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Abstract: The phasmatodea population evolution algorithm (PPE) is a recently proposed meta-
heuristic algorithm based on the evolutionary characteristics of the stick insect population. The
algorithm simulates the features of convergent evolution, population competition, and population
growth in the evolution process of the stick insect population in nature and realizes the above process
through the population competition and growth model. Since the algorithm has a slow convergence
speed and falls easily into local optimality, in this paper, it is mixed with the equilibrium optimization
algorithm to make it easier to avoid the local optimum. Based on the hybrid algorithm, the population
is grouped and processed in parallel to accelerate the algorithm’s convergence speed and achieve
better convergence accuracy. On this basis, we propose the hybrid parallel balanced phasmatodea
population evolution algorithm (HP_PPE), and this algorithm is compared and tested on the CEC2017,
a novel benchmark function suite. The results show that the performance of HP_PPE is better than
that of similar algorithms. Finally, this paper applies HP_PPE to solve the AGV workshop material
scheduling problem. Experimental results show that HP_PPE can achieve better scheduling results
than other algorithms.

Keywords: phasmatodea population evolution algorithm; equilibrium optimization algorithm;
hybrid method; grouping and parallelism; workshop material scheduling

1. Introduction

Modern heuristic algorithms and meta-heuristic algorithms are other names for intel-
ligent optimization algorithms. They are algorithms built on intuition or empirical data.
They can find approximately optimal solutions to complex problems in a limited time.
They excel at solving nonlinear, global, combinatorial, and other problems. Manufactur-
ing scheduling, path planning, signal and graphics processing, wireless sensor networks,
automatic control, and other fields can all be used successfully. As a result, research into
intelligent optimization algorithms is critical.

Many problems are insurmountable in a reasonable amount of time. A meta-heuristic
algorithm is typically used to obtain an approximately optimal solution to such problems,
and its principles are mostly derived from existing phenomena in the real world [1]. It
is widely used to solve complex optimization problems, such as those in industry and
economics. Meta-heuristic algorithms are extensions of heuristic algorithms, which are
broadly classified as swarm intelligence algorithms, evolutionary algorithms, and physical
algorithms. Here are some typical examples of swarm intelligence algorithms: cuckoo
search algorithm (CSA) [2,3], artificial bee colony algorithm (ABC) [4,5], bat algorithm
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(BA) [6], salp swarm algorithm (SSA) [7], pigeon optimization algorithm (PIO) [8], etc.
They are global optimization algorithms with continuous variables and multiple objectives.
Evolution-based metaheuristic algorithms include the differential evolution algorithm
(DE) [9,10], symbiotic search algorithm (SOS) [11], quasi-affine transformation evolution
algorithm (quatre) [12], the genetic algorithm (GA) [13,14], etc. Finally, meta-heuristic algo-
rithms based on physical models include the simulated annealing algorithm (SA) [15,16],
gravity search algorithm (GSA) [17], charged system search algorithm (CSS) [18], etc.

Faramarzia proposed the equilibrium optimization algorithm (EO) [19] in 2019, a physics-
based meta-heuristic algorithm. The principle of the algorithm is to control the mass-volume
balance model using a random exploration mechanism. Each particle in EO updates its
position by randomly selecting a particle from the equilibrium candidate solution and finally
reaching equilibrium. The adaptive value of the algorithm’s control parameters can reduce
the particle’s moving speed. The ability to search and develop is largely determined by this
random update strategy and the control parameters in the algorithm [20].

The phasmatodea population evolution algorithm (PPE) was proposed by Song in 2020.
It is a meta-heuristic algorithm based on swarm intelligence and evolution. PPE considers
the solution as a population of stick insects, which has the property of population size
in addition to the corresponding fitness values. Among them, the trend of population
evolution is affected by the size of its population. A population will make different decisions
according to its size, which is also affected by environmental changes to a certain extent [21].

As a new algorithm, PPE is theoretically simple and easy to implement. However,
its convergence speed and global search capability need to be improved further to stay
within the local optimum. Based on the concept of hybrid and parallel strategy, this
paper combined the phasmatodea population evolution algorithm with the equalization
optimization algorithm to improve the algorithm’s diversity, expand the algorithm’s search
range, and solve the problems that the algorithm fell easily into local optimum, had slow
convergence speed, and had low convergence accuracy.

There are many strategies to improve the performance of meta-heuristic algorithms,
such as chaotic mapping, Levi’s flight, parallel strategy, the Gaussian walk strategy, the
random walk strategy, the sine and cosine optimization strategy, the adaptive strategy,
the hybrid algorithm improvement strategy, etc. Among them, the packet parallel and
hybrid strategies are two important algorithm improvement strategies. The discussion
about parallel and hybrid optimization algorithms is multifaceted, and different algorithms
are applied in different fields. The packet parallel strategy expands the original population
into multiple groups and performs inter-group communication in the iteration process
to improve the convergence speed of the algorithm [22]. For example, parallel particle
swarm optimization (PSO) [23–25], parallel ant colony optimization (ACO) [26], the parallel
equilibrium optimizer algorithm (PEO) [27], etc. Different inter-group communication
strategies greatly impact the algorithm’s performance, and there are many studies on
inter-group communication strategies. In order to solve the inherent defects of a single op-
timization method, many algorithms use hybrid improvement methods to fuse algorithms
with different characteristics and make use of the positive features of the sub-algorithms
to make the performance of the hybrid algorithm better than the sub-algorithms. For
example, the hybrid Van der Waals force bee colony algorithm (VPACO) [28] was used to
solve the classical TSP problem, the hybrid Harris Hawks Optimization algorithm (hHHO-
AOA) [29] was used to optimize the size and design of autonomous microgrids, and the
hybrid Genetic and Particle Swarm Optimization algorithm (GA-PSO) [30] optimized the
parameters of the five-parameter model. In this paper, the two methods are combined; the
balanced optimization algorithm is mixed with the phasmatodea population evolution
algorithm through the hybrid method, and the packet parallel strategy is applied to the
hybrid balanced phasmatodea population evolution algorithm. On this basis, a new hybrid
parallel balanced phasmatodea population evolution algorithm called HP_PPE is proposed.
The algorithm’s performance is compared and tested by the CEC2017 test suite, which is
relatively new worldwide.
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In order to test the ability of HP_PPE to solve practical problems, we take the AGV
workshop material scheduling problem as an application example of the algorithm. AGV is
an automated guided vehicle. It is a flexible and efficient automated small transport vehicle
widely used in the manufacturing field, storage systems, and other scenarios for cargo
handling [31]. An AGV has the apparent advantages of good flexibility, effortless control,
and high intelligence, and the transportation efficiency of the system can be conveniently
improved by using AGVs for material transportation. Compared with the traditional
manual or semi-manual mode, the transportation mode can reduce labor intensity, reduce
the danger in the cargo handling process, and improve production efficiency [32]. In recent
years, the AGV workshop scheduling problem has attracted the attention of a large number
of scholars. At present, the main solving algorithms include the genetic algorithm (GA),
particle swarm optimization (PSO), differential evolution algorithm (DE), Tabu search
algorithm (TS), etc., as well as related improved algorithms. The load weight of each
vehicle cannot exceed its maximum load, which is an essential constraint of AGVs. On this
basis, the transportation time and path can be minimized to meet the time and efficiency
requirements of the workshop’s production process.

The contributions of this paper are as follows:

1. In this paper, we combined the hybrid method and grouped-parallel strategy and
apply both of them to the study of PPE for the first time, and on this basis, we proposed
the hybrid parallel balanced phasmatodea population evolution algorithm (HP_PPE),
which significantly improves the optimization ability of the original phasmatodea
population evolution algorithm.

2. Secondly, the newly proposed algorithm is applied to the AGV workshop material
schedule for the first time, which expands the application scenario of HP_PPE in the
workshop production scenario.

The remainder of this article is organized as follows: Section 2 briefly introduces some
preliminary knowledge. Section 3 formally presents our hybrid parallel phasmatodea
population evolution algorithm in detail. Section 4 uses extensive experiments to evaluate
the algorithm. Section 5 shows the further application analysis of the proposed HP_PPE
algorithm in AGV workshop material scheduling. Section 6 presents conclusions about the
existing work.

2. Related Work

The research in this paper is a study of a novel metaheuristic algorithm known as
the phasmatodea population evolution algorithm; then, we propose our own algorithm
based on this novel algorithm, and finally apply our newly proposed algorithm to solve
the workshop material scheduling problem. In the following, we briefly introduce some of
the already existing theoretical foundations of this research.

2.1. Phasmatodea Population Evolution Algorithm (PPE)

PPE primarily simulates some characteristics in the evolution process of stick insect
populations in nature, such as convergent evolution, path dependence, population muta-
tion, population growth, and population competition, and develops the algorithm based
on the characteristics above [21]. We briefly describe the first two most important features,
which are convergent evolution and path dependence. Convergent evolution refers to the
possibility of similar evolution occurring if multiple populations live in similar environ-
ments. Path dependence implies that a population’s evolutionary trend will change as its
living conditions change. Unlike other algorithms that take individuals as the solution, PPE
takes the stick insect population as the solution, and its population has the fitness value
and also the property of population size. In the process of seeking the optimal solution, the
convergent evolutionary mechanism makes the size of the population change continuously,
and path dependence affects the evolutionary trend. The population position change is
controlled by the evolutionary trend, and the new position of the population is the sum of
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the old position and the evolutionary trend. After continuously iteratively updating the
properties of the current population, the algorithm finds the optimal solution.

PPE is mostly implemented using the population growth and population competition
models. Equation (1) is commonly used to represent the population growth model, and
the specific implementation employs a logical difference Equation (2). The Equation (3)
describes the population competition model.

dp
dt

= rp
(

1 − p
K

)
(1)

pt+1= apt(1− p t
)

(2)

dp
dt

= r1 p(1− p
n1
− s1

q
n2

) (3)

In Equation (1), p is the population number, r is the population’s effective growth
rate, and K is the population’s maximum environmental bearing capacity in space. In
Equation (2), taking the value of K in Equation (1) as one, a represents the growth rate,
p ranges from 0 to 1, and a ranges from 0 to 4. t represents the current number of iterations,
t ranges from 0 to Max_gen, and Max_gen represents the maximum number of iterations.
In Equation (3), q is the number of populations closest to the current population selected
by the population competition condition, and r1 is the population’s effective growth rate.
In Equations (1) and (3), 1/Np is the initial number of current populations and Np is the
total number of populations in the N-dimensional space. Population p has a maximum
environmental carrying capacity of n1, while population q has a maximum environmental
carrying capacity of n2. s1 denotes that the number of units q consumes a multiple of the
number of resources supporting p.

2.2. Equilibrium Optimization Algorithm (EO)

Each particle (solution) and its position (concentration) serve as search agents in EO.
During the iteration phase, the search subject updates its current position (concentration)
based on the equilibrium candidate at random until the completion of the iteration to
acquire the best result (equilibrium state). In order to improve the search capability, an
“equalization pool” is constructed in EO. Equilibrium candidates are the five particles in
the equilibrium pool. The five particles are made up of the four particles’ best fitness values
and the average of the first four [19].

The initial population consists of randomly distributed particles in the search space, as
shown in Equation (4). The equilibrium pool vector is represented by Equation (5). Finally,
the updated equation of EO is shown in Equation (6).

Cinitial
i = Cmin

i + randi

(
Cmax

i − Cmin
i

)
i = 1, 2, 3, . . . n (4)

→
Ceq,pool =

{→
Ceq(1),

→
Ceq(2),

→
Ceq(3),

→
Ceq(4),

→
Ceq(ave)

}
(5)

In Equation (4), Cinitial
i is the position (initial concentration) vector of the ith particle,

Cmin
i is the minimum dimension of the ith particle, Cmax

i is the maximum dimension of the
ith particle, randi is a random vector of the ith particle and each element of the vector is

in the interval [0,1], and n is the total number of particles. In Equation (6),
→
C represents

the particle to be updated. The vector
⇀
F is used to maintain the balance between search

and development, and the vector
→
G is used to improve the accuracy of the solution in the

development phase. λ is a random number in the interval [0,1]. V is the control volume.

The first part,
→
Ceq on the right-hand side of the equation, is the equilibrium candidate
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particles obtained in the equilibrium pool (
→
Ceq,pool). The second and third terms represent a

change in the concentration of particles in the population. The second term attempts to find
an optimal solution in the solution space, and the third term helps to make the solution
more accurate. During the iteration process, each particle is updated through an updated
equation to improve the adaptability of the particle and the overall optimization ability of
the algorithm [27].

→
C =

→
Ceq +

(→
C −

→
Ceq

)
·
→
F+

→
G

λV

(
1−

→
F
)

(6)

2.3. AGV Workshop Material Scheduling

AGV means automated guided vehicle. Considering that an AGV only engages in
material transportation throughout the processing process, the material scheduling of
the entire production shop is viewed as a small shop logistics system when addressing
the problem of material distribution and scheduling in workshops. On this premise, a
multi-AGV task scheduling model is suggested to enable AGV walking path optimization.

The architecture of the material area and production area, how the AGV moves, and
the difficulty of material transportation all significantly impact the scheduling problem
evaluation index in a workshop logistics system. The workshop material schedule is
typically seen as a whole system to obtain a better scheduling effect. The essence of the job
shop material distribution and scheduling problem is to minimize the overall trip distance
of the AGV while assuring punctuality and economy, which is an extension of the limited
route planning problem. According to the specific workshop processing process, under
the constraints of the given material loading and unloading stations, processing stations,
workshop layout and trolley walking rules, as well as the number of materials required for
each processing step, various processing materials are transported by AGV to the target
stations to meet the production requirements, and the best AGV trolley walking path to
complete the above workshop material distribution scheduling requirements is solved.
The AGV starts from the docking station inside a production beat, continuously conducts
batching activities in a reciprocating cycle between the material warehouse and the station,
and returns the finished goods to the warehouse for storage after each processing [33].

The objective function of the AGV workshop material scheduling model we denoted
by D. The variables are x and y, as shown in Equation (7), and the constraints are shown in
Equation (8).

minD =
n

∑
i=0

n

∑
j=0

k

∑
v=0

Cijxijv (7)

n

∑
i=0

giyiv ≤ Q, v = 1, 2, . . . , k (8)

In Equations (7) and (8), the parameter v represents the vehicle number in this paper,
and the parameter k represents the total number of vehicles. Cij means the distance from
material point i to material point j, Q represents the maximum load of the trolley, n is
the total number of production points, and g represents the demand of each production
point. The optimization objective of the AGV material scheduling model considered in this
paper is to achieve the shortest scheduling distance for a certain load per AGV. For further
description of this model, see Section 5.

3. Hybrid Parallel Balancing Phasmatodea Algorithm

We propose HP_PPE to solve the shortcomings of PPE, such as easy local optimization,
low convergence accuracy, sluggish convergence speed, and lengthy time requirements.
HP_PPE incorporates the equalization pool in the equalization optimization method into
PPE using the hybrid improvement strategy. Based on the hybrid algorithm, it uses the
parallel packet approach.
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3.1. Hybrid Improvement Strategy

In order to solve the defects that the phasmatodea population evolution algorithm
has shown, easily falling into localization and demonstrating low convergence accuracy,
this paper adopts a hybrid improvement mechanism to mix the phasmatodea population
evolution algorithm with other algorithms to improve the diversity and convergence accu-
racy of the original algorithm. The equilibrium optimization algorithm is well suited to
be combined with different algorithms due to its fast convergence and simple structure.
In this paper, we find that compared with other algorithms, the phasmatodea population
evolution algorithm’s performance is best when mixed with the balanced optimization
algorithm, so this paper combines the equilibrium optimization algorithm with the phas-
matodea population evolution algorithm and adds an equilibrium pool to the phasmatodea
population evolution algorithm. It records local optimal solutions, population fluctuations,
and other activities. In the experimental section of this study, it is discovered that when the
equilibrium optimization method is integrated into the phasmatodea population evolution
algorithm, its capacity to jump out of the local optimum is considerably increased.

3.2. Parallel Communication Strategy

Many intelligent optimization algorithms include parallel improvement strategies,
and by dividing the initial population, the parallel method can boost the algorithm’s global
search ability. The grouping structure, movement strategy of each group, population
renewal strategy, competition model, and establishment of the equalized pool in the
hybrid parallel equalized phasmatodea population evolution algorithm (HP_PPE) are
consistent with the original equalization algorithm, and the parameters of the equalized
pool are updated to the new parameters. Populations in various groups communicate
with one another frequently in order to promote group collaboration and the algorithm’s
convergence speed. HP_PPE employs two modes of communication. The first technique
is used in the early stages of the algorithm. It leverages inter-group communication to
deal with additional mutations in the poor population, which can boost the algorithm’s
convergence speed. The second technique is used later in the algorithm to replace the lousy
population in each group, which can alleviate the problem of the algorithm being stuck in
a local optimum.

3.3. Implementation of Hybrid Parallel Improvement Strategy

This algorithm mainly includes initialization, construction of an equalization pool,
and communication between groups.

3.3.1. Initialization

HP_PPE is initialized first. In the initialization process, HP_PPE takes the solution
as the population of stick insects, and first initializes Np populations randomly; each
population is represented by a point xi in the n-dimensional space, and each point is
randomly generated under the constraints of the upper and lower boundaries. Each
population xi has two attributes: the population number pi and the population growth rate
ai. The initial population number pi of each population xi is calculated by Equation (9), and
the initial value of each population growth rate a was set to 1.1. HP_PPE uses k historical
optimal solutions to guide the movement of surrounding solutions. The formula for k
is shown in (10), and all historical optimal solutions are stored in H0. H0 = [xh1, . . . ,xhi,
. . . ,xhk].

pi =
1

Np
(9)

k = blog (NP)c+1 (10)

xt+1= xt + evt (11)
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evt+1 =
(

1− pt+1
)

A + pt+1(ev t +m) (12)

A =
(
s
(

Ho, xt)− xt)·c (13)

pt+1 = at+1 pt(1− pt) (14)

at+1 = at(1 +
f
(

xt)− f
(
xt+1)

f (xt+1)
) (15)

The population position is then updated. The position of the current population in the
future is defined by its current position and the population evolution tendency. Equation
(11) depicts the position update formula. The fitness value of the present population and the
optimal global solution are calculated once the current population shifts to a new position.
In Equation (11), xt+1 is the position of the population at time t + 1, xt is the position of the
population at time t, ev is the evolutionary trend of the population, and the update formula
of ev is shown in Equation (12). In Equation (12), A represents the level closest to the nearest
optimal, as shown in Equation (13). s

(
Ho, xt) is used to find the closest historical optimal

solution to xt in Ho, and c is set to 0.2. The updating procedure has three parts. The first and
second parts mainly use the characteristics of the convergent evolution of the stick insect
population, and the third part adopts the population competition model. The population
number is updated as shown in Equation (14), and the population growth rate a is updated
as shown in Equation (15).

The first and second parts of the update employ the values calculated from the pop-
ulation position to choose which update method to implement, where the population
mutation will affect the population’s evolutionary trend. If a better value for the evolved
population’s location is computed, the next update will continue the prior evolutionary
trend. If the population position does not improve, the population will no longer follow the
original trend and instead choose the nearest optimal solution, resulting in unanticipated
perturbations. On this premise, the population trend updating formula in the second
section is updated into Equation (16).

evt+1= rand·A + st·B (16)

In Equation (13), A represents the degree closest to the nearest optimal solution,
s(Ho, xt) is used to represent the historical optimal solution closest to xt in Ho, c is the
influence coefficient of the nearest optimal solution on the population, and m represents the
mutation of the population in some dimensions. The population size is updated as shown
in equation (14), where the population growth rate a is updated as shown in equation (15).
For Equation (16), rand denotes an n-dimensional random vector generated using uniform
distribution, with each dimension between 0 and 1, and B denotes an n-dimensional random
vector generated using standard normal distribution. st is initially set to 0.1 (Cmax − Cmin),
and with each iteration of the algorithm, st is updated to st = 0.99st.

The third part is the influence of the competition between populations on the pop-
ulation evolution trend. First, the distance between two populations xi and xj is judged
and compared with G. If the distance between two populations is less than G, the two
populations will compete. The competition will have an impact on the evolution trend of
the current population xi. The calculation formula of G is shown in (15), the evolution trend
is updated in Formula (18), and the population number pi in the competition mechanism is
updated in formula (19). For Equation (17), Max_gen represents the number of iterations,
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and t represents the current number of iterations. For Equation (18), xi is the current
population and xj is randomly selected from other Np−1 populations.

G = 0.1× (Cmax − Cmin)
Max_gen + 1− t

Max_gen
(17)

evt+1= evt+1 +
f
(
xj
)
− f (xi)

f
(

xj
) (xj − xi) (18)

pi= pi+ai pi(1− pi −
f
(

xj
)

f (xi)
pj) (19)

3.3.2. Construction of a Balanced Pool

For the parallel grouping strategy, different grouping has a great impact on the per-
formance of the algorithm. In this paper, we found that the performance of HP_PPE was
best when the number of groups was 2, better than that of HP_PPE when the number of
groups was zero, or more than two groups. Therefore, the number of groups of HP_PPE
was set to 2. The fitness values of all populations are calculated and sorted in each group
to obtain the optimal solution and four equilibrium candidate points. By comparing all
groups, we can obtain the globally optimal solution BestX of the whole population and four
global optimal equilibrium candidate points Ceq1, Ceq2, Ceq3 and Ceq4, so as to construct the
equilibrium pool.

3.3.3. Inter-Group Communication

Each group evolves individually when the equalization pool is initiated and con-
structed. After a specified number of iterations, the two policies are performed to commu-
nicate across groups, and the number of communication iteration intervals is set to 20. The
first technique is employed in the algorithm’s early iterations to increase the algorithm’s
convergence speed by dealing with specific mutations in the lousy population. The second
technique is employed later in the algorithm iteration process to improve the algorithm’s
development ability and search accuracy by replacing the lousy population in each group.

The initial inter-group communication technique is implemented in the first third of
the total number of iterations. This approach individually mutates the particles with low
fitness in each group, and the mutation equation is presented in (20). This strategy can
accelerate the mutant particles’ approach to the average value of the equilibrium candidate
solution and the ideal solution, increasing the algorithm’s convergence speed. Xd and
BestXd are the particles to be mutated and the global optimal particle, and Ceqd is the
equilibrium candidate particle. rand is a random value between 0 and 1. The value of a2 is
determined by Equation (21).

Xd =
BestXd + Ceqd

2
(a2 + randa2) (20)

a2 =
Iter

Max_iter
(21)

The second inter-group communication technique is used in the last two-thirds of the
iteration. It substitutes certain particles with low fitness with the average value of the ideal
particles in each group. The mean of the optimal particles in the first and second groups
replaces the unfit particles in the first group. This process is repeated until some less-fit
particles in all groups have been replaced.

Finally, after the parameters are modified and the optimal value is obtained, the
iteration cycle is complete, and a new iteration begins, which will continue until the
process is complete. Algorithm 1 and Figure 1 show the HP_PPE flowchart and pseudo
code, respectively.
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Algorithm 1: HP_PPE

1. Initialize Np populations;
2. Initialize ev, p, k and a;
3. Group and initialize the position of the each group of populations randomly;
4. Calculate fitness f (x), set the global optimal solution gbest and Ho;
5. for t = 2 to Maxgen do
6. for g = 1 to groups do
7. for i = 1 to num_pop/groups do
8. Update each x to newx;
9. Calculate new fitness f (newx),
10. update gbest and Ho;
11. Update ai and pi;
12. if f (newx) ≤ f (x) then
13. update x, x = newx, update f (x);
14. Update evi;
15. if f (newx) > f (x) then
16. if rd < pi then
17. Update x, x = newx, update f(x);
18. Update evi;
19. Randomly choose a solution xj, (j 6= i);
20. if dist(xj, xi) < G then
21. Update pi, update evi;
22. if pi ≤ 0 or ai ≤ 0 or ai > 4 then
23. Eliminate xi and replace it;
24. find the equilibrium candidate populations of each group;
25. end for
26. end for
27. for g = 1 to groups do
28. Compare, find the equilibrium candidate populations of global
29. and global optional value;
30. end for
31. Calculate the a2
32. if rem(iter,20) = 0 then
33. for g = 1 to groups do
34. each group is sorted according to the fitness value;
35. if iter <= 1/3Max_iter
36. use communication strategy one for half of the
37. populations in each group;
38. else iter > 1/3Max_iter
39. use communication strategy two for half of the
40. populations in each groups;
41. end if
42. end for
43. for g = 1 to groups do
44. for i = 1 to num_pop/groups do
45. Calculate the fitness value for each population after
46. the communication;
47. find the equilibrium candidate populations of each group
48. after the communication;
49. end for
50. end for
51. for g = 1 to groups do
52. Compare, find the equilibrium candidate populations of
53. global after the communication;
54. end for
55. end if
56. The optimal comparison between each population in each group,
57. and the individual population so far was conducted to select
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58. the population with good fitness;
59. for g = 1 to groups do
60. Structural Equilibrium pool.
61. for i = 1 to num_pop/groups do
62. Update each population;
63. end for
64. end for
65. end for
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4. Experimental Analysis of HP_PPE

In this section, we test the performance of HP_PPE using the internationally novel
CEC2017 test function suite and compare it with other algorithms. First, it compares
HP_PPE with some standard algorithms, and then it compares HP_PPE with some parallel
algorithms. At the end of each section, we analyze the comparison results.

4.1. Benchmark Functions

This section tests our proposed HP_PPE using 30 functions from the CEC2017 bench-
mark function suite, as shown in Table 1. The benchmark functions include three uni-
modal functions (F1–F3), seven simple multimodal functions (F4–F10), ten hybrid functions
(F11–F20), and ten composition functions (F21–F30). The hybrid functions are composed
of the first two functions. Among them, the unimodal functions test the development
ability, the multimodal functions test the exploration ability, and the hybrid and compo-
sition functions are used to represent some challenging problems. All test functions are
minimization problems, and the search range of all test functions is set to [−100, 100]. Since
most variables in real-world problems have few connections, the variables in CEC2017 are
randomly divided into sub-components [34].

Table 1. Benchmark functions of CEC2017.

No. Type Functions

F1
Unimodal
Functions

Shifted and Rotated Bent Cigar Function
F2 Shifted and Rotated Sum of Different Power Function *
F3 Shifted and Rotated Zakharov Function

F4

Simple
Multimodal
Functions

Shifted and Rotated Rosenbrock’s Function
F5 Shifted and Rotated Rastrigin’s Function
F6 Shifted and Rotated Expanded Scaffer’s F6 Function
F7 Shifted and Rotated Lunacek Bi_Rastrigin Function
F8 Shifted and Rotated Non-Continuous Rastrigin’s Function
F9 Shifted and Rotated Levy Function

F10 Shifted and Rotated Schwefel’s Function

F11

Hybrid
Functions

Hybrid Function 1 (N = 3)
F12 Hybrid Function 2 (N = 3)
F13 Hybrid Function 3 (N = 3)
F14 Hybrid Function 4 (N = 4)
F15 Hybrid Function 5 (N = 4)
F16 Hybrid Function 6 (N = 4)
F17 Hybrid Function 6 (N = 5)
F18 Hybrid Function 6 (N = 5)
F19 Hybrid Function 6 (N = 5)
F20 Hybrid Function 6 (N = 6)

F21

Composition
Functions

Composition Function 1 (N = 3)
F22 Composition Function 2 (N = 3)
F23 Composition Function 3 (N = 4)
F24 Composition Function 4 (N = 4)
F25 Composition Function 5 (N = 5)
F26 Composition Function 6 (N = 5)
F27 Composition Function 7 (N = 6)
F28 Composition Function 8 (N = 6)
F29 Composition Function 9 (N = 3)
F30 Composition Function 10 (N = 3)

* F2 exhibits unstable behavior.

4.2. Comparison with Other Standard Algorithms

In this section, comparative experiments are conducted between HP_PPE and PPE [21],
CCS [35], EBH [36], BH [37], WOA [38], and APSO [39], demonstrating the performance of
the HP_PPE algorithm in low and high dimensions, as shown in Tables 2 and 3.
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Table 2. Comparison of average of fitness functions on 10D optimization among APSO, WOA, BH,
EBH, CCS, PPE, and HP_PPE.

F(x) APSO WOA BH EBH CCS PPE HP_PPE

F1 2.5780 × 103 > 6.2338 × 106 < 5.3197 × 108 < 4.8922 × 103 > 1.5447 × 104 > 5.5384 × 103 > 6.6144 × 104

F2 200.0024 > 5.0351 × 105 < 1.0925 × 107 < 233.4492 < 2.4830 × 103 < 210.3234 > 221.7403
F3 300.0551 > 2.7675 × 103 < 2.9433 × 103 < 300.0000 > 410.6009 < 300.0253 > 304.1250
F4 401.9578 > 434.0236 < 458.8530 < 405.0587 < 411.3768 < 407.0841 < 404.6802
F5 556.9483 < 559.3323 < 550.4430 < 536.8469 < 546.8702 < 529.8673 > 530.7990
F6 607.7350 < 635.5455 < 630.7529 < 623.7923 < 631.1905 < 602.5282 < 601.6631
F7 743.5262 < 784.6253 < 759.5797 < 760.6150 < 803.7964 < 727.5505 < 726.1186
F8 846.2986 < 843.1856 < 831.9381 < 831.7152 < 833.7346 < 819.1048 < 816.0479
F9 1.1640 × 103 < 1.4532 × 103 < 1.0743 × 103 < 1.1991 × 103 < 1.4386 × 103 < 922.7870 < 906.2824

F10 2.1503 × 103 < 2.1505 × 103 < 2.2245 × 103 < 2.0846 × 103 < 2.0511 × 103 < 1.8003 × 103 < 1.7245 × 103

F11 1.1388 × 103 < 1.2071 × 103 < 1.1764 × 103 < 1.1967 × 103 < 1.2134 × 103 < 1.1251 × 103 < 1.1234 × 103

F12 1.7411 × 104 < 3.8184 × 106 < 1.2980 × 106 < 9.4809 × 105 < 2.2751 × 103 < 2.5444 × 104 < 1.6041 × 104

F13 4.8410 × 103 > 2.0652 × 104 < 1.4149 × 104 < 1.3826 × 104 < 1.9960 × 104 < 9.2302 × 103 < 4.9364 × 103

F14 1.4488 × 103 > 1.9297 × 103 < 2.9113 × 103 < 1.7254 × 103 > 1.6755 × 103 > 1.4703 × 103 > 1.9291 × 103

F15 1.5143 × 103 > 8.0922 × 103 < 1.1019 × 104 < 3.7836 × 103 < 3.7061 × 103 < 1.5514 × 103 > 2.3897 × 103

F16 1.9080 × 103 < 1.8771 × 103 < 1.8719 × 103 < 1.8073 × 103 < 1.7789 × 103 > 1.8437 × 103 < 1.7908 × 103

F17 1.7950 × 103 < 1.8162 × 103 < 1.7939 × 103 < 1.7984 × 103 < 1.7771 × 103 < 1.7567 × 103 < 1.7509 × 103

F18 9.1038 × 103 < 1.5625 × 104 < 8.2555 × 103 < 2.5033 × 104 < 3.2619 × 104 < 1.1399 × 104 < 5.4399 × 103

F19 2.9469 × 103 > 4.4361 × 104 < 7.9903 × 103 < 4.9336 × 103 < 4.2507 × 103 < 2.1573 × 103 > 3.7627 × 103

F20 2.1158 × 103 < 2.1927 × 103 < 2.1017 × 103 < 2.1515 × 103 < 2.1097 × 103 < 2.0706 × 103 < 2.0569 × 103

F21 2.3436 × 103 < 2.3232 × 103 < 2.2295 × 103 > 2.2481 × 103 > 2.2034 × 103 > 2.3021 × 103 < 2.2902 × 103

F22 2.6464 × 103 < 2.4197 × 103 < 2.3414 × 103 < 2.3082 × 103 < 2.3136 × 103 < 2.3043 × 103 > 2.3049 × 103

F23 2.7347 × 103 < 2.6526 × 103 < 2.6798 × 103 < 2.6444 × 103 < 2.6579 × 103 < 2.6499 × 103 < 2.6418 × 103

F24 2.8222 × 103 < 2.7751 × 103 < 2.6583 × 103 > 2.7209 × 103 < 2.5215 × 103 > 2.7280 × 103 < 2.7207 × 103

F25 2.9215 × 103 < 2.9345 × 103 < 2.9479 × 103 < 2.9357 × 103 < 2.9351 × 103 < 2.9295 × 103 < 2.9096 × 103

F26 3.3712 × 103 < 3.6168 × 103 < 3.1596 × 103 < 3.0091 × 103 < 3.1325 × 103 < 2.9663 × 103 < 2.8676 × 103

F27 3.1906 × 103 < 3.1378 × 103 < 3.1685 × 103 < 3.1106 × 103 > 3.1129 × 103 > 3.1382 × 103 < 3.1372 × 103

F28 3.3782 × 103 < 3.4140 × 103 < 3.2421 × 103 < 3.2967 × 103 < 3.2058 × 103 > 3.3009 × 103 < 3.2269 × 103

F29 3.3472 × 103 < 3.3964 × 103 < 3.2738 × 103 < 3.2740 × 103 < 3.2380 × 103 < 3.2542 × 103 < 3.2332 × 103

F30 3.7910 × 105 < 1.3732 × 106 < 1.3877 × 106 < 9.6717 × 105 < 2.8117 × 105 < 2.6690 × 105 < 1.9652 × 105

</=/> 22/0/8 30/0/0 28/0/2 25/0/5 23/0/7 22/0/8 -

Table 3. Comparison of average of fitness functions on 30D optimization among APSO, WOA, BH,
EBH, CCS, PPE, and HP_PPE.

F(x) APSO WOA BH EBH CCS PPE HP_PPE

F1 8.7770 × 103 > 1.1805 × 109 < 1.2814 × 1010 < 4.0908 × 103 > 5.0862 × 106 < 2.0950 × 105 > 4.1310 × 106

F2 218.8960 > 5.0621 × 1032 < 3.8516 × 1040 < 1.1854 × 1015 < 3.7737 × 1031 < 2.2261 × 1012 > 1.3860 × 1013

F3 4.5606 × 103 > 2.3633 × 105 < 7.3016 × 104 < 7.1105 × 103 > 8.7552 × 104 < 7.2491 × 103 > 1.1754 × 104

F4 482.3065 > 774.8969 < 3.0501 × 103 < 494.6746 > 530.0303 < 508.6853 > 522.9445
F5 792.5104 < 833.0313 < 773.8702 < 723.7200 < 785.4899 < 677.8883 < 675.6955
F6 623.5470 > 679.6597 < 671.2125 < 656.3925 < 668.3710 < 642.0989 < 640.1540
F7 964.6982 > 1.2737 × 103 < 1.1831 × 103 < 1.1591 × 103 < 1.3495 × 103 < 976.2660 > 977.9216
F8 1.0424 × 103 < 1.0391 × 103 < 1.0299 × 103 < 976.9357 < 987.3624 < 939.2946 < 937.0133
F9 7.6037 × 103 < 1.0526 × 104 > 6.7611 × 103 < 5.3157 × 103 < 6.8942 × 103 < 4.2115 × 103 > 4.6635 × 103

F10 5.2695 × 103 < 7.0705 × 103 < 7.6673 × 103 < 5.5310 × 103 < 5.6721 × 103 < 4.9834 × 103 < 4.7256 × 103

F11 1.2273 × 103 > 5.2209 × 103 < 2.6162 × 103 < 1.3134 × 103 < 1.5067 × 103 < 1.2336 × 103 > 1.2475 × 103

F12 4.2016 × 105 > 1.9182 × 108 < 2.2066 × 109 < 1.2938 × 107 < 3.7364 × 107 < 2.2810 × 106 < 1.7365 × 106

F13 1.5019 × 104 > 1.1449 × 106 < 5.3896 × 108 < 1.2394 × 105 < 1.6483 × 105 < 3.3412 × 104 < 3.3070 × 104

F14 3.0582 × 104 > 2.5465 × 106 < 4.6671 × 105 < 4.3822 × 104 > 2.8609 × 105 < 1.4801 × 104 > 7.8681 × 104

F15 1.1475 × 104 < 1.1390 × 106 < 2.0054 × 104 < 4.8117 × 104 < 5.4937 × 104 < 7.6309 × 103 < 3.3261 × 103

F16 3.0370 × 103 < 4.2136 × 103 < 4.2478 × 103 < 3.4134 × 103 < 3.6435 × 103 < 2.8134 × 103 < 2.6949 × 103

F17 2.4174 × 103 < 2.6527 × 103 < 2.7703 × 103 < 2.4361 × 103 < 2.8097 × 103 < 2.2966 × 103 < 2.2524 × 103
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Table 3. Cont.

F(x) APSO WOA BH EBH CCS PPE HP_PPE

F18 2.4008 × 105 > 8.9304 × 106 < 8.8726 × 105 < 6.8510 × 105 < 3.2000 × 106 < 2.5478 × 105 > 3.6297 × 105

F19 1.0555 × 104 < 9.1050 × 106 < 9.5380 × 105 < 5.2232 × 105 < 3.8705 × 106 < 5.6581 × 103 < 5.5680 × 103

F20 2.7245 × 103 < 2.8685 × 103 < 2.6924 × 103 < 2.7382 × 103 < 2.6837 × 103 < 2.6208 × 103 < 2.6040 × 103

F21 2.6034 × 103 < 2.6145 × 103 < 2.6047 × 103 < 2.5087 × 103 < 2.5752 × 103 < 2.4621 × 103 > 2.4753 × 103

F22 7.1563 × 103 < 7.8469 × 103 < 6.5478 × 103 < 5.6361 × 103 < 6.9669 × 103 < 4.4150 × 103 > 4.5172 × 103

F23 3.4232 × 103 < 3.0807 × 103 > 3.3474 × 103 < 3.0424 × 103 > 3.1508 × 103 < 3.0993 × 103 > 3.1144 × 103

F24 3.5234 × 103 < 3.1915 × 103 > 3.5856 × 103 < 3.1820 × 103 > 3.3307 × 103 < 3.2577 × 103 < 3.2302 × 103

F25 2.8990 × 103 > 3.0769 × 103 < 3.1925 × 103 < 2.9199 × 103 > 2.9463 × 103 < 2.9285 × 103 > 2.9323 × 103

F26 7.6952 × 103 < 8.2106 × 103 < 8.3646 × 103 < 6.7678 × 103 < 7.7051 × 103 < 5.6433 × 103 < 5.1623 × 103

F27 3.4687 × 103 > 3.4352 × 103 > 4.1485 × 103 < 3.3944 × 103 > 3.3005 × 103 > 3.6061 × 103 < 3.4742 × 103

F28 3.1710 × 103 > 3.4867 × 103 < 4.1489 × 103 < 3.2589 × 103 > 3.3250 × 103 < 3.2730 × 103 < 3.2640 × 103

F29 4.3101 × 103 < 5.2795 × 103 < 5.6814 × 103 < 4.6004 × 103 < 5.0842 × 103 < 4.1059 × 103 < 4.0950 × 103

F30 1.0730 × 104 > 3.1793 × 107 < 1.7950 × 107 < 3.5444 × 106 < 9.5391 × 106 < 1.0825 × 105 < 2.2837 × 104

</=/> 15/0/15 26/0/4 30/0/0 21/0/9 29/0/1 17/0/13 -

General parameter settings for the experiments:

• For the two comparative experiments in this section, the evaluation time of all algo-
rithms is set as 20,000 times.

• The population size of all algorithms is set as 20.
• The dimension in Table 1 is set as 10.
• The dimension in Table 2 is set as 30.
• The independent running times of each algorithm on different functions is set as 30.

The search range for each dimension is [−100, 100]. FES = 20,000, pop_size = 20,
Dim_1 = 10, Dim_2 = 30, runs = 30.

Tables 2 and 3 show the average values of the proposed HP_PPE and other comparison
algorithms over 30 benchmark functions. In the last row of the table, the comparison results
of all the functions are summarized. The symbol (<) means that the algorithm performs
worse than HP_PPE on the current benchmark function, the symbol (=) means that the
two algorithms perform similarly on the current benchmark function, and the symbol (>)
means that HP_PPE performs poorly. The values in bold in the table are the best results for
the current test function.

We performed analysis of the data in Table 2, and longitudinally compared the evalua-
tion results of APSO, WOA, BH, EBH, CCS, and PPE on 30 benchmark functions, which
were 22/0/8, 30/0/0, 28/0/2, 25/0/5, 23/0/7, and 22/0/8, respectively. This shows that
HP_PPE has high convergence accuracy in 10 dimensions, and the overall performance is
substantially ahead of the other six algorithms, especially WOA and BH. Comparing the
experimental results of different reference functions horizontally shows that HP_PPE can
achieve satisfactory results on most of the benchmark functions. Among them, HP_PPE
can obtain the actual minimum value on F6-F12, F17-F18, F20, F23, F25-F26, and F29-F30.
Compared with other algorithms, HP_PPE has the best ability to solve most multimodal
functions, hybrid functions, and combinations, but is inferior to some algorithms in solving
unimodal functions. Compared with APSO, HP_PPE is superior in solving most multi-
modal functions, most hybrid functions, and all combinatorial functions, although HP_PPE
is inferior to APSO in solving unimodal functions. Compared with WOA, HP_PPE achieves
better results on all functions. Compared with BH, HP_PPE has better performance on
all unimodal functions, multimodal functions, hybrid functions, and most combinatorial
functions. Compared with EBH, the ability of HP_PPE to solve unimodal functions is infe-
rior. However, the ability of HP_PPE to solve all multimodal functions is superior to EBH,
and the ability of HP_PPE to solve most diverse functions and most combined functions
is superior to EBH. HP_PPE is superior to CCS in solving most unimodal functions, all
multimodal functions, most diverse functions, and most combined functions. Compared
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with PPE, the ability of HP_PPE to solve unimodal functions was inferior, but the ability of
HP_PPE to solve the other three types of functions was superior to PPE. Thus, in the case of
10 dimensions, HP_PPE is far ahead of other algorithms in its ability to solve multimodal,
hybrid, and combined functions. However, its ability to solve unimodal functions is not as
good as some algorithms.

We performed analysis of the data in Table 3; the evaluation results of APSO, WOA, BH,
EBH, CCS, and PPE on 30 benchmark functions were 15/0/15, 26/0/4, 30/0/0, 21/0/9,
29/0/1, and 17/0/13, respectively, when compared longitudinally. It can be seen that
the overall performance of HP_PPE is similar to that of the APSO algorithm, while it is
significantly ahead of WOA, BH, CCS, EBH, and PPE. Comparing the best experimental
results of different benchmark functions horizontally, it can be seen that HP_PPE is overall
ahead of the other algorithms except APSO. Among them, HP_PPE can obtain the actual
minimum value on F5, F8, F10, F15–F17, F19–F20, F26, and F29. Compared with APSO,
although HP_PPE is not as good at solving unimodal functions, it has better abilities in
solving multimodal functions and combinatorial functions than APSO, and its abilities in
solving hybrid functions are similar to APSO. Compared with WOA, HP_PPE is superior
in solving all unimodal functions, multimodal functions, hybrid functions, and most
combinatorial functions. Compared with BH, HP_PPE achieves better results in solving
all types of functions. Compared with EBH, HP_PPE is less capable of solving unimodal
functions than EBH. However, the ability of HP_PPE to solve most multimodal functions
and most hybrid functions is ahead of EBH. The ability of HP_PPE to solve combinatorial
functions is similar to that of EBH. Compared with CCS, the ability of HP_PPE to solve
all unimodal functions, all multimodal functions, and all mixed functions is superior,
and the ability to solve most combined functions is superior. The ability of HP_PPE
to solve unimodal functions is inferior to PPE, but the ability of HP_PPE to solve most
multimodal functions, most mixed functions, and most combined functions is superior
to PPE, which is consistent with the comparison results of 10 dimensions. Thus, in the
case of 30 dimensions, the ability of HP_PPE to solve unimodal functions is not as good
as that of partial algorithms. The ability to solve multimodal functions is far ahead of
other algorithms, which is consistent with the 10-dimensional results. The ability to solve
the mixed functions, although approximate to APSO, is better than other algorithms. The
ability to solve combinatorial functions, although approximate to EBH, is ahead of other
comparison algorithms.

In order to further compare and analyze the performance of HP_PPE, Tables 4 and 5
show the best results obtained by the four test functions in the cases of 10 and 30 dimensions,
respectively. As can be seen from Table 4, compared with other algorithms, the overall
performance of HP_PPE is better than the other six classical algorithms. In particular, it
is far ahead of other algorithms in terms of multimodal functions, mixture functions, and
combination functions, which is consistent with the conclusions obtained from the above
analysis. As can be seen from Table 5, the overall performance of HP_PPE is better than
five other algorithms, although it is second to APSO. Unlike in ten dimensions, although
HP_PPE’s ability to solve hybrid functions is ahead of other algorithms, its ability to solve
multimodal functions is approximated by APSO, and its ability to solve combinatorial
functions is slightly inferior to APSO and approximated by PPE and EBH.

Table 4. Performance of different algorithms on different types of functions (10D).

Algorithm Unimodal Multimodal Hybrid Composition Win

HP_PPE 0 5 5 5 15
APSO 2 1 3 0 6
CCS 0 0 1 3 4
PPE 0 1 1 1 3
EBH 1 0 0 1 2

WOA 0 0 0 0 0
BH 0 0 0 0 0
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Table 5. Performance of different algorithms on different types of functions (30D).

Algorithm Unimodal Multimodal Hybrid Composition Win

APSO 2 3 4 3 12
HP_PPE 0 3 5 2 10

PPE 0 1 1 2 4
EBH 1 0 0 2 3
CCS 0 0 0 1 1

WOA 0 0 0 0 0
BH 0 0 0 0 0

Although the above comparison results clarify the optimization performance of
HP_PPE, the Wilcoxon signed rank test is also used in this paper to verify the statisti-
cally significant difference between HP_PPE and other algorithms. In this statistical test,
the null hypothesis indicates that the median of the results obtained from HP_PPE is not
statistically significantly different from the other algorithms. In order to reject the null
hypothesis, R+ and R− were calculated according to the results in Tables 2 and 3, and the
Wilcoxon signed rank test results of HP_PPE and the other six algorithms at the significance
level of α = 0.05 in the case of 10 and 30 dimensions are shown in Tables 6 and 7, respectively.
“R+” in the table indicates the sum of the rankings of the test functions where HP_PPE
exceeds the competitors, while “R−” is the reverse. The p-value records the significance
of HP_PPE compared with the other algorithms. These values are evaluated to determine
whether to accept or reject the null hypothesis [40]. “Sig.” indicates the significance result
of HP_PPE compared with other algorithms; the symbol (−) indicates that the performance
of the algorithm is better than that of HP_PPE under the current benchmark function, the
symbol (+) means that the algorithm is worse than HP_PPE, and the symbol (≈) indicates
that the performance of the algorithm is almost no different from that of HP_PPE. The
comparative results of Tables 6 and 7 are similar. The Wilcoxon signed rank test shows that
the null hypothesis is rejected, which means that the optimization performance of HP_PPE
is statistically far better than that of its competitors. From the perspective of statistics, it can
be concluded that the optimization results of HP_PPE are significantly better than those
of WOA, BH, EBH, and CCS, and there is no significant difference between HP_PPE and
APSO and PPE.

Table 6. Wilcoxon signed rank test results (10D).

Comparison R+ R− p-Value Sig.

HP_PPE versus APSO 302 163 0.1529 ≈
HP_PPE versus WOA 462 3 2.3534 × 10−6 +

HP_PPE versus BH 447 18 1.0246 × 10−5 +
HP_PPE versus EBH 374 91 0.0036 +
HP_PPE versus CCS 360 105 0.0087 +
HP_PPE versus PPE 282 183 0.3086 ≈

Table 7. Wilcoxon signed rank test results (30D).

Comparison R+ R− p-Value Sig.

HP_PPE versus APSO 231 234 0.9754 ≈
HP_PPE versus WOA 459 6 3.1817 × 10−6 +

HP_PPE versus BH 465 0 1.7344 × 10−6 +
HP_PPE versus EBH 337 128 0.0316 +
HP_PPE versus CCS 454 11 5.2165 × 10−6 +
HP_PPE versus PPE 212 253 0.4217 ≈
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4.3. Convergence Analysis

Meta-heuristic algorithms with different convergence speeds may eventually obtain
similar results, so the analysis of algorithm convergence is also a critical experimental
link. In this section, fourteen groups are selected from the 10-dimensional experimental
convergence diagram for demonstration, including one unimodal function (F2), five multi-
modal functions (F4, F6, F7, F8, and F9), three hybrid functions (F13, F14, and F17), and five
combined functions (F21, F22, F26, F28, and F30). Figure 2 shows the convergence curves
of the seven algorithms under different test functions. The horizontal axis is the number
of iterations, and the vertical axis is the logarithmic scale of the convergence value of the
current function.
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Experimental results show that the convergence accuracy of HP_PPE is better than
that of other algorithms. HP_PPE can achieve continuous convergence on most benchmark
functions, and its all-around performance is better than other algorithms. In the early stages
of algorithm execution, HP_PPE has a faster convergence speed than other algorithms
on most benchmark functions. Compared with other algorithms, the proposed HP_PPE
algorithm does not easily fall into the local optimal state. As shown in Figure 2a, although
the convergence speed of HP_PPE was slower than that of APSO in the early stage, it
achieved convergence results similar to APSO in the later stage. As shown in Figure 2h,
although the convergence speed of HP_PPE was not as good as that of APSO, it achieved a
relatively good convergence result in the later stages. As illustrated in Figure 2c, HP_PPE
converged more stably than other algorithms without entering a local optimum, resulting
in better convergence results. As shown in Figure 2d, although the convergence speed was
not as fast as other algorithms in the early stage, other algorithms fell into local optima,
while HP_PPE stably converged to a better value. As shown in Figure 2f, APSO, EBH,
and PPE all fell into local optima, while HP_PPE converged more stably and achieved
better convergence results than BH, CCS, and WOA. As shown in Figure 2h, although the
convergence speed and final convergence value of HP_PPE were not as good as those of
APSO, compared with the other five algorithms, HP_PPE had a faster convergence speed
and higher convergence accuracy. By analyzing other convergence graphs, it can be found
that the convergence speed of HP_PPE is faster than other algorithms, it is jumps out of
the local optimum more easily, and the convergence accuracy is higher than that of the
other algorithms.

Most of the comparison algorithms do not continue to converge, and the convergence
curve tends to be stable in the later stages, which can be regarded as the algorithm falling
into the local optimum. At the same time, HP_PPE can find better results and jump out of
the local optimum. By comparing with PPE, it can be found that the HP_PPE algorithm
improves the diversity of the algorithm through parallel mechanisms and hybrid utilization
of the advantages of equilibrium optimization algorithms and PPE, and solves the defects
of PPE, such as its slow convergence speed and tendency to fall into a local optimum.

4.4. Comparison with Parallel Algorithms

In order to further verify the performance of HP_PPE, three parallel algorithms,
PPSO [41], PWOA [42], and MMSCA [43], are selected in this paper to compare with
it. Tables 8 and 9 show the average test values of HP_PPE and the other comparison
algorithms on 30 benchmark functions in CEC2017 in 10 and 30 dimensions, respectively.
The parameters and symbols of the algorithm are set as those in Section 4.2 of this paper.
HP_PPE can obtain the best results in most functions, and the overall performance is
better than other parallel algorithms. The data in Table 8 were analyzed, and the evaluation
results of PPSO, PWOA, and MMSCA on 30 benchmark functions were compared vertically,
with results of 21/0/9, 19/0/11, and 28/0/2, respectively. It can be seen that the overall
performance of HP_PPE is ahead of the three parallel algorithms. Comparing the best
experimental results of different benchmark functions horizontally shows that HP_PPE
can achieve satisfactory results on most benchmark functions. Among them, HP_PPE can
obtain the actual minimum value on F2, F5-F8, F10-F13, F15-F17, F19, F21, F25-F26, and
F28-F30. Compared with the other three parallel algorithms, HP_PPE has the best solving
capability for most multimodal, hybrid, and combinatorial functions, although it is inferior
to some of the algorithms in solving unimodal functions. The data in Table 9 were analyzed,
and the evaluation results of PPSO, PWOA, and MMSCA on 30 benchmark functions were
compared longitudinally, with results of 25/0/5, 23/0/7, and 27/0/3, respectively. It can be
seen that the overall performance of HP_PPE is ahead of the other three parallel algorithms.
Comparing the best experimental results of different benchmark functions horizontally
shows that HP_PPE can achieve satisfactory results on most benchmark functions. Among
them, HP_PPE can obtain the actual minimum value on F2, F4-F11, F17-F18, F20, F22,
and F25-F26. Compared with the other three parallel algorithms, HP_PPE has the best
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ability to solve most multimodal and combination functions, although it is inferior to some
algorithms in solving unimodal and mixed functions.

Table 8. Comparison of average of fitness functions on 10D optimization among PPSO, MMSCA,
and PWOA.

F(x) PPSO MMSCA PWOA HP_PPE

F1 1.8595 × 103 > 2.4656 × 108 < 4.2927 × 107 < 6.6144 × 104

F2 224.2367 < 3.8383 × 105 < 7.3928 × 106 < 221.7403
F3 300.1454 > 606.7382 < 2.0033 × 103 < 304.1250
F4 408.7630 < 418.4225 < 420.9497 < 404.6802
F5 559.6310 < 533.1216 < 550.2127 < 530.7990
F6 635.8977 < 610.7840 < 623.9905 < 601.6631
F7 751.0268 < 754.6577 < 770.2714 < 726.1186
F8 831.2424 < 825.7253 < 833.0629 < 816.0479
F9 1.1617 × 103 < 932.0829 < 1.3119 × 103 < 906.2824

F10 2.2004 × 103 < 1.7965 × 103 < 2.0385 × 103 < 1.7245 × 103

F11 1.1491 × 103 < 1.1455 × 103 < 1.1917 × 103 < 1.1234 × 103

F12 1.2447 × 104 > 2.0371 × 106 < 3.0906 × 106 < 1.6041 × 104

F13 2.8311 × 103 > 6.1275 × 103 < 1.1159 × 104 < 4.9364 × 103

F14 1.4867 × 103 > 1.4878 × 103 > 1.9257 × 103 > 1.9291 × 103

F15 1.6374 × 103 > 1.6298 × 103 > 4.8050 × 103 < 2.3897 × 103

F16 1.8739 × 103 < 1.6490 × 103 > 1.8140 × 103 < 1.7908 × 103

F17 1.7782 × 103 < 1.7540 × 103 < 1.7800 × 103 < 1.7509 × 103

F18 6.5632 × 103 < 3.0830 × 104 < 2.0578 × 104 < 5.4399 × 103

F19 2.8965 × 103 > 2.0029 × 103 > 1.2560 × 104 < 3.7627 × 103

F20 2.1749 × 103 < 2.0614 × 103 < 2.1420 × 103 < 2.0569 × 103

F21 2.3201 × 103 < 2.2051 × 103 > 2.3179 × 103 < 2.2902 × 103

F22 2.3500 × 103 < 2.3140 × 103 < 2.3601 × 103 < 2.3049 × 103

F23 2.7285 × 103 < 2.6409 × 103 > 2.6530 × 103 < 2.6418 × 103

F24 2.6966 × 103 > 2.6416 × 103 > 2.7428 × 103 < 2.7207 × 103

F25 2.9203 × 103 < 2.9234 × 103 < 2.9517 × 103 < 2.9096 × 103

F26 3.1147 × 103 < 3.0036 × 103 < 3.1109 × 103 < 2.8676 × 103

F27 3.1758 × 103 < 3.0988 × 103 > 3.1244 × 103 > 3.1372 × 103

F28 3.3247 × 103 < 3.2075 × 103 > 3.4084 × 103 < 3.2269 × 103

F29 3.2877 × 103 < 3.1801 × 103 > 3.3257 × 103 < 3.2332 × 103

F30 1.3451 × 105 > 9.2503 × 104 > 2.0727 × 105 < 1.9652 × 105

</=/> 21/0/9 19/0/11 28/0/2 -

Table 9. Comparison of average of fitness functions on 30D optimization among PPSO, MMSCA,
and PWOA.

F(x) PPSO MMSCA PWOA HP_PPE

F1 3.4046 × 106 > 1.0650 × 1010 < 4.8333 × 109 < 4.1310 × 106

F2 4.5920 × 1017 < 2.0586 × 1032 < 2.1339 × 1032 < 1.3860 × 1013

F3 6.7412 × 103 > 3.3366 × 104 < 1.6978 × 105 < 1.1754 × 104

F4 513.5943 > 1.1586 × 103 < 962.2483 < 522.9445
F5 732.4175 < 758.3829 < 796.3011 < 675.6955
F6 661.4341 < 643.4638 < 666.1981 < 640.1540
F7 1.0793 × 103 < 1.0897 × 103 < 1.2526 × 103 < 977.9216
F8 982.1570 < 1.0315 × 103 < 1.0182 × 103 < 937.0133
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Table 9. Cont.

F(x) PPSO MMSCA PWOA HP_PPE

F9 5.3564 × 103 < 4.3691 × 103 > 7.0559 × 103 < 4.6635 × 103

F10 5.3147 × 103 < 7.7807 × 103 < 6.5770 × 103 < 4.7256 × 103

F11 1.2880 × 103 < 1.8636 × 103 < 3.9675 × 103 < 1.2475 × 103

F12 1.4607 × 103 < 8.4850 × 108 < 2.7355 × 108 < 1.7365 × 103

F13 9.8003 × 104 < 2.3672 × 108 < 8.0933 × 106 < 3.3070 × 104

F14 1.0725 × 104 > 7.6207 × 104 > 1.2822 × 106 < 7.8681 × 104

F15 2.9877 × 104 < 4.0385 × 106 < 5.6747 × 106 < 3.3261 × 103

F16 3.0331 × 103 < 3.4025 × 103 < 3.4872 × 103 < 2.6949 × 103

F17 2.4942 × 103 < 2.2533 × 103 < 2.6007 × 103 < 2.2524 × 103

F18 1.5905 × 105 > 1.9971 × 106 < 3.5745 × 106 < 3.6297 × 105

F19 1.1781 × 105 < 1.1985 × 107 < 2.2354 × 106 < 5.5680 × 103

F20 2.8214 × 103 < 2.4882 × 103 > 2.8115 × 103 < 2.6040 × 103

F21 2.5449 × 103 < 2.5371 × 103 < 2.5838 × 103 < 2.4753 × 103

F22 6.0040 × 103 < 3.6261 × 103 > 6.5017 × 103 < 4.5172 × 103

F23 3.3470 × 103 < 2.9525 × 103 > 3.0576 × 103 > 3.1144 × 103

F24 3.3122 × 103 < 3.1304 × 103 > 3.1685 × 103 > 3.2302 × 103

F25 2.9476 × 103 < 3.1492 × 103 < 3.1142 × 103 < 2.9323 × 103

F26 6.1899 × 103 < 6.5017 × 103 < 7.8819 × 103 < 5.1623 × 103

F27 3.5951 × 103 < 3.3662 × 103 > 3.4154 × 103 > 3.4742 × 103

F28 3.2729 × 103 < 3.6907 × 103 < 3.6906 × 103 < 3.2640 × 103

F29 4.7297 × 103 < 4.3966 × 103 < 4.8452 × 103 < 4.0950 × 103

F30 1.6738 × 106 < 4.0668 × 107 < 1.2036 × 107 < 2.2837 × 104

</=/> 25/0/5 23/0/7 27/0/3 -

In order to further compare the overall performance of HP_PPE with other parallel
algorithms, the best results obtained by the four algorithms on the four test functions in
the cases of 10 and 30 dimensions are shown in Tables 10 and 11, respectively. As can be
seen from Table 10, compared with other parallel algorithms, the overall performance of
HP_PPE is better than the other three classical algorithms. In particular, its performance
for multimodal and hybrid functions is ahead of other algorithms. Table 11 shows that,
compared with other parallel algorithms, the overall performance of HP_PPE is better than
the other three classical algorithms, consistent with the 10-dimensional comparison results.
In particular, it is superior to the other three parallel algorithms on multimodal, hybrid,
and combinatorial functions.

Table 10. Performance of different algorithms on different types of parallel functions (10D).

Algorithm Unimodal Multimodal Hybrid Composition Win

HP_PPE 1 7 4 3 15
MMSCA 0 0 3 7 10

PPSO 2 0 3 0 5
PWOA 0 0 0 0 0

Table 11. Performance of different algorithms on different types of parallel functions (30D).

Algorithm Unimodal Multimodal Hybrid Composition Win

HP_PPE 1 5 7 6 19
MMSCA 0 1 1 4 6

PPSO 2 1 2 0 5
PWOA 0 0 0 0 0
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Tables 12 and 13 show the Wilcoxon signed rank test results between HP_PPE and the
other three parallel algorithms. By analyzing the data in Table 12, it can be found that in
the case of 10 dimensions, the performance of HP_PPE is significantly better than that of
PWOA and similar to that of PPSO and MMSCA. By analyzing the data in Table 13, it can be
found that the performance of HP_PPE is significantly better than that of PPSO, MMSCA,
and PWOA in the case of 30 dimensions. This can further illustrate the superiority of the
HP_PPE algorithm.

Table 12. Wilcoxon signed rank test results for different parallel algorithms (10D).

Comparison R+ R− p-Value Sig.

HP_PPE versus PPSO 290 175 0.2369 ≈
HP_PPE versus MMSCA 251 214 0.7036 ≈
HP_PPE versus PWOA 455 10 4.7292 × 10−6 +

Table 13. Wilcoxon signed rank test results for different parallel algorithms (30D).

Comparison R+ R- p-Value Sig.

HP_PPE versus PPSO 366 99 0.006 +

HP_PPE versus MMSCA 419 46 1.2506 × 104 +

HP_PPE versus PWOA 450 15 7.6909 × 106 +

Figure 3 shows the convergence plots of the four parallel algorithms under different
test functions. In this section, a unimodal function (F2), five multimodal functions (F4, F7,
F8, F9, and F10), six hybrid functions (F11, F12, F14, F17, F18, and F19), and six combina-
torial functions (F22, F24, F25, F26, F28, and F29) are selected. Comparing convergence
speeds, MMSCA and PWOA are significantly slower than HP_PPE. PPSO and HP_PPE are
similar in the early stages, but the convergence rate of PPSO is slower in the later stages.
From this, we can infer that HP_PPE is more likely to get rid of the local optimum and
continue to seek the global minimum at a later stage. Therefore, the overall convergence
performance of the algorithm is better than that of the other three parallel algorithms.
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Figure 3. Convergence test results in 30 dimensions. (a–r): F2, F4, F7, F8, F9, F10, F11, F12, F14, F17,
F18, F19, F22, F24, F25, F26, F28, F29.
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5. Applied to AGV Workshop Material Scheduling

We use HP_PPE to address this part’s AGV workshop material scheduling problem.
The following is a general description of the workshop material scheduling problem:
Multiple production points have various needs for products, and the material points
supply the vehicles to transfer goods to the production points. When the truck departs
from the material point, it delivers the items to the unallocated production location before
returning to the material point. Unlike the usual AGV material schedule, the optimization
goal of this work is to achieve the shortest scheduling distance for each AGV under a
given load. Figure 4 depicts a two-dimensional shop scheduling environment with a single
warehouse and numerous material points. The gray regions represent impediments, the
green area represents the warehouse (the starting point for the AGV), and the blue areas
represent the workstations.
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5.1. Construction of AGV Workshop Material Scheduling Model

The following conditions are assumed to be true for this paper: (1) The material
storehouse and each station are determined; (2) There is one material area and multiple
production areas; (3) Each AGV can accept the current production order; (4) A material
warehouse distributes materials to multiple stations within the production rhythm of a
unit; (5) Each AGV’s carrying capacity and AGV running speed are limited to a specific
range; (6) Each AGV’s initial batching position is determined randomly.

The parameter v (v = 1, 2, . . . k) represents the vehicle number in this paper, and the pa-
rameter k represents the total number of vehicles. The variables 0 and i(i = 1, 2, . . . n) were
specified for the material and manufacturing areas. The following variables are defined:

xijv =

{
1, if AGV v travels from station i to station j,

0, else
(22)

yiv =

{
1, if station i needs to be fulfilled by AGV v,

0, else
(23)

Cij means the distance from material point i to material point j, Q represents the
maximum load of the trolley, n is the total number of production points, g represents the
demand of each production point, the travelling distance of the trolley is represented by
D, and the solution D of the shortest path is set as the objective function. Finally, the
mathematical model of material scheduling can be obtained as follows:

minD =
n

∑
i=0

n

∑
j=0

k

∑
v=0

cijxijv (24)
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n

∑
i=0

xijv= yjv, j = 1, 2, . . . , n; v = 1, 2, . . . , k (25)

n

∑
j=0

xijv= yjv, i = 1, 2, . . . , n; v = 1, 2, . . . , k (26)

k

∑
v=0

yiv= 1, i = 1, 2, . . . , n (27)

n

∑
i=0

giyiv ≤ Q, v = 1, 2, . . . , k (28)

In the mathematical model of the AGV material scheduling, minD denotes the short-
est path of the objective function. Equations (25) and (26) ensure that the work can be
accomplished at the production point. Equation (27) ensures that only one vehicle can
complete each material point. Equation (28) ensures that the loaded weight of each cart
cannot exceed the maximum loading capacity, which is the most important constraint for
AGV material scheduling.

5.2. Experiment and Result Analysis

To begin, we tested with a small set of data. Table 14 shows the coordinates and
requirements for the task points. In this short collection of test scenarios, the material point
is 0, and the production point is 1–7. The maximum load is 100, and three vehicles finish
the task allocation. The number of iterations in the test is 200, and the population size is
180, divided into six groups. The optimal path estimated by HP_PPE is 217.8, indicating
that HP_PPE can optimize material scheduling.

Table 14. The task point coordinates and demand.

Sequence 0 1 2 3 4 5 6 7

Coordinate (18,54) (22,60) (58,69) (71,71) (83,46) (91,38) (24,42) (18,40)

Requirement 0 89 14 28 33 21 41 57

Second, to further examine the role of HP_PPE in AGV workshop material scheduling,
we selected seven sets of test data from VRPLIB, an international standard example for
constrained vehicle routing scheduling (CVRP), and compared the test results with the PSO,
EO, and PEO algorithms. In order to ensure the fairness of the results, the iteration times of
the four algorithms were uniformly set to 3000 times, and the total particle number was 180.
Table 15 records the best results of the four algorithms on seven sets of test data. Figure 5
shows selected and plotted change curves of the four algorithms on six test datasets.

Table 15. The best results of the four algorithms on seven sets of test data.

Data PSO-Route EO-Route PEO-Route HP_PPE-Route

A-n33-k5 1.2037 × 103 1.1153 × 103 1.1434 × 103 1.1072 × 103

A-n37-k5 1.1118 × 103 1.0788 × 103 1.2195 × 103 1.0758 × 103

A-n39-k5 1.5895 × 103 1.4251 × 103 1.6289 × 103 1.3870 × 103

B-n35-k5 1.4140 × 103 1.1735 × 103 1.1848 × 103 1.0751 × 103

B-n39-k5 1.2859 × 103 1.0835 × 103 1.0481 × 103 1.0460 × 103

P-n20-k2 450.3385 493.5011 475.8411 449.5048
P-n23-k8 573.645 486.8819 508.2372 465.0878



Entropy 2023, 25, 848 26 of 29

Entropy 2023, 25, 848 27 of 31 
 

 

A-n33-k5 1.2037 × 103 1.1153 × 103 1.1434 × 103 1.1072 × 103 

A-n37-k5 1.1118 × 103 1.0788 × 103 1.2195 × 103 1.0758 × 103 

A-n39-k5 1.5895 × 103 1.4251 × 103 1.6289 × 103 1.3870 × 103 

B-n35-k5 1.4140 × 103 1.1735 × 103 1.1848 × 103 1.0751 × 103 

B-n39-k5 1.2859 × 103 1.0835 × 103 1.0481 × 103 1.0460 × 103 

P-n20-k2 450.3385 493.5011 475.8411 449.5048 

P-n23-k8 573.645 486.8819 508.2372 465.0878 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 5. Convergence test results on six sets of test data. (a–f): A-n33-k5, A-n37-k5, A-n39-k5,B-

n35-k5, B-n39-k5, P-n23-k8. 
Figure 5. Convergence test results on six sets of test data. (a–f): A-n33-k5, A-n37-k5, A-n39-k5,B-n35-
k5, B-n39-k5, P-n23-k8.

By analyzing the data in Table 15 and comparing the convergence results of these
four algorithms under the same experimental conditions, it can be found that HP_PPE
can obtain a better convergence value than the PSO, EO, and PEO algorithms. As can be
seen from Figure 5, compared with other algorithms, the convergence accuracy of HP_PPE
is better than the other three algorithms. Although it cannot converge stably in the early
stage, HP_PPE can jump out of the local optimum and achieve a better convergence value
than other algorithms in the middle and late stages.
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Finally, the algorithm was tested with a set of complex production shop data. The
coordinates and requirements of the tasks are shown in Table 16, where zero is the coordi-
nate of the material point and 1–10 are the coordinates of the production machines. The
maximum load of the vehicle was set at 100, and the task allocation was completed by five
vehicles. In the test, the number of iterations was 500, the population size was 180, and
HP_PPE was divided into 6 groups. HP_PPE was compared with other algorithms, and
the comparison results are shown in Table 17.

Table 16. Coordinates and requirements of machines in the workshop.

Sequence Coordinate Requirement

0 (116.426549,39.779675) 0
1 (116.323645,39.961334) 4
2 (116.409614,39.942402) 6
3 (116.363324,39.976932) 3
4 (116.316225,39.936386) 11
5 (116.431244,39.986622) 10
6 (116.354304,40.006782) 5
7 (116.3259,39.930093) 3
8 (116.324696,39.845583) 4
9 (39.845583,39.986873) 6
10 (116.472828,39.988674) 2

Table 17. Comparison results of different algorithms.

PSO-Route EO-Route PEO-Route HP_PPE-Route

best 199.9061 100.1945 100.2055 100.1712

mean 199.9495 100.4263 100.4707 100.3385

By analyzing the data in Table 17 under the same experimental conditions and com-
paring the best values, it can be found that HP_PPE can obtain a better solution than the
PSO, EO, and PEO algorithms in material scheduling and is more likely to jump out of
the local optimum. By comparing the average value, it can be found that the convergence
accuracy of HP_PPE is higher than that of other algorithms. Due to the high complexity of
HP_PPE itself, although a better result can be obtained, the running time of the algorithm
is relatively long.

6. Conclusions

In this paper, the parallel and hybrid improvement strategies are applied. Firstly, the
phasmatodea population evolution algorithm is mixed with the equilibrium optimization
algorithm to enhance the ability of the algorithm to jump out of the local optimum and
improve the convergence accuracy of the algorithm. On this basis, a new hybrid parallel
balancing phasmatodea population evolution algorithm (HP_PPE) is proposed by using
parallel mechanisms to shorten the algorithm’s running time. By comparing HP_PPE with
six standard algorithms and then with three unique parallel algorithms by CEC2017, it
can be found that the convergence accuracy of HP_PPE is better than most of the existing
classical and new algorithms. It is faster than other algorithms in terms of convergence
speed and better than other algorithms in terms of jumping out of the local optimum. In
order to test the optimization ability of HP_PPE in a realistic scenario, the AGV workshop
material scheduling model is selected in this paper, and the HP_PPE algorithm is compared
with other algorithms in this scenario. The comparison results show that HP_PPE can obtain
better results than other algorithms, which further proves the comprehensive optimization
ability of the proposed HP_PPE algorithm and its ability to solve the material scheduling
problem in the AGV workshop.
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Since PPE was proposed recently, not much research has been conducted on it. Among
the existing studies, there are hybrid approaches to hybridize it with other algorithms,
or parallel approaches are used. In this paper, for the first time, both hybrid and parallel
approaches are used to research PPE, and the results show that the proposed HP_PPE not
only far outperforms other algorithms in the latest benchmark test suite CEC2017, but also
significantly outperforms other algorithms in workshop material scheduling. Therefore,
the research results of this paper are successful and impressive. Although the HP_PPE
algorithm proposed in this paper has significantly improved the convergence speed and the
ability to jump out of the local optimum compared with other algorithms, the improvement
of the running time of this algorithm is not significant, which can be used as a direction
for further improvement in the future. In addition, this algorithm can also be applied to
problems in wireless sensor networks, public bus scheduling systems, feature selection,
deep learning, and other fields.

Author Contributions: Conceptualization, S.H. and Y.Z.; methodology, S.H.; software, S.H. and J.P.;
validation, S.H., S.C. and F.Y.; formal analysis, S.H.; investigation, S.H.; resources, S.H.; data curation,
S.H.; writing—original draft preparation, S.H.; writing—review and editing, S.H.; visualization, S.H.;
supervision, J.P.; project administration, S.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is partially supported by the Science and Technology Innovation 2030—“New
Generation Artificial Intelligence” Major Project (2020AAA0109300) and Research on Smart Dispatch-
ing of Urban Flooding Emergency Facilities Based on Multi-source Information by Shanghai Science
and Technology Commission (21511103704).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The CVRP public data supporting the conclusions of this paper are
available at http://vrp.atd-lab.inf.puc-rio.br/ (accessed on 29 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
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