a pixel are completely or partially retained after it is relocated
to a different position in the image. The original image contents are thus not completely
eliminated by the scrambling process. Moreover, the transformations utilized to change the
image contents in each pixel are generally based on numeric functions only. The security
of cipher images can possibly be further improved if more sophisticated transformations
are available for encoding the image contents associated with each pixel in an image. A
new approach that can perform the scrambling process more effectively and apply a more
sophisticated transformation to change the image contents associated with each pixel is
thus highly desirable to achieve further improved security for image encryption.

In this paper, a new method is proposed to encrypt color images with an evolutionary
framework controlled by a set of chaotic systems. In the first phase of the encryption, pixels
in a color image are grouped based on a virtual image constructed from the original image
and arrays formed by the binary bits in the pixel groups are shuffled with a set of integer
keys. The R, G and B components of pixels are then determined from the shuffled arrays
as the result of scrambling. In the second phase of encryption, an evolutionary system
comprised of integers obtained from a set of 3D chaotic systems is used to change the
image contents in each pixel of the scrambled image. Integers in the evolutionary system
are processed and changed by two operators, including cross-over and mutation. The
operations of each operator are controlled by a set of one-dimensional logistic systems.

The proposed method has two major contributions for the encryption of color images.
Firstly, a bit-level scrambling process is developed to change the location of each bit in
the image contents of a color image. Correlations that usually exist between pixels that
are spatially close in natural images can thus be significantly reduced. Secondly, due to
the fact that it is difficult to simulate the outputs of an evolutionary process controlled
by chaotic systems with numeric transformations, the underlying mechanisms of the
proposed approach can be well hidden from adversary sides. The proposed method can
thus significantly enhance the robustness and security of cipher images.

The results of an analysis on the key space of the proposed approach suggest that it is
robust against exhaustive attacks. Experimental results on benchmark color images and a
set of images selected from the BSD500 dataset [42] show that the proposed approach can
generate cipher images with high security. In addition, the performance of the proposed
approach is compared with that of other state-of-the-art encryption approaches on a variety
of security measures for cipher images. The results of comparison show that the proposed
approach is able to provide cipher images with security higher than those generated by
other tested approaches.

2. Materials and Methods

The encryption of a color image with the proposed approach is performed in two phases.
In the first phase, the binary bits of the R, G and B components in the pixels of the plain
image are scrambled based on a set of integer keys and a virtual image constructed from
the plain image. In the second phase, the R, G and B components in each pixel of the
scrambled image are encoded by an evolutionary system constructed from the outputs of a
set of 3D chaotic systems. The evolutionary process of the system is controlled by a set of
one-dimensional logistic systems.

Figure 1 illustrates the scrambling process in the proposed approach. In the first step,
a virtual image is constructed from the plain image by a mapping that can place each pixel
in the plain image to its mapped location in the virtual image. Pixels in the plain image are
organized into groups based on the rows and columns of the virtual image. In the second
step, the pixels in the same row are included in a group and the binary bits of the R, G and
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B components of the pixels in the same group are combined into an array of bits. The bits
in each array are shuffled with an integer key associated with the corresponding row. The
R, G and B components of pixels are replaced by bits from the corresponding locations in
the shuffled arrays. In the third step, the pixels in the same column are included in a group
and the same bit-shuffling operation is performed for pixels in each group. The resulting
image is a scrambled image of the plain image.
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Figure 1. Steps in the scrambling process of the proposed approach.

Figure 2 shows the steps followed by the proposed approach to encode the R, G and
B components of pixels in a scrambled image. For each pixel, an evolutionary system is
constructed from the outputs of a set of 3D chaotic systems. The integers in the evolutionary
system are then varied by a number of cross-over and mutation operations controlled by a
set of one-dimensional logistic systems. Finally, an integer is selected for each component
of the pixel from the integers in the evolutionary system and the component is encoded by
an integer key computed from the selected integer.
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Figure 2. Steps in the encoding process of the proposed approach.

The decryption of a cipher image can be performed in two steps. In the first step,
the evolutionary system used for the encoding of each pixel is constructed and the corre-
sponding cross-over and mutation operations are applied to the integers in the system. The
integers selected for encoding the R, G and B components are obtained from the system
and the components of the pixel in the scrambled image are computed from the selected
integers. In the second step, the virtual image used for the scrambling process in encryp-
tion is constructed and pixels are grouped by columns in the virtual image. A reversed
bit-shuffling operation is performed to reset the R, G and B components of pixels for each
group. In the third step, pixels are grouped by rows in the virtual image and a reversed
bit-shuffling operation is performed to reset the R, G and B components of pixels for each
group. The resulting image is the plain image decrypted from the given cipher image.
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2.1. The Bit-Level Scrambling Process

Let I(m, n, 3) be a plain color image that contains m rows and n columns; the R, G and
B components of the pixel in the jth row and kth column are denoted by I(j, k, 1), I(j, k, 2)
and I(j, k, 3), respectively, where 1 ≤ j ≤ m and 1 ≤ k ≤ n hold for integers j and k. A
bit-level scrambling of I considers the binary bits in the R, G and B components of all pixels
in I and changes the location of each bit in the image, the resulting image S(m, n, 3) is a
scrambled image of I.

2.1.1. Virtual Image

As the first step of the scrambling process, a virtual image V(p, q, 3) is generated from
I, where q is a given integer that satisfies 2 ≤ q ≤ bmn/2c and p = dmn/qe holds for
p. V is obtained from I by a mapping Ψ that associates each pixel in I with a pixel in V.
Specifically, for each pair of integers (j, k) where 1 ≤ j ≤ m and 1 ≤ k ≤ n hold, Ψ maps
the pixel in the jth row and kth column in I to a pixel in row R(j, k) and column C(j, k) in
V, where R(j, k) and C(j, k) are determined based on Equations (1) and (2).

R(j, k) =

{
1, i f j = 1 and k = 1⌈
(j−1)n+k−1

q

⌉
, otherwise

(1)

C(j, k) = ((j− 1)n + k− 1) mod q + 1 (2)

In addition, the following equations hold for each pair of integers (j, k) where j and k satisfy
1 ≤ j ≤ m and 1 ≤ k ≤ n.

V(R(j, k), C(j, k), 1) = I(j, k, 1) (3)

V(R(j, k), C(j, k), 2) = I(j, k, 2) (4)

V(R(j, k), C(j, k), 3) = I(j, k, 3) (5)

2.1.2. Scrambling Based on Rows in the Virtual Image

It is clear from Equations (1) and (2) that row p in V may contain less than q pixels
mapped from I. For each integer h that satisfies 1 ≤ h ≤ p, let rh be the number of mapped
pixels in row h of V; row h in V is assigned a positive integer kh for scrambling. kh is
required to be coprime with 24q for 1 ≤ h < p and kp must be coprime with 24rp.

For each integer h that satisfies 1 ≤ h ≤ p, the 8-bit binary representations of the R,
G and B components of the pixels in row h of V are sequentially combined into an array
of 24rh binary bits. Specifically, let Bh be the array of binary bits constructed for row h
and l be an integer that satisfies 1 ≤ l ≤ rh; the binary bits from positions 24(l − 1) + 1
through to 24(l − 1) + 8 in Bh are the 8-bit binary representation of V(h, l, 1). Similarly, the
binary bits from positions 24(l − 1) + 9 through to 24(l − 1) + 16 in Bh are the 8-bit binary
representation of V(h, l, 2) and the binary bits from positions 24(l − 1) + 17 through to 24l
in Bh are the 8-bit binary representation of V(h, l, 3). The order of bits in Bh is changed for
each integer h that satisfies 1 ≤ h ≤ p to complete the row-based scrambling operation.

Let s be an integer that satisfies 1 ≤ s ≤ 24rh; Bh(s) denotes the sth bit in Bh. Bh(s) is
relocated to position t in Bh, where t is determined from kh and rh based on Equation (6).

t = ((s− 1)kh + 2kh − 1)mod 24rh + 1 (6)

Since kh is coprime with 24rh, no two bits in Bh are relocated to the same position in Bh.
Otherwise, there exists two different integers s1 and s2 that satisfy 1 ≤ s1 ≤ 24rh and
1 ≤ s2 ≤ 24rh, and are relocated to the same position based on Equation (6). This implies
that Equation (7) holds for s1 and s2.

(s1 − s2)kh = 24rhu (7)
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where u is an integer. Since kh is coprime with 24rh, Equation (7) implies that 24rh is a factor
of s1 − s2. However, due to the fact that 0 < |s1 − s2| < 24rh holds, 24rh cannot be a factor
of s1 − s2, which is a contradiction. This implies that no such pair of integers exists and a
relocation of all bits in Bh can be performed based on Equation (6). Figure 3a shows the
pseudocode for scrambling the binary bits of pixels in row h of the virtual image.
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After all bits in Bh have been relocated, the R, G and B components of pixels in row h
of V are reset based on Bh. Specifically, for each integer l that satisfies 1 ≤ l ≤ rh, the 8-bit
binary representation of V(h, l, 1) is reset to be the binary bits from positions 24(l − 1) + 1
through to 24(l − 1) + 8 in Bh. Similarly, the 8-bit binary representation of V(h, l, 2) is
reset to be the binary bits from positions 24(l − 1) + 9 through to 24(l − 1) + 16 in Bh, and
the 8-bit binary representation of V(h, l, 3) is reset to be the binary bits from positions
24(l − 1) + 17 through to 24l in Bh.

2.1.3. Scrambling Based on Columns in the Virtual Image

Similarly, Equations (4) and (5) suggest that a column in V may contain p or p− 1
pixels mapped from I. For each integer d that satisfies 1 ≤ d ≤ q, cd denotes the number of
mapped pixels in column d of V. A positive integer wd is assigned to column d in V and wd
must satisfy the requirement that it is coprime with 24cd.

For each integer d such that 1 ≤ d ≤ q holds, an array of 24cd binary bits is constructed
from a sequential combination of the 8-bit binary representations for the R, G and B
components of the pixels in column d of V. Specifically, Dd denotes the array of binary bits
obtained from pixels in column d; for integer v that satisfies 1 ≤ v ≤ cd, the 8-bit binary
representation of V(v, d, 1) is placed in positions 24(v− 1) + 1 through to 24(v− 1) + 8 of
Dd. Similarly, the 8-bit binary representation of V(v, d, 2) is placed in positions 24(v− 1)+ 9
through to 24(v− 1) + 16 of Dd and the 8-bit binary representation of V(v, d, 3) is placed
in positions 24(v− 1) + 17 through to 24v of Dd. A complete column-based scrambling
operation changes the location of each bit in Dd for each integer d that satisfies 1 ≤ d ≤ q.

Let g be an integer that satisfies 1 ≤ g ≤ 24cd and Dd(g) be the gth bit in Dd. The
location of Dd(g) is changed to position y in Dd, where y is determined from wd and cd
based on Equation (8).

y = ((g− 1)wd + 2wd − 1)mod 24cd + 1 (8)

Based on an argument similar to the one presented in Section 2.1.2, no two bits in Dd are
relocated to the same position in Dd due to the fact that wd is coprime with 24cd. Equation (8)
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thus generates a relocation of all bits in Dd. Figure 3b shows the pseudocode for scrambling
the binary bits of pixels in column d of the virtual image.

After the locations of all bits in Dd have been changed, Dd is used to reset the R, G
and B components of pixels in column d of V. For each integer v that satisfies 1 ≤ v ≤ cd,
the binary bits from positions 24(v− 1) + 1 through to 24(v− 1) + 8 in Dd are assigned
to V(v, d, 1), the binary bits from positions 24(v− 1) + 9 through to 24(v− 1) + 16 in Dd
are assigned to V(v, d, 2) and the binary bits from positions 24(l − 1) + 17 through to 24l
in Dd are assigned to V(v, d, 3). A scrambled image S(m, n, 3) is obtained for I(m, n, 3)
after the column-based scrambling operation is completed. In practice, the operations in
the scrambling process can be performed multiple times to further improve the security
of encryption.

2.1.4. Recover a Plain Image from Its Scrambled Image

Let q be the number of columns in the virtual image used to scramble the plain image
in encryption. The virtual image V(p, q, 3) used for the scrambling of the plain image is
constructed from S, where p = dmn/qe. For each pair of integers (j, k) where 1 ≤ j ≤ m
and 1 ≤ k ≤ n hold, the pixel that corresponds to (j, k) in V is obtained from S based on
Equations (9)–(11).

V(R(j, k), C(j, k), 1) = S(j, k, 1) (9)

V(R(j, k), C(j, k), 2) = S(j, k, 2) (10)

V(R(j, k), C(j, k), 3) = S(j, k, 3) (11)

where R(j, k) and C(j, k) are obtained based on Equations (1) and (2).
For each integer d that satisfies 1 ≤ d ≤ q, let cd be the number of mapped pixels in

column d of V and wd be the integer key associated with column d in V for scrambling. A
sequential combination of the 8-bit binary representations for the R, G and B components
of the pixels in column d of S are performed to construct an array Dd of 24cd binary
bits. Specifically, for each integer v that satisfies 1 ≤ v ≤ cd, the binary bits in positions
24(v− 1) + 1 through to 24(v− 1) + 8 of Dd are the 8-bit binary representation of S(v, d, 1),
the binary bits in positions 24(v− 1) + 9 through to 24(v− 1) + 16 of Dd are the 8-bit binary
representation of S(v, d, 2), and the binary bits in positions 24(v− 1) + 17 through to 24v
of Dd are the 8-bit binary representation of S(v, d, 3).

Figure 4a shows the pseudocode for recovering the binary bits in column d of the
virtual image. For each integer g such that 1 ≤ g ≤ 24cd holds, an integer y is determined
from wd and cd using Equation (8). The location of Dd(y) is changed to position g in
Dd. After the locations of all bits in Dd are changed, Dd is used to reset the R, G and B
components of pixels in column d of V. For each integer v that satisfies 1 ≤ v ≤ cd, V(v, d, 1)
is set to be the value of the binary bits from positions 24(v− 1) + 1 through to 24(v− 1) + 8
in Dd, V(v, d, 2) is set to be the value of the binary bits from positions 24(v− 1) + 9 through
to 24(v− 1) + 16 in Dd and V(v, d, 3) is set to be the value of the binary bits from positions
24(v− 1) + 17 through to 24v in Dd.

For each integer h that satisfies 1 ≤ h ≤ p, let rh be the number of mapped pixels in
row h of V and kh be the integer key associated with row h for scrambling. The 8-bit binary
representations of the R, G and B components of the pixels in row h of V are sequentially
combined into an array Bh of 24rh binary bits. Specifically, for each integer l that satisfies
1 ≤ l ≤ rh, the binary bits from positions 24(l − 1) + 1 through to 24(l − 1) + 8 in Bh are set
to be the 8-bit binary representation of V(h, l, 1), the binary bits from positions 24(l − 1) + 9
through to 24(l − 1) + 17 in Bh are set to be the 8-bit binary representation of V(h, l, 2)
and the binary bits from positions 24(l − 1) + 17 through to 24l in Bh are the 8-bit binary
representation of V(h, l, 3).
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Figure 4. Pseudocodes for the recovery of a plain image from its scrambled image. (a) Recovering
the binary bits of pixels in column d in the virtual image; (b) recovering the binary bits of pixels in
row h in the virtual image.

Figure 4b shows the pseudocode for recovering the binary bits in row h of the virtual
image. For each integer that satisfies 1 ≤ s ≤ 24rh, an integer t is determined from kh
and rh based on Equation (6), and Bh(t) is relocated to position s in Bh. After all bits in Bh
have been relocated, the R, G and B components of pixels in row h of V are reset based on
Bh. For each integer l that satisfies 1 ≤ l ≤ rh, the value of the binary bits from positions
24(l − 1) + 1 through to 24(l − 1) + 8 in Bh is assigned to V(h, l, 1), the value of the binary
bits from positions 24(l − 1) + 9 through to 24(l − 1) + 16 in Bh is assigned to V(h, l, 2) and
the value of the binary bits from positions 24(l − 1) + 17 through to 24l in Bh is assigned to
V(h, l, 3). The plain image can be obtained after the pixels in V have been reset.

2.2. Encoding a Scrambled Image
2.2.1. A 3D Chaotic System

Recently, a new 3D chaotic system is proposed in [43]. The system is formulated in
spherical coordinates, and it is shown in [43] that four hidden attractors and three unstable
equilibrium points exist for the system. The hidden attractors include two limit cycles and
two strange attractors. One of the strange attractors is inside a sphere of radius 7.0 and
the other one is outside the sphere. A description of the system in spherical coordinates is
shown in Equation (12). 

.
ρ = ρϕ− 7ϕ
.
θ = −βθ2 + ϕ2
.
ϕ = −ρ2 + αθ2 + 14ρ + ϕ− 49

(12)

where ρ,ϕ and θ are the radial distance, polar angle and azimuthal angle, respectively. The
simulation results show that the system demonstrates a chaotic behavior when parameters
α and β are set to be 3.0 and 1.0, respectively. A more detailed analysis of the dynamical
properties of the system can be found in [43].

2.2.2. The Evolutionary System for Encryption

The encryption of a scrambled image is based on an evolutionary system constructed
based on a set of 3D chaotic systems described by Equation (9) with different initial val-
ues. Let b be a positive integer and I1 =

{
ρ1,0, ρ2,0, . . . , ρb,0

}
, I2 =

{
θ1,0, θ2,0, . . . , θb,0

}
and I3 =

{
ϕ1,0, ϕ2,0, . . . ϕb,0

}
be three number sets that contain the initial values for b dif-

ferent 3D chaotic systems K1, K2, . . . , Kb. Specifically, for integer i such that 1 ≤ i ≤ b
holds, ρi,0, θi,0 and ϕi,0 are the initial values of ρ, θ and ϕ for system Ki. For the pixel
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in row j and column k in S(m, n, 3), let L = (j− 1)n + k − 1; three sets of integers
E1,0 =

{
X1,L,X2,L, . . . , Xb,L

}
, E2,0 =

{
Y1,L, Y2,L, . . . , Yb,L

}
and E3,0 =

{
Z1,L, Z2,L, . . . , Zb,L

}
can be obtained with Equation (13).

Xi,L = bM× |xi,L|c mod 256
Yi,L = bM× |yi,L|c mod 256
Zi,L = bM× |zi,L|c mod 256

(13)

where i is an integer that satisfies 1 ≤ i ≤ b and M is a large positive integer;xi,L, yi,L and
zi,L are computed based on Equation (14).

xi,L = ρi,Lcosθi,Lsinϕi,L
yi,L = ρi,Lsinθi,Lsinϕi,L
zi,L = ρi,Lcosϕi,L

(14)

where ρi,L, θi,L and ϕi,L are the outputs of Ki at time L∆t, given ρi,0, θi,0 and ϕi,0 as its initial
values for ρ, θ and ϕ, respectively.∆t is a positive constant.

The integer sets E1,0, E2,0 and E3,0 together form the initial configuration of the evolu-
tionary system for encoding the pixel in row j and column k in S(m, n, 3). The integers in
E1,0, E2,0 and E3,0 are changed by a series of cross-over and mutation operations controlled
by a set of one-dimensional logistic systems; the resulting sets are denoted by E1, f , E2, f and
E3, f . The integer keys for the encoding of S(j, k, 1), S(j, k, 2) and S(j, k, 3) are computed
based on integers selected from E1, f , E2, f and E3, f , respectively.

2.2.3. The Cross-Over Operation

A cross-over operation for the evolutionary system is controlled by a set of one-
dimensional logistic systems. A logistic system is defined by an initial value l0 and the
recursion relation shown in Equation (15).

li+1 = 4li(1− li) (15)

where i is a positive integer. A well-known fact is that the logistic system defined in
Equation (15) is a one-dimensional chaotic system when l0 satisfies 0 < l0 < 1 [44]. The
system defined in Equation (15) generates a sequence of numbers l1, l2, . . . , lN , . . . for a
given initial value l0. Due to the chaotic property of the system, a tiny amount of change in
l0 would lead to a significantly different lN if N is a large enough integer.

Three one-dimensional logistic systems with different initial values are needed to
complete a cross-over operation. The initial values of the three one-dimensional logis-
tic systems are denoted by l1,0, l2,0 and l3,0. For the pixel in row j and column k in
S(m, n, 3), three sets of integers V1,0 =

{
u1,L,u2,L, . . . , ub,L

}
, V2,0 =

{
v1,L, v2,L, . . . , vb,L

}
and V3,0 =

{
z1,L, z2,L, . . . , zb,L

}
can be obtained based on Equation (16).

ui,L =
⌊

M0 × l1,Lb+i−1
⌋

mod 7 + 1
vi,L =

⌊
M0 × l2,Lb+i−1

⌋
mod 7 + 1

zi,L =
⌊

M0 × l3,Lb+i−1
⌋

mod 7 + 1
(16)

where M0 is a large positive integer and l1,Lb+i−1, l2,Lb+i−1 and l3,Lb+i−1 are the Lb + i− 1th
elements in the chaotic number sequences generated from Equation (15) with l1,0, l2,0 and
l3,0 as the initial values, respectively.

The cross-over operation is performed based on V1,0, V2,0 and V3,0. In addition, three
positive integer keys g1, g2 and g3 are needed to determine the pairs of integers where the
cross-over operations need to be performed in V1,0, V2,0 and V3,0, respectively. g1,g2 and g3
are all coprime with b.
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To perform the cross-over operation on E1,0, for each integer e that satisfies 1 ≤ e ≤ b,
Xe,L is paired with Xa1,L for cross-over, where a1 is determined by Equation (17).

a1 = ((e− 1)g1 + 2g1 − 1) mod b + 1 (17)

Based on ue,L, two new integers X′e,L and X′a,L are generated by Equations (18) and (19).

X′e,L = bXe,L/2ue,Lc+ Xa1,L mod 2ue,L (18)

X′a,L =
⌊

Xa1,L/2ue,L
⌋
+ Xe,L mod 2ue,L (19)

As the result of the cross-over operation, Xe,L is replaced by X′e,L and Xa1,L is replaced by X′a1,L.
The cross-over operation on E2,0 is performed with a similar method. For each integer

e that satisfies 1 ≤ e ≤ b, a pair between Ye,L and Ya2,L is formed for cross-over, and a2 is
obtained from Equation (20).

a2 = ((e− 1)g2 + 2g2 − 1) mod b + 1 (20)

Two new integers Y′e,L and Y′a2,L are obtained from ve,L by Equations (21) and (22).

Y′e,L = bYe,L/2ve,Lc+ Ya2,L mod 2ve,L (21)

Y′a2,L =
⌊
Ya2,L/2ve,L

⌋
+ Ye,L mod 2ve,L (22)

The cross-over operation replaces Ye,L by Y′e,L and Ya2,L is replaced by Y′a2,L.
Similarly, the cross-over operation on E3,0 is performed on integer pairs formed based

on g3. For each integer e such that 1 ≤ e ≤ b holds, an integer pair is generated between
Ze,L and Za3,L for cross-over, and a3 is computed based on Equation (23).

a3 = ((e− 1)g3 + 2g3 − 1) mod b + 1 (23)

Two new integers Z′e,L and Z′a3,L are determined from ze,L by Equations (24) and (25).

Z′e,L = bZe,L/2ze,Lc+ Za3,L mod 2ze,L (24)

Z′a3,L =
⌊

Za3,L/2ze,L
⌋
+ Ze,L mod 2ze,L (25)

The cross-over operation substitutes Ze,L and Za3,L with Z′e,L and Z′a3,L, respectively. Figure 5a
shows the pseudocode for a cross-over operation.
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2.2.4. The Mutation Operation

Let E1,c =
{

X′1,L ,X′2,L, . . . , X′b,L

}
, E2,c =

{
Y′1,L,Y′2,L, . . . ,Y′b,L

}
and E3,c =

{
Z′1,L, Z′2,L, . . . , Z′b,L

}
be the integer sets generated from E1,0, E2,0 and E3,0 by a cross-over operation. A mutation
operation performs a rotational right shift on each integer in E1,c, E2,c and E3,c. The number
of bit positions by which the shift is performed for an integer is determined by a set of three
one-dimensional logistic systems. Let m1,0, m2,0 and m3,0 be the initial values of the three lo-
gistic systems; three sets of integers M1,0 =

{
h1,L,h2,L, . . . , hb,L

}
,M2,0 =

{
s1,L, s2,L, . . . , sb,L

}
and M3,0 =

{
t1,L, t2,L, . . . , tb,L

}
are generated based on Equation (26) for the pixel in row j

and column k in S(m, n, 3).
hi,L =

⌊
N0 ×m1,Lb+i−1

⌋
mod 7 + 1

si,L =
⌊

N0 ×m2,Lb+i−1
⌋

mod 7 + 1
ti,L =

⌊
N0 ×m3,Lb+i−1

⌋
mod 7 + 1

(26)

where N0 is a large positive integer and m1,Lb+i−1, m2,Lb+i−1 and m3,Lb+i−1 are the Lb + i− 1th
elements in the chaotic number sequences obtained from Equation (15) using m1,0, m2,0 and
m3,0 as the initial values, respectively.

Integers in M1,0, M2,0 and M3,0 provide the number of bit positions by which each
integer in E1,c, E2,c and E3,c needs to be rotationally shifted to complete the mutation
operation. For each integer e such that 1 ≤ e ≤ b holds, X′e,L, Y′e,L and Z′e,L are rotationally
shifted to the right by he,L, se,L and te,L bit positions, respectively. In other words, X′e,L,

Y′e,L and Z′e,L are replaced by
∼
Xe,L,

∼
Ye,L and

∼
Ze,L generated by Equations (27), (28) and (29),

respectively. The resulting integer sets in the evolutionary system are denoted by E1, f , E2, f
and E3, f . Figure 5b shows the pseudocode for a mutation operation.

∼
Xe,L = bX′e,L/2he,Lc+ (X′e,L mod 2he,L)28−he,L (27)

∼
Ye,L =

⌊
Y′e,L/2se,L

⌋
+
(
Y′e,L mod 2se,L

)
28−se,L (28)

∼
Ze,L = bZ′e,L/2te,Lc+ (Z′e,L mod 2te,L)28−te,L (29)

2.2.5. Encoding of Pixels

An integer is selected from each of the three integer sets E1, f =

{∼
X1,L,

∼
X2,L, . . . ,

∼
Xb,L

}
,

E2, f =

{∼
Y1,L,

∼
Y2,L, . . . ,

∼
Yb,L

}
and E3, f =

{∼
Z1,L,

∼
Z2,L, . . . ,

∼
Zb,L

}
to generate integer keys

that can encode the pixel in row j and column k in S(m, n, 3). The selection is controlled by
a one-dimensional logistic system with an initial value of s0; three integers c1,L, c2,L and
c3,L are obtained based on Equation (30) for the pixel in row j and column k in S(m, n, 3).

c1,L = bN1 × s3Lc mod b + 1
c2,L = bN1 × s3L+1c mod b + 1
c3,L = bN1 × s3L+2c mod b + 1

(30)

where N1 is a large positive integer and s3L, s3L+1 and s3L+2 are the 3lth, 3l + 1th and 3l + 2th
elements, respectively, in the chaotic number sequences obtained from Equation (15) using
an initial value of s0.

Let C(m, n, 3) be the cipher image obtained from S(m, n, 3); the integer keys used to
encode S(j, k, 1), S(j, k, 2) and S(j, k, 3) are denoted by Ik(j, k, 1), Ik(j, k, 2) and Ik(j, k, 3),
respectively. Ik(j, k, 1), Ik(j, k, 2) and Ik(j, k, 3) are obtained based on Equation (31).

Ik(j, k, 1) = (Hj,k
∼
Xc1,L ,L) mod 256

Ik(j, k, 2) = (Hj,k
∼
Yc2,L ,L) mod 256

Ik(j, k, 3) = (Hj,k
∼
Xc3,L ,L) mod 256

(31)
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where Hj,k is 1 when j = 1 and k = 1; otherwise,Hj,k = ∑3
v=1 C

(
jp, kp, v

)
, where jp and kp

can be computed from j and k with Equations (32) and (33).

jp =

{
1, i f j = 1 and k = 2⌈
(j−1)n+k−2

n

⌉
, otherwise

(32)

kp = ((j− 1)n + k− 2) mod q + 1 (33)

Finally, C(i, j, 1), C(i, j, 2) and C(i, j, 3) are determined from Equation (34).
C(j, k, 1) = S(j, k, 1)⊕ Ik(j, k, 1)
C(j, k, 2) = S(j, k, 2)⊕ Ik(j, k, 2)
C(j, k, 2) = S(j, k, 3)⊕ Ik(j, k, 3)

(34)

Equations (31)–(33) show that the encryption keys Ik(j, k, 1), Ik(j, k, 2) and Ik(j, k, 3)
are dependent on the encrypted image contents associated with the pixel in row jp and
column kp. This fact suggests that the proposed approach is plain-image-sensitive. In
practice, the security of encryption can be further enhanced by applying the encoding
process multiple times.

2.2.6. Decoding a Cipher Image

The scrambled image of a cipher image can be obtained based on the initial values
of the 3D chaotic systems used to construct the evolutionary system for encoding and the
initial values of the one-dimensional logistic systems that control the evolutionary system
during the encoding.

Let C(m, h, 3) be a cipher image.I1 =
{

ρ1,0, ρ2,0, . . . , ρb,0
}

, I2 =
{

θ1,0, θ2,0, . . . , θb,0
}

and
I3 =

{
ϕ1,0, ϕ2,0, . . . ϕb,0

}
are the sets of initial values for the b3D chaotic systems;l1,0, l2,0

and l3,0 are the initial values of the logistic systems for cross-over operations;m1,0, m2,0
and m3,0 are the initial values of the logistic systems for mutation operations; and s0 is the
initial value of the logistic system that selects integers from the evolutionary system for
computing the encoding keys.

To decode the pixel in row j and column k in C(m, h, 3), Equations (13) and (14) are
used to obtain three integer sets E1,0 =

{
X1,L,X2,L, . . . , Xb,L

}
, E2,0 =

{
Y1,L, Y2,L, . . . , Yb,L

}
and E3,0 =

{
Z1,L, Z2,L, . . . , Zb,L

}
that together constitute the evolutionary system. A

cross-over operation is then applied to E1,0, E2,0 and E3,0 as described in Section 2.2.3

to obtain three integer sets E1,c =
{

X′1,L, X′2,L, . . . , X′b,L

}
, E2,c =

{
Y′1,L, Y′2,L, . . . , Y′b,L

}
and

E3,c =
{

Z′1,L, Z′2,L, . . . , Z′b,L

}
. The operations described in Section 2.2.4 are applied to E1,c, E2,c

and E3,c to complete the mutation operation and three integer sets E1, f =

{∼
X1,L,

∼
X2,L, . . . ,

∼
Xb,L

}
,

E2, f =

{∼
Y1,L,

∼
Y2,L, . . . ,

∼
Yb,L

}
and E3, f =

{∼
Z1,L,

∼
Z2,L, . . . ,

∼
Zb,L

}
are obtained as the result.

Based on E1, f , E2, f and E3, f , Equations (30)–(33) are utilized to generate Ik(j, k, 1), Ik(j, k, 2)
and Ik(j, k, 3), which are the encoding keys for the pixel. S(i, j, 1), S(i, j, 2) and S(i, j, 3) are
obtained based on Equation (35).

S(j, k, 1) = C(j, k, 1)⊕ Ik(j, k, 1)
S(j, k, 2) = C(j, k, 2)⊕ Ik(j, k, 2)
S(j, k, 2) = C(j, k, 3)⊕ Ik(j, k, 3)

(35)

2.3. Computational Complexity

For a plain color image that contains m rows and n columns, a virtual image for
scrambling can be constructed in O(mn) time. The bit-level scrambling based on rows and
columns of a virtual image can be accomplished in O(mn) time. The scrambling process of
the proposed approach thus needs O(mn) time.
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The encoding process encodes each pixel in a scrambled image with an evolutionary
system that contains 3b integers. A cross-over operation can be performed in O(b) time
and the computation time needed for a mutation operation is O(b). The encoding of a
scrambled image thus requires O(bmn) time. Therefore, the computation time needed for
the encryption of an image is O(bmn).

In practice, it is often desirable to perform the scrambling and encoding processes
multiple times. For an encryption process that scrambles a plain image for ns times and
encodes the scrambled image for ne times, a total amount of O((ns + neb)mn) computation
time is needed to complete the encryption.

3. Results

A computer program has been created to implement the proposed approach in MAT-
LAB and its encryption security has been analyzed based on the cipher images generated
for seven benchmark images and 100 color images selected from the BSD500 dataset [42]. In
addition, a comparison of the proposed approach with several state-of-the-art encryption
methods is performed based on a number of security measures. Other approaches tested for
comparison are the methods proposed in [7,20,28,38,43–49]. In the testing, an evolutionary
system that contains five 3D chaotic systems is constructed to encode pixels in a scrambled
image. A value of 1012 is chosen for integers M, M0, N0 and N1.

3.1. Brutal Force Attacks

The robustness of an encryption method against brutal force attacks can be evaluated
based on the size of its key space. A larger key space usually implies stronger robustness
against brutal force attacks. In the scrambling process of the proposed approach, each row
or column in a virtual image is associated with an integer key for bit-level scrambling. Let
Z1 be the size of the integer set where a key for a row or column can be selected, for a virtual
image with p rows and q columns, Zp+q

1 different combinations exist for the integer keys
utilized in scrambling process. In the encoding process, Z3d+7

2 different combinations exist
for the initial values of d 3D chaotic systems and seven one-dimensional logistic systems;
Z2 is the size of the set of real numbers where the initial value for a chaotic system can
be selected.

The key space of the proposed approach is thus Zp+q
1 Z3d+7

2 . For a plain color image
that contains at least 104 pixels, the value of p + q is at least 2

√
pq ≥ 200. When five 3D

chaotic systems are used for the encryption of such an image, the key space size is at least
Z200

1 Z22
2 . In practice, both Z1 > 210 and Z2 > 260 hold, and the key space size for a cipher

image of the image is thus at least 23320.
Table 1 shows the key space sizes of a few encryption methods, including the proposed

approach and several other state-of-the-art approaches. It is evident from Table 1 that the
proposed approach has a key space size larger than those of the other encryption methods
and its robustness against brutal force attacks is thus higher than that of the other methods.

Table 1. The key space sizes of the proposed approach and several other encryption methods.

Methods Size of Key Space

The proposed 23320

Ref. [28] 22092

Ref. [20] 2199

Ref. [38] 2170

Ref. [50] 2138

Ref. [44] 2241

Ref. [7] 2104

Ref. [45] 2128

Ref. [46] 2128

Ref. [47] 2128
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3.2. Statistical Attacks

The proposed approach is applied to seven popular benchmark images for encryption
and an analysis is performed on the obtained cipher images to evaluate the overall strength
of the approach against potential statistical attacks. Five of the seven benchmark images,
including Lena, Airplane, Fruits, Peppers and Baboon, have a size of 512 × 512 while the
other two benchmark images, including Monarch and Girl, have a size of 768 × 512. The
seven testing benchmark images are shown in Figure 6a–g.
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3.2.1. Analysis of Histograms

The cipher image obtained by the proposed approach for each benchmark image
is shown in Figure 7a–g. It is clear from Figure 7 that the image contents in a plain
image are completely removed from its cipher image and all cipher images appear to be
highly random.
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The histograms of the R, G and B components in the cipher images of the benchmark
images are shown in Figure 8a–c. It can be seen from Figure 8 that the R, G and B compo-
nents in cipher images all follow near-uniform distributions and the histograms of a cipher
image do not contain information related to the image contents in its plain image.
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An important measure often used to evaluate the uniformity of a histogram is the
variance of histograms [33]. Histogram P contains a counting value for each integer
between 0 and 255. The variance of histogram Var(P) of P is calculated by Equation (36).

Var(P) =
1

2n2

n

∑
i=1

n

∑
j=1

(
pi − pj

)2 (36)

where n = 256 is the number of counting values in P. pi and pj are the counting values
associated with integers i and j in P. Equation (36) clearly shows that histograms with
lower values of variances of histograms generally are closer to a uniform distribution.

The variances of histograms for the cipher images are calculated and compared
with those obtained with several other encryption methods, including methods proposed
in [22,33,48,49]. The results of the comparison are shown in Table 2. Table 2 clearly shows
that the proposed approach achieves the lowest value for variances of histograms on Air-
plane, Fruits and Monarch and it ranks the second position on Lena and Baboon. The
results in Table 2 suggest that the overall performance of the proposed approach on the
variances of histograms is better than that of the other methods.

Table 2. The variance of histograms for cipher images obtained with the proposed approach and
several other encryption methods.

Images The Proposed Ref. [22] Ref. [33] Ref. [48] Ref. [49]

Lena 1040.39 1047.40 1054.78 1043.21 1027.59
Airplane 1082.83 1132.27 1268.02 1141.38 1103.16

Fruits 951.94 1026.51 1034.23 1013.32 1082.34
Peppers 1146.23 1046.25 1037.78 1105.72 946.67
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Table 2. Cont.

Images The Proposed Ref. [22] Ref. [33] Ref. [48] Ref. [49]

Baboon 1024.29 1098.64 901.22 1061.04 1058.13
Girl 1536.50 1513.42 1543.23 1620.12 1530.21

Monarch 1409.30 1564.39 1607.51 1653.27 1563.72

3.2.2. Analysis of Correlations

A well-known fact is that strong correlations usually exist between pixels that are
spatially close in a plain color image. Such correlations are often closely associated with
the contents contained in a plain image and thus need to be reduced to values close to zero
when encryption is complete. In general, the correlations among pixels that are adjacent
in horizontal, vertical, diagonal and anti-diagonal directions in a cipher image are used
as important measures on its strength over potential statistical attacks. The correlations
between adjacent pixels in the above four directions in Lena and its cipher image are
plotted based on 3000 pixels randomly chosen from the images. Figure 9a–c show the plots
obtained for the R, G and B components of pixels in Lena. Figure 10a–c show the plots
obtained on its cipher image.
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The correlations for pixels adjacent in the four directions have been obtained for all
benchmark images and their cipher images; these are shown in Table 3. Table 3 suggests
that the correlations between pixels adjacent in a cipher image reach values close to zero.
This fact ensures that cipher images generated with the proposed approach cannot be
deciphered by statistical attacks. The correlations for the R components of pixels adjacent
in cipher images obtained with several different methods on Lena are compared in Table 4.
The results in Table 4 suggest that the proposed approach can achieve a performance
comparable with other state-of-the-art encryption methods on eliminating local correlations
in cipher images.

Table 3. The correlations for the R, Gand B components of pixels adjacent in four directions in the
testing benchmark images and their cipher images obtained with the proposed approach.

Images Directions
Plain Image Cipher Image

R G B R G B

Lena

V 0.9753 0.9666 0.9334 0.0019 −0.0013 −0.0006
H 0.9853 0.9802 0.9558 0.0028 −0.0001 0.0022
D 0.9734 0.9630 0.9264 −0.0011 0.0024 −0.0010
A 0.9648 0.9536 0.9198 0.0002 0.0010 −0.0030

Airplane

V 0.9726 0.9578 0.9640 −0.0006 0.0017 −0.0001
H 0.9568 0.9678 0.9353 0.0016 0.0011 −0.0013
D 0.9343 0.9326 0.9146 −0.0002 0.0013 0.0034
A 0.9350 0.9300 0.9075 −0.0013 0.0030 0.0020

Fruits

V 0.9936 0.9855 0.9265 −0.0007 −0.0025 −0.0030
H 0.9928 0.9848 0.9192 −0.0022 0.0006 −0.0004
D 0.9897 0.9783 0.8809 −0.0027 0.0013 −0.0020
A 0.9868 0.9694 0.8531 0.0024 −0.0005 −0.0005

Peppers

V 0.9635 0.9811 0.9665 −0.0003 0.0023 0.0006
H 0.9663 0.9817 0.9664 −0.0004 −0.0009 0.0021
D 0.9563 0.9686 0.9477 −0.0009 0.0016 0.0022
A 0.9585 0.9708 0.9477 0.0020 −0.0009 0.0034

Baboon

V 0.9235 0.8668 0.9067 0.0021 0.0006 0.0012
H 0.8740 0.7759 0.8844 0.0011 −0.0002 −0.0029
D 0.8649 0.7432 0.8544 0.0024 −0.0034 −0.0023
A 0.8670 0.7494 0.8540 −0.0016 0.0037 0.0004
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Table 3. Cont.

Images Directions
Plain Image Cipher Image

R G B R G B

Girl

V 0.9811 0.9887 0.9866 −0.0019 −0.0012 −0.0004
H 0.9901 0.9937 0.9927 0.0013 0.0014 −0.0002
D 0.9750 0.9848 0.9823 0.0017 −0.0037 0.0024
A 0.9772 0.9858 0.9832 −0.0019 0.0021 0.0035

Monarch

V 0.9648 0.9523 0.9566 1.7 × 10−5 −4.5 × 10−5 −0.0018
H 0.9597 0.9453 0.9506 0.0020 −0.0018 0.0009
D 0.9450 0.9252 0.9309 0.0016 0.0031 0.0014
A 0.9245 0.8984 0.9118 0.0003 −8.7 × 10−6 −0.0036

Table 4. The correlations for pixels adjacent in horizontal (H), vertical (V) and diagonal (D) directions
in the cipher images of Lena obtained with the proposed approach and several other encryption
methods. The best values are shown in bold.

Approaches H V D

The proposed 0.0028 0.0019 −0.0011
Ref. [28] 0.0023 −0.0020 0.0013
Ref. [38] 0.0046 −0.0028 0.0014
Ref. [51] 0.0027 −0.0013 0.0039
Ref. [33] 0.0012 0.0035 0.0056
Ref. [20] −0.0026 −0.0038 0.0017
Ref. [52] −0.0030 0.0025 −0.0001
Ref. [22] 0.0021 0.0018 −0.0026

3.3. Differential Attacks

The strength of an encryption approach over differential attacks is generally evaluated
by its sensitivities to tiny changes in encryption keys and plain image. The Number of Pixels
Change Rate (NPCR) and unified average changing intensity (UACI) are two measures
often used to evaluate such sensitivities [22,35,40,52].

Given a plain image I with m rows and n columns, a set of keys for encryption and the
resulting cipher image Ce1 ,Ce2 is the cipher image generated after one of the keys in the key
set, or one of the R, G and B components in one pixel in I is changed by a tiny amount. The
NPCR and UACI for component t are calculated by Equations (37) and (38), respectively.

N(t) =
∑m

i=1 ∑n
j=1 X(i, j, t)

mn
(37)

U(t) =
∑m

i=1 ∑n
j=1|Ce1(i, j, t)− Ce2(i, j, t)|

255mn
(38)

where X(i, j, t) is an integer that depends on a comparison between Ce1(i, j, t) and Ce2(i, j, t),
its value is 1 if Ce1(i, j, t) and Ce2(i, j, t) are different and is 0 otherwise. In an ideal case,
NPCR has a value of 99.6094 and UACI has a value of 33.4635.

To evaluate the key sensitivity of the proposed approach, a perturbation of 10−16 is
applied to the initial values of the chaotic systems used for the encoding process; the values
of NPCR and UACI for the R, Gand B components are calculated with Equations (36) and
(37) for each testing benchmark image. Table 5 shows the values of key sensitivity NPCR
and UACI obtained for each testing benchmark image. It can be seen from Table 5 that,
for all components, the values of key sensitivity NPCR and UACI obtained on all testing
images are close to their ideal values.
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Table 5. The values of NPCR and UACI in percentage for the key sensitivities of the proposed
approach on the R, G and B components of cipher images. The best values are shown in bold.

Images
NPCR (%) UACI (%)

R G B R G B

Lena 99.61 99.60 99.63 33.45 33.42 33.51
Airplane 99.61 99.62 99.61 33.38 33.47 33.46

Fruits 99.62 99.62 99.60 33.38 33.49 33.45
Peppers 99.61 99.62 99.61 33.48 33.50 33.40
Baboon 99.61 99.61 99.63 33.55 33.38 33.49

Girl 99.61 99.61 99.61 33.47 33.45 33.42
Monarch 99.60 99.61 99.61 33.50 33.49 33.46

The results in Table 5 suggest that the mean key sensitivity NPCR of the proposed
approach is larger than 99.6100 and its mean key sensitivity UACI is close to 33.4571.
In [52], values of 99.5893, 99.5810 and 99.5717 are established for NPCR randomness tests
at levels 0.05, 0.01 and 0.001, respectively; the proposed approach thus passes the NPCR
randomness tests for all three levels. Similarly, in [52], lower bound values 33.3730, 33.3445
and 33.3115 are established along with upper bound values 33.5541, 33.5826 and 33.6156
for UACI randomness tests at levels 0.05, 0.01 and 0.001, respectively. Since the mean UACI
of the proposed approach is close to 33.4571, it also passes the UACI randomness tests for
all three levels.

Table 6 shows the values of key sensitivity NPCR and UACI obtained with the pro-
posed approach and several other encryption methods on Lena. It is evident from Table 6
that the mean value of key sensitivity NPCR of the proposed approach is 99.6133 on Lena
and its mean value of key sensitivity UACI is 33.4600. Since the ideal values for NPCR and
UACI are 99.6064 and 33.4635, respectively, the proposed approach has the best overall
performance on key sensitivities.

Table 6. The values of NPCR and UACI in percentage for the key sensitivities of the proposed
approach and several other encryption methods on the R, G and B components of the cipher images
of Lena. The best values are shown in bold.

Methods
NPCR (%) UACI (%)

R G B R G B

The proposed 99.61 99.60 99.63 33.45 33.42 33.51
Ref. [29] 99.62 99.62 99.62 33.48 33.45 33.50
Ref. [40] 99.61 99.61 99.61 33.47 33.47 33.47
Ref. [22] 99.57 99.58 99.57 33.35 33.37 33.38
Ref. [35] 99.60 99.59 99.61 33.45 33.45 33.45

To evaluate the plain image sensitivity of the proposed approach, a pixel is randomly
selected from a plain image and one of its R, G and B components is changed by 1. The cipher
image of the resulting image is then compared with that of the original image; the NPCR and
UACI for each component can then be calculated based on Equations (36) and (37).

The NPCR and UACI values for plain image sensitivity of the proposed approach on
the testing images are shown in Table 7. The proposed approach can achieve a mean NPCR
of 99.6147 and a mean UACI of 33.4457. Due to the fact that values of 99.5893, 99.5810 and
99.5717 are associated with levels 0.05, 0.01 and 0.001, respectively, for NPCR randomness
tests [52], the proposed approach is able to pass the NPCR randomness tests for all three
levels. In addition, since the UACI randomness tests at levels 0.05, 0.01 and 0.001 adopt
values 33.3730, 33.3445 and 33.3115 for lower bounds and values 33.5541, 33.5826 and
33.6156 for upper bounds, respectively [52], the proposed approach passes the random tests
at all levels for UACI. Table 8 compares the plain image sensitivity values obtained with the
proposed approach and those of several other encryption methods on Lena. Table 8 clearly
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suggests that the proposed approach achieves a mean value of NPCR 99.6200 on Lena for
plain image sensitivity and its mean value of plain image sensitivity UACI is 33.4567. The
overall performance of the proposed approach is thus the best of all tested methods on
plain image sensitivities.

Table 7. The values of NPCR and UACI in percentage for the plain image sensitivities of the proposed
approach on the R, G and B components of cipher images. The best values are shown in bold.

Images
NPCR (%) UACI (%)

R G B R G B

Lena 99.62 99.62 99.62 33.47 33.43 33.47
Airplane 99.63 99.62 99.60 33.46 33.44 33.45

Fruits 99.61 99.61 99.61 33.45 33.44 33.48
Peppers 99.62 99.63 99.61 33.46 33.42 33.41
Baboon 99.61 99.61 99.63 33.39 33.43 33.47

Girl 99.60 99.62 99.61 33.42 33.39 33.51
Monarch 99.62 99.60 99.61 33.47 33.45 33.45

Table 8. The values of NPCR and UACI in percentage for the plain image sensitivities of the proposed
approach and several other encryption methods on the R, G and B components of the cipher images
of Lena. The best values are shown in bold.

Methods
NPCR (%) UACI (%)

R G B R G B

The proposed 99.62 99.62 99.62 33.47 33.43 33.47
Ref. [29] 99.61 99.63 99.61 33.45 33.46 33.45
Ref. [40] 99.60 99.58 99.59 33.44 33.43 33.43
Ref. [22] 99.58 99.57 99.58 33.34 33.34 33.34
Ref. [35] 99.59 99.60 99.59 33.33 33.33 33.33

3.4. Analysis of Information Entropy

Information entropy is a measure often utilized to represent the randomness of a
cipher image. Specifically, let C(m, n, 3) be a cipher image. Equation (39) is used to calculate
the information entropy associated with the tth component of C(m, n, 3).

E(C, t) = −
255

∑
i=0

d(i, C, t)log2 d(i, C, t) (39)

where d(i, C, t) is the probability that the tth component of a pixel is i. Since a uniform
distribution has an entropy of 8.0, the information entropy for each component in an ideally
encrypted image is 8.0.

The information entropies of the R, G and B components in cipher images gener-
ated with the proposed approach are shown in Table 9. It can be seen from Table 9 that
the information entropies for cipher images obtained by the proposed approach are all
nearly ideal.

The information entropies of the cipher images generated with the proposed approach
and several other encryption methods on Lena are shown in Table 10. Table 10 clearly
suggests that the proposed approach achieves the highest entropies for components R
and B and ranks the second position on component G. Its overall performance on Lena is
thus the same as that of the approach proposed in [37] and better than that of the other
tested methods.
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Table 9. The information entropy for the R, G and B components of pixels in the cipher images of
testing images obtained with the proposed approach. The best values are shown in bold.

Images R G B

Lena 7.9993 7.9992 7.9994
Airplane 7.9993 7.9992 7.9992

Fruits 7.9993 7.9994 7.9994
Peppers 7.9992 7.9992 7.9992
Baboon 7.9992 7.9994 7.9993

Girl 7.9995 7.9996 7.9995
Monarch 7.9996 7.9996 7.9996

Table 10. The information entropy for the R, G and B components of pixels in the cipher images of
Lena obtained with the proposed approach and several other encryption methods. The best values
are shown in bold.

Methods R G B

The proposed 7.9993 7.9992 7.9994
Ref. [28] 7.9992 7.9992 7.9992
Ref. [37] 7.9992 7.9993 7.9994
Ref. [22] 7.9992 7.9992 7.9992
Ref. [33] 7.9976 7.9976 7.9976

3.5. Analysis of Peak Noise Signal Ratio

The Peak Signal Noise Ratio (PSNR) provides a measure for the difference between a
cipher image and its plain image. A higher PSNR value thus often suggests higher security
for a cipher image [22]. The PSNR for a cipher image C(m, n, 3) is calculated based on its
plain color image I(m, n, 3) with Equations (40) and (41).

MSE(I, C) =
m

∑
i=1

n

∑
j=1

3

∑
t=1
|I(i, j, t)− C(i, j, t)|2 (40)

PSNR(I, C) = 20log10
255
√

3mn√
MSE(I, C)

(41)

The PSNR values of the cipher images generated by the proposed approach and
several other encryption approaches on testing images are shown in Table 11. It is clear from
Table 11 that the overall performance of the proposed approach on PSNR is comparable to
that of the method in [28] and is higher than that of the other tested methods.

Table 11. The values of PSNR for the proposed approach and several other encryption methods on
all testing images. The best values are shown in bold.

Images The Proposed Ref. [28] Ref. [22] Ref. [33] Ref. [48] Ref. [49]

Lena 83.022 83.021 81.131 80.927 81.027 81.225
Airplane 83.022 83.022 82.462 82.234 82.478 82.531

Fruits 83.022 83.023 81.023 80.835 81.147 80.632
Peppers 83.022 83.021 82.971 83.073 82.735 83.105
Baboon 83.022 83.023 82.873 83.145 82.652 82.534

Girl 84.783 84.782 84.653 84.641 84.437 84.685
Monarch 84.783 84.784 84.732 84.697 84.625 84.746

3.6. Experimental Results on General Color Images

In addition to benchmark color images, the proposed approach is applied to encrypt
100 color images selected from the BSD500 dataset [42]. All tested images are of size
481 × 321. Its overall performance on the encryption of these images is compared with
that of the methods proposed in [22,28,33,38]. Table 12 shows the means and standard
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deviations of the cipher images generated by the proposed approach and several other
encryption methods. It is clear from Table 12 that the proposed approach outperforms
the methods proposed in [22,33,38] on the variance of histograms. However, Table 12
suggests that the method in [28] is slightly better than the proposed approach on variances
of histograms. Since the method in [28] optimizes the uniformity of the histograms of all
components in cipher images with particle swarm optimization [53], it is not surprising
that it can obtain cipher images with higher uniformity for histograms.

Table 12. The means and standard deviations of the variances of histograms for cipher images
generated by the proposed approach and several other encryption methods. The best values are
shown in bold.

Components The Proposed Ref. [28] Ref. [38] Ref. [22] Ref. [33]

R
Mean 594.79 583.19 648.91 637.28 625.53
STD 53.73 44.21 47.52 46.76 45.94

G
Mean 601.27 586.32 644.93 646.37 631.13
STD 49.06 50.37 55.28 52.94 54.06

B
Mean 617.94 607.25 666.21 663.71 656.22
STD 45.06 89.61 98.91 96.92 95.66

Table 13 compares the entropies of the cipher images obtained with the proposed
approach and the other tested methods. Table 13 suggests that the proposed approach
achieves the highest mean entropies for cipher images. Information on the PSNRs of the
cipher images obtained with all tested methods is shown in Table 14. It can be seen from
Table 14 that the proposed approach slightly outperforms all other methods in PSNR.

Table 13. The means and standard deviations of the information entropies for the R, G and B
components of the cipher images obtained with the proposed approach and other tested encryption
methods. The best values are shown in bold.

Methods
R G B

Mean STD Mean STD Mean STD

The proposed 7.9988 0.0001 7.9988 0.0001 7.9988 0.0001
Ref. [28] 7.9961 0.0005 7.9962 0.0006 7.9962 0.0005
Ref. [38] 7.9952 0.0004 7.9953 0.0003 7.9954 0.0004
Ref. [22] 7.9947 0.0005 7.9982 0.0004 7.9952 0.0004
Ref. [33] 7.9935 0.0003 7.9936 0.0002 7.9935 0.0003

Table 14. The means and standard deviations of the PSNRs of the cipher images obtained with the
proposed approach and other tested encryption methods. The best value is shown in bold.

Methods
PSNR

Mean STD

The proposed 80.7231 0.0000
Ref. [28] 80.7229 0.0001
Ref. [38] 80.6343 0.0002
Ref. [22] 80.4352 0.0001
Ref. [33] 80.2396 0.0002

A comparison of the key sensitivities of the proposed approach with those of other
tested methods is shown in Table 15. It is clear from Table 15 that the proposed approach
can achieve mean values of NPCR and UACI closest to their ideal values. Table 16 compares
the plain image sensitivities of all tested methods. The mean values of NPCR and UACI
in Table 16 suggest that the overall plain image sensitivities of the proposed approach are
slightly higher than those of the other tested methods.
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Table 15. The means and standard deviations of key sensitivity NPCRs and UACIs in percentage
for all tested methods on the R, G and B components of cipher images. The best values are shown
in bold.

Methods
NPCR (%) UACI (%)

R G B R G B

The proposed Mean 99.6025 99.6110 99.6130 33.4700 33.4835 33.4555
STD 0.0152 0.0155 0.0130 0.0439 0.0589 0.0867

Ref. [28]
Mean 99.6233 99.6231 99.6232 33.4512 33.4615 33.4513
STD 0.0221 0.0232 0.0124 0.1053 0.0733 0.1042

Ref. [38]
Mean 99.6002 99.6003 99.6006 33.4315 33.4326 33.4378
STD 0.0204 0.0213 0.0193 0.1032 0.0985 0.0927

Ref. [22]
Mean 99.6203 99.6201 99.6202 33.4432 33.4428 33.4527
STD 0.0225 0.0213 0.0204 0.0923 0.1121 0.1027

Ref. [33]
Mean 99.6152 99.6151 99.6153 33.4302 33.4301 33.4415
STD 0.0227 0.0208 0.0183 0.0925 0.0834 0.1023

Table 16. The means and standard deviations of plain image sensitivity NPCRs and UACIs in
percentage for all tested methods on the R, G and B components of cipher images. The best values
are shown in bold.

Methods
NPCR (%) UACI (%)

R G B R G B

The proposed Mean 99.6033 99.6121 99.6107 33.4642 33.4527 33.4658
STD 0.0101 0.0098 0.0125 0.1017 0.1032 0.1073

Ref. [28]
Mean 99.6062 99.6053 99.6044 33.4573 33.4582 33.4535
STD 0.0032 0.0011 0.0023 0.1124 0.1025 0.1327

Ref. [38]
Mean 99.5842 99.5837 99.5842 33.4435 33.4483 33.4216
STD 0.0026 0.0034 0.0015 0.1127 0.1103 0.1114

Ref. [22]
Mean 99.5873 99.5852 99.5973 33.4592 33.4519 33.4612
STD 0.0015 0.0026 0.0031 0.0833 0.1015 0.0954

Ref. [33]
Mean 99.5851 99.5842 99.5862 33.4532 33.4518 33.4526
STD 0.0023 0.0021 0.0017 0.0903 0.0874 0.1217

The computational efficiency of each tested method is evaluated based on the compu-
tation time needed by the method to encrypt a color image. Table 17 shows information on
the amount of computation time each method requires to generate a cipher image. Table 17
clearly shows that the computational efficiency of the proposed approach is comparable
with that of the other methods.

Table 17. The means and standard deviations of the computation time each tested method needs to
generate a cipher image. The best value is shown in bold.

Methods
Computation Time (in Seconds)

Mean STD

The proposed 51.18 0.52
Ref. [28] 202.51 2.67
Ref. [38] 70.57 0.64
Ref. [22] 41.73 0.21
Ref. [33] 35.68 0.35
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4. Discussion

Although the proposed approach has been tested on a few benchmark images and
general color images, additional experimental results are needed to evaluate its overall
performance on general color images. Moreover, the virtual image in the scrambling
process is constructed based on a pixel-level mapping, which can partially reorder the
pixels in the image before the bit-level scrambling operations are performed. However,
virtual images constructed based on bit-level mappings can separate bits in the same pixel
well apart before the scrambling starts; scrambled images generated based on such virtual
images thus may contain less information on the contents of their plain images. In addition,
more sophisticated operations can possibly be developed for the evolutionary system to
further improve the security of cipher images.

It is clear from Section 2 that the proposed approach may require a large number of
keys to generate a cipher image. The encryption of images with large sizes thus could
be computationally inefficient. In addition, the randomness of the chaotic systems used
in the proposed approach may need to be further improved to enhance the security of
cipher images.

A multi-dimension discrete chaotic map with excellent ergodicity and randomness is
proposed in [54] for image encryption. The proposed approach can probably be combined
with the chaotic map proposed in [54] for further improvement in security. Moreover,
continuous chaotic systems proposed in [55] can be used with parameter perturbation to
enhance randomness.

The proposed approach utilizes a set of randomly selected fixed keys for encryption
and the round keys are obtained with modular operations. The method proposed in [56]
can possibly be utilized to eliminate the potential weaknesses in the key expansion method
used in the proposed approach.

5. Conclusions

In this paper, a new approach is proposed for the encryption of color images. The
approach performs encryption in two phases. In the first phase, binary bits in the R, G
and B components of pixels in a plain color image are scrambled based on the rows and
columns of a virtual image constructed from the plain image. In the second phase, an
evolutionary system controlled by a set of chaotic systems is utilized to generate the integer
keys needed to encode the R, G and B components of pixels in a scrambled image. An
analysis on the size of key space and testing results suggest that cipher images generated by
the proposed approach are secure against various types of attacks. In addition, comparisons
of the proposed approach with several other state-of-the-art approaches on a variety of
security measures show that its overall performance is better than that of the other tested
encryption methods.
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