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Abstract: The subject of this research is the evaluation of electric cars and the choice of car that best
meets the set research criteria. To this end, the criteria weights were determined using the entropy
method with two-step normalization and a full consistency check. In addition, the entropy method
was extended further with g-rung orthopair fuzzy (QROF) information and Einstein aggregation
for carrying out decision making under uncertainty with imprecise information. Sustainable trans-
portation was selected as the area of application. The current work compared a set of 20 leading
EVs in India using the proposed decision-making model. The comparison was designed to cover
two aspects: technical attributes and user opinions. For the ranking of the EVs, a recently developed
multicriteria decision-making (MCDM) model, the alternative ranking order method with two-step
normalization (AROMAN), was used. The present work is a novel hybridization of the entropy
method, full consistency method (FUCOM), and AROMAN in an uncertain environment. The results
show that the electricity consumption criterion (w = 0.0944) received the greatest weight, while the
best ranked alternative was A7. The results also show robustness and stability, as revealed through a
comparison with the other MCDM models and a sensitivity analysis. The present work is different
from the past studies, as it provides a robust hybrid decision-making model that uses both objective
and subjective information.

Keywords: sustainable transportation; electric vehicles; g-rung orthopair fuzzy; entropy method; alternative
ranking order method accounting for two-step normalization (AROMAN); Einstein aggregation

1. Introduction

Environmental sustainability is a matter of paramount importance at all levels, such
as those of the country, business, and society at large. In order to achieve sustainable
development, it is important to consider environmental concerns in economic decisions.
Transportation substantially impacts the growth of a country’s gross domestic product
(GDP) [1]. However, specific consideration to environmental matters should also be paid.
Sustainable transportation is an essential requirement for sustainable development, as
transport-based carbon emissions are major causes of air quality problems. A recent
report revealed that approximately 16 percent of total greenhouse gases worldwide are
contributed by transport vehicles’ toxic fossil fuel emissions [2]. Sustainable transportation
is defined as a transportation facility with nondeclining capital, where the capital includes
human capital, monetary capital, and natural capital [3,4]. Using electric vehicles (EVs)
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while enhancing the generation of renewable energies can help reduce the carbon footprint
and prevent the depletion of fossil resources [5-8].

As a consequence, EVs have garnered significant attention from designers and pol-
icymakers in the automotive industries, and there has been a substantial increase in the
use of EVs over the last few years [9]. EVs are energy efficient and operate with less noise.
The Government of India (GOI) has set an ambitious target to migrate to EV production
by 2047, with an estimated reduction in oil expenditure of USD 60 billion and a reduction
of 37 percent in emissions. Economically, the goal is to curb the over-reliance on crude oil
imports to safeguard against currency fluctuations [10,11].

Given the importance of EVs, the extant literature shows an increasing number of
contributions in related fields. For instance, Pevec et al. [12] provide a data-driven review
of research on EVs from socioeconomic and sociotechnical perspectives to understand
the acceptability and usage of EVs and to forecast future trends, estimate the price and
capacity requirements, and discuss various issues related to charging station management.
The authors observed the need for accurate open data and an appropriate general policy
for charging station management. Khazaei [13] aimed to identify the factors influencing
Malaysia’s decision to use EVs, mainly battery cars. The author noted the influence of
resource requirements, awareness and knowledge, compatibility with existing technologies,
and image in society. In this context, researchers [10] have also attempted to examine
the influence of the perceived economic benefits on intention to purchase an EV. The
authors found that the perceived economic benefits influence the buying decision, positively
affecting the mediator variable, such as attitude. Other factors, such as social image and
environmental concern, partially affect the decision.

Danielis et al. [14] focused on investigating the mindset of drivers and why they use
EVs. The authors observed that price, fuel mileage, and driving range significantly impact
drivers’ intentions. The authors also noted the influence of an unexpected variable: free
parking. Ziemba [15] compared EVs based on technical, environmental, economic, and
social attributes using multicriteria decision-making (MCDM) models and simulations.
Singh et al. [16] extended the strand of literature on sustainable transportation and consid-
ered carbon emissions, fuel cost, energy efficiency, maintenance, safety, congestion, and
noise to compare EVs and found that CO, emissions were the priority criterion. Ziemba [17]
adopted a fuzzy and stochastic approach to the EV selection problem from the perspective
of consumer expectations. Kumar et al. [18] contemplated past research using a simulation
framework and diffusion model to estimate the demand for EVs. The authors elaborated on
improvements to charging infrastructure to promote the increased use of EVs. KV et al. [19]
also pointed out the dominant effects of financial constraints, performance, charging in-
frastructure, environmental concerns, and social pressure on the behavioral intentions
behind the use EVs. Dixit and Singh [20] put forth a machine learning framework to
enfold the predictors of buying decisions and found the influence of demographic variables
such as age, income level, and gender, in addition to factors found in past research. On
a different note, Srivastava et al. [21] utilized a game theoretic model to demonstrate the
need for the government to undertake hybrid tax-subsidy schemes to bolster the use of
EVs. Recognizing the influence of charging infrastructure on the adoption of EVs, Koirala,
and Tamang [22] found the importance of considering the payback period, land cost, and
equipment cost when designing an effective charging system. Hamurcu and Eren [23]
applied a lens of MCDM models to compare electric buses. Hezam et al. [24] found a
notable impact of the social benefits, infrastructure of charging systems, and incentives of
alternative fuel vehicle selection from a sustainability perspective.

In [25], the researchers emphasized the use of energy consumption as a criterion to
compare EVs. A heat map and causal association analysis revealed that there was no
correlation between energy consumption and charging speed, but there was a significant
correlation with range and maximum velocity. In this regard, the authors [26] noted the
effect of weather conditions, battery weight, vehicle load, and driving style on variations in
the energy consumption.
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1.1. Subject of Research

From the above discussion, it can be seen that there is growing interest in the identifi-
cation of user intention to adopt EVs and the technical, managerial, and social factors for
successfully embracing this technology and comparing various types of EVs. However, we
noticed that the stated field of research is still in the beginning stages, and further explo-
ration is warranted. In addition, we observed that there is an apparent lack of research that
concentrates on combining both technical attributes and user intentions to compare EVs.
Further, we found that factors such as the user friendliness of the technology and after sales
support were not fully considered. These gaps in the literature motivated us to undertake
the present work. We aimed to compare a set of 20 leading EVs (namely, electric cars) that
are popularly used in emerging markets such as India based on technical attributes and user
opinions. As we understand the selection of an EV depends on the satisfactory performance
of several attributes or factors, the present work utilized an MCDM framework. Therefore,
the current problem is characterized as the selection of the best possible choices through
the performance-based ranking of i = 1,2, ..., m (m = 20) alternative options subject
toj=1,2, ..., n attributes, criteria, or factors. In this study, there were 13 attributes for
technical performance and 13 factors for user-opinion-based comparison. The model can
be represented as:

X11 X112 ... ... X1
X21 X222 ... ... Xopn
Xml Xm2 -+ -+ Xmn

mxn

The present work utilized both objective (secondary data) and subjective information
(primary data) for the comparative analysis of the EVs. An objective-information-based
model utilizes performance values, which are in the decision matrix, to derive the criteria
weights. A subjective-information-based model utilizes user opinions to derive the criteria
weights. Both methods have positive and negative aspects. Subjective-opinion-based
methods are more flexible in nature, as they take into account the considerations of decision
makers, although they are susceptible to subjective bias because of the opinion-based
responses. On the other hand, objective-information-based methods do not suffer from this
kind of opinion-based bias, but they are limited to the values in the decision matrix [27-29].
In this paper, we present a g-rung orthopair fuzzy set (JROFS)-based MCDM framework
to offset the effect of imprecise information and uncertainty.

1.2. Application of Methods and Research Contribution

A gROFS [30] considers both the degrees of membership (1) and nonmembership (9),
unlike classical fuzzy sets [31]. However, as an added development, unlike intuitionistic
fuzzy sets [32] and Pythagorean fuzzy sets [33], it provides decision makers with flexibility
in the selection of the values of y and ¢ by adjusting the value of parameter g so that the
limiting condition that the sum of the degree of the membership and nonmembership does
not exceed 1 is met (i.e., u7 4+ ¢7 < 1). Thus, qROFS helps in conducting a more granular
analysis with precision while dealing with imprecise information. The extant literature
shows increasing applications of qROFS for complex problem solving [34-43]. In the field of
EVs, Deveci et al. [39,41] applied qROFS-based MCDM models to prioritize green transport
options and the selection of autonomous vehicles. The preliminary concepts and definitions
related to qROFS are provided in Appendix A.

In the field of MCDM, the criteria weights play a very important role. It actually
prioritizes the weights of the criteria as per their importance. These criteria weights can
be calculated with the two kinds of the information: objective information and subjective
information. The present paper used a modified version of the widely used entropy
method [44]. The entropy method determines the criteria weights based on the degree of
the dispersion of the values. A higher level of dispersion indicates a higher amount of
information contained in the corresponding criterion and, thereby, the criterion obtains a
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higher weight value. The advantage of the entropy method is that it works on asymmetrical
information to measure the relative importance of the criteria in terms of their weights.
However, despite its wide applications, the entropy method has received criticism. For
instance, the presence of too many values of zero in the decision matrix jeopardizes the
result. In addition, in many cases, some criteria receive excessively higher weights than
the actual degree of differentiation [45]. In this paper, an extension of the classical entropy
method is provided using two-step normalization for processing objective information. In
addition, the steps of the full consistency method (FUCOM) [46] are infused to obtain a
robust computation of the criteria weights. FUCOM provides decision makers with the
ability to examine the deviation of the solution from the full consistency value (i.e., DFC)
and uses fewer pairwise comparisons (1 — 1) to better offset the subjective bias. Further, the
extended entropy method with g-rung orthopair fuzzy numbers (JROFN) was used for the
subjective-opinion-based analysis. Therefore, the proposed full consistent entropy method
(F-Entropy) with qROFN provides a robust mechanism to determine the criteria weights,
irrespective of the nature of the values in the decision matrix, and is able to offset the
subjective bias when dealing with imprecise information. For the ranking of the alternative
options, a very recently developed MCDM model, the alternative ranking order method
accounting for two-step normalization (AROMAN) [47], was utilized. AROMAN provides
the following benefits: use of a linear combination max—min type and vector normalization
techniques to provide more flexibility and an accurate representation of the decision matrix
through normalization and stable and robust solution. The present paper is a first attempt
at technically extending the AROMAN method using qROFN. Further, for the aggregation
of user opinions, the ongoing work applies the Einstein aggregation scheme, which further
adds novelty to our approach. Researchers (for instance, Ref. [48]) have pointed out several
advantages of Einstein aggregation operators such as better approximation than algebraic
products and unions.

The advantages of this approach are reflected in more stable decision making, because
the application of two normalizations brings stability in the final order of the alternatives.
This is because different normalizations lead to different final orders. The use of two
normalizations contributes to equalizing the value of the alternative, and based on this, any
method can be used without the order of the alternatives remaining stable. This approach
is very important for the evaluation of electric cars, because their technical characteristics
are similar, which creates a problem for the decision maker. The limitation of this approach
is that two normalizations must be calculated, not just one.

The research questions that the current work seeks to answer are:

- What are the factors (technical and user based) that influence the EV selection?

- How can an effective MCDM framework (workable with both objective and subjective
information) be developed to address the EV selection problem?

- To what extent doe EVs differ from each other based on technical attributes and
user opinions?

The rest of this paper is organized as follows. In Section 2, we describe the methodol-
ogy, while in Section 3 a summary of the results is presented. Section 4 provides a discussion
of the findings while highlighting some of the implications of the research. Finally, Section 5
concludes the work and highlights a future research agenda.

2. Materials and Methods

The current section provides a step-by-step description of the methodology followed
in this paper, which is also pictorially portrayed in Figure 1.
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Figure 1. Flowchart of the steps of the research methodology.

2.1. Data

This paper considered the top 20 popular electric cars in India based on the list-
ings available on a commonly used website (https://www.cardekho.com/, accessed on
3 January 2023) [49]. The experts who took part our study mentioned that the website [49]
is a popular source for buyers to obtain information related to cars. Let us denote the
sample units under comparison as A1, Az, A3z, ..., App. To maintain commercial confiden-
tiality, the actual brand names are not disclosed in this paper. To compare the EVs, we first
collected the technical information from the website mentioned above and also from the
products’ technical specifications. In the next stage, we collected subjective opinions from
three automobile experts regarding users’ ratings on various attributes for comparing the
EVs. These experts have substantial experience (more than 15 years) in dealing with the
customers and expertise in the technical aspects of the automobile industry including EVs.
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These three experts possess highly valued auto dealerships that sell EVs manufactured by
popular brands over a wide geographical area in the eastern part of India. Hence, it can be
justified to consider their opinions as resembling the views of a large number of users.

For the comparison of the EVs on the basis of the technical parameters, the present
paper used a set of 13 attributes that were selected in line with the findings of previous
research and, subsequently, finalized after expert discussion. The technical attributes are
provided in Table 1. Based on the observations made in a previous work, we identified a
list of 20 factors that influence buyers’ decisions. Through focus group discussions with
the experts, a set of 13 factors from the point of view of customers were finally selected
(Table 2), and most of these factors had been considered in previous research. Further to
the discussions concerning previous research, we also considered UA2, UA5, and UA9 as
influencing factors; these factors are the cornerstones of widely used technology acceptance
theory, such as UTAUT theory [50]. The decision matrix for the technical attributes is
provided in Appendix B.

Table 1. List of technical attributes (i.e., criteria) for comparison of the EVs.

S/L Technical Attribute UOM Effect Direction References
TA1 Max Torque Newton-Meters (Nm) @rpm (+) [8,15,17]
TA2 Max Power Brake Horsepower (bhp) @rpm (+) [15,17,51]
TA3 Boot Space (Liters) (+) [14,17]
TA4 Battery Capacity (KWh) (+) [12,17,19]
TAS5 Range (km) (+) [10,14,17,25]
TA6 Acceleration (sec) (+) [12,17,25]
TA7 Wheel Base (mm) (+) [18,52]
TAS8 Wheel Size (Inch) (+) [14,52]
TA9 No. of Airbags No (+) [14,22]
TA10  Battery Warranty (Years) (+) [18,51]
TA11  Seating Capacity No (+) [15,17]
TA12 No. of Doors No (+) [51-53]
TA13 Price (Cr) Rs. Cr. (-) [12,14,17]

Table 2. List of factors (i.e., criteria) that influence customers’ choice of EV.

S/L User-Centric Criteria Effect Direction References
UA1 Mileage (+) [14]
UA2 User Friendliness of the Technology (+) [50]
UAS3 Compatibility with other Technologies (+) [15]
UA4 Features (+) [14,22]
UA5 Comfort during the Ride (+) [50]
UA6 Aesthetics (+) [14,15]
UA7 Brand Image (+) [15]
UAS Ease of Maintenance (+) [19]
UA9 After Sales Support (+) [50]

UA10 Safety (+) [16]
UA11l Environment Friendliness (+) [15,16]
UA12 Electricity Consumption (-) [16,26]
UA13 Costing (-) [16,17,19,22]

For the comparison of the EVs based on the user opinions, the subject experts were
requested to rate the EVs with respect to the criteria listed in Table 2. A five-point linguistic
qROF scale was used, as shown in Table 3. The ratings of the alternatives by the experts for
the criteria used for the comparison are given in Appendix C.
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Table 3. Five-point qROF linguistic scale.

Linguistic Description Code I U
Very Low VL 0.25 0.85
Low L 0.40 0.70
Moderate M 0.55 0.55
High H 0.70 0.40
Very High VH 0.85 0.25

2.2. AROMAN Method
The computational steps for the AROMAN method are described below [47].
Step 1. Normalization of the decision matrix.

The AROMAN method uses two schemes for the normalization of the decision matrix:
linear max-min and vector normalization. Let N = (ni j) Y be the normalized decision
matrix. The elements 7;; can be found as:

mx

Brijn) + (1 — B)nyja)
2

1”11‘]‘: ;i:1,2,...,m;j:1,2,...,n (1)
Here, n;;(q) and Njj(2) are the normalized values of the elements of the initial decision
matrix, as per Scheme 1 (i.e., linear max—-min) and Scheme 2 (i.e., vector normalization),
respectively. p is the weighting factor, such that € (0,1). As recommended in [47], we
took the initial value of B as 0.5. However, B can take any value within the stated range.

R
W/ J1€]
i) = A= @
sy ] €17
] )
M) = —L =12, ..., 1 3)
l]( ) m 7 ] 4 AR
Yo
; ]

Step 2. Formulation of the weighted normalized decision matrix.

The elements of the weighted normalized decision matrix V = <vij)m><n can be
obtained as:
Uij:anij}i:l,Z,...,m;j:l,Z,...,n @)

Step 3. Determine the sum of the weighted normalized values for the max-type and
min-type criteria, separately.

The sum for the max-type criteria:
n
P=Y vt jeji=12 ..., m 5)
j=1
The sum for the min-type criteria:
n
Li=)Y vj;jej;i=12 .., m (6)

j=1
Step 4. Derive the final appraisal scores of the alternatives:

The final appraisal score for the i*" alternative can be obtained using the following definition:

S;j =L+ P10 )
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Here, T ranges from 0 to 1 and is known as the coefficient degree of the criterion type. As
suggested in [47], for the initial case we considered its value to be 0.5.
Decision rule: the higher its value, the better the alternative.

2.3. Entropy Method with Full Consistency and Two-Step Normalization

The computational steps are presented below.
Step 1. Standardization of the decision matrix.

Unlike the classical entropy method [44,45], this step involves a two-step normaliza-
tion, as given by Equations (1)—(3).

Step 2. Calculation of the entropy values of the criteria.
The entropy value for the j criterion is computed as:

m
m —‘Z 1/11']' ln(nij)

E] = —kzl Tll']' 11’1(1’11']') :—171 - (8)
1=
Unlike the classical entropy approach, the weights of the criteria are computed using the
following steps taken from the FUCOM model [46] to achieve the full consistency.

Step 3. Ordering of the criteria based on their relative priorities.

We used the entropy values of the criteria to set their relative priorities. The higher the
entropy value, the higher the priority.

Let the relative priority order be C;(1) = C;(2) = ... = C;(r), where r denotes the
ranking position of a particular criterion. There may be a case where two criteria have the
same rank.

Step 4. Establish the comparative priority of the criteria.

The comparative priority (CP) of criteria C; with the rt rank position with respect to
the one with the (r + 1)th

It can be noted that the criterion with r = 1 (i.e., at the first position) has the top priority.
The other criteria are compared with the criterion with the highest preference. The FUCOM
method requires a total of (n — 1) pairwise comparisons.

ranking position is denoted as ¢ _r_.

Step 5. Computation of the final weights of the factors.

To calculate the final weights of the criteria, two conditions need to be met:

wy
@ =g, ©)
(b) wzf_; = ¢ ®¢r (mathematical transitivity) (10)

The full consistency is obtained if the deviation from the full consistency (i.e., DFC (x))
tends to zero. The final model is constructed as:

Miny

S.t

Y g, | <y

‘“’j(rﬂ) V| =XV (11)
Yi) g ;

|l =g @gen| < V)

Zw] = 1,ZU]' > O,Vj

By solving the final model, we obtain the weights for the criteria (w;).
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2.4. qROF-Based Full Consistent Entropy and AROMAN Framework with Einstein Aggregation

Step 1. Aggregation of the opinions of the decision makers given in a qROEN linguistic
scale, as provided in Table 3.

Suppose Cj(j = 1,2, ..., n) denotes the criteria (where n is finite). In our case, these
are the user-centric criteria. e;(t = 1,2, ..., t) is the number of experts. In this case, t = 3.
agi ;i the rating of the i*’ alternative subject to the ji criterion, given by the ' expert.

Each of the responses received from the experts is a QROEFN in nature. Then, by using
the qROF Einstein-weighted average (QROFEWA), the aggregated rating (as a qROFN x
for the i alternative subject to the j*" criterion is obtained as [46]:

qij)

— 1 2
xqi]‘ = qROFEWA (a qi].,a ‘]ij’ ey B’qi].)

)

jam B

w
(1+]’l?jt) tiH (17}1%
t=1

~
Il
—

=

r
r
() 4 TT (=)™
t=1

I
—

T
Wil q

T (2-8,) + 11 857 (12)
t=1

=1 ijt

Here, x;; is the aggregated rating of the i'" alternative subject to the j* criterion
(i=12..,mj=12 ..., n)and w; is the importance of the tth expert. We considered
that all of the experts had equal importance. Therefore, after aggregation, we obtained the

qROEFN-based decision matrix.
Step 2. Obtain the scores of the elements of the gqROFN-based decision matrix.
We used the following definition to obtain the score values of the elements of the
qROFN-based decision matrix, as given in [54]:
(i — 28,1 1)

3 +

W[ >

Xjj = (uif? + 87 +2); A € [0,1] (13)
Here, A is a constant scalar value.

Next, the procedural steps of the full consistent entropy method with two-step normal-
izations were performed to obtain the criteria weights and, thereafter, the computational
steps of the AROMAN method were conducted to determine the ranking of the alternatives.

3. Results

This section presents step by step the findings of the data analysis. First, the EVs are
compared on the basis of their technical performance.

3.1. Evaluation of the Performance Based on Technical Attributes

The decision matrix is provided in Appendix B. Table 4 exhibits the elements of the
normalized decision matrix, obtained using Equations (1)—(3). As recommended in [47], the
initial value for B was taken as 0.5. However,  can take any value within the stated range.

Example of the calculation:

min

— Su-x . 114-90 _
mia) = max_ymin = 102090 — 0.0258

_ X11 _ 114 _
Mi2) = \/zo = /5926664 0.0468

2

nyp = ﬁn11(1)+(;—ﬁ>ﬂu(z> _ 0.5(0.0258)+(;—0.5)(0.0468) — 0.0182

Similarly, the values of all of the other elements of the normalized decision matrix were calculated.
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Table 4. Normalized decision matrix (technical attributes).

Model TA1 TA2 TA3 TA4 TA5 TA6 TA7 TAS8 TA9 TA10 TA11 TA12 TA13
Al 0.0182 0.0300 0.0432 0.0432 0.1580 0.1242 0.1696 0.0994 0.0497 0.3085 0.3077 0.3094 0.2483
A2 0.0687 0.0637 0.1168 0.1006 0.2432 0.2566 0.1874 0.1612 0.0497 0.3085 0.3077 0.3094 0.2417
A3 0.0668 0.0567 0.1168 0.1006 0.1559 0.2927 0.1874 0.1612 0.0497 0.3085 0.3077 0.3094 0.2439
A4 0.3547 03688 0.2172 03350 0.3243 0.0320 0.3163 0.2539 03328 0.3085 0.3077 0.3094 0.1095
A5 0.2210 0.1944 0.1596 0.2312 0.2300 0.0921 0.0341 0.2539 0.2519 0.3085 0.3077 0.3094 0.2149
Ab 0.2006 0.1535 0.2654 0.2292 0.2872 0.0360 0.2602 0.2539 0.2924 0.3085 0.3077 0.3094 0.2101
A7 0.1356 0.1608 0.1971 0.2518 0.3162 0.1242 0.2522 0.2539 0.2924 0.3085 0.3077 0.2142 0.2046
A8 02173 0.2346 0.1811 0.2849 0.2314 0.0600 0.2602 0.3157 0.2924 0.3085 0.3077 0.3094 0.1142
A9 0.0798 0.0801 0.1824 0.1348 0.2600 0.2366 0.2024 0.1921 0.2115 0.3085 0.3077 0.3094 0.2378

A10 0.0761 0.0837 0.0238 0.0731 0.1266 0.1884 0.1868 0.1921 0.0901 0.3085 0.2128 0.3094 0.2185
All 0.2344 0.1904 03216 0.2730 0.2663 0.0881 0.2765 0.2230 0.2115 0.3085 0.3077 0.3094 0.1665
Al2 0.2099 0.1541 0.2172 0.2069 0.2163 0.1403 0.2783 0.3157 0.2115 0.3085 0.3077 0.3094 0.1709
Al3 0.0427 0.0401 0.2708 0.2093 0.2279 0.2165 0.2421 0.1921 0.1306 0.3085 0.3077 0.3094 0.2344
Al4 0.2842 0.3118 0.3243 0.2849 0.2460 0.0280 0.2607 0.2848 0.2115 0.3085 0.3077 0.2142 0.1190
A15 0.2099 0.2547 0.3243 0.2849 0.2481 0.0600 0.2607 0.2848 0.2519 0.3085 0.3077 0.2142 0.1329
Al6 0.2225 0.1432 0.3243 0.2905 0.2324 0.1242 0.2653 0.2848 0.2924 0.3085 0.3077 0.3094 0.1746
Al17 0.0092 0.0032 0.0833 0.0118 0.0777 0.1443 0.0993 0.0376 0.0497 0.0219 0.0231 0.0238 0.2525
A18 0.2582 01944 0.2172 0.2382 0.2614 0.1002 0.2553 0.2230 0.3328 0.3085 0.3077 0.3094 0.1830
A19 0.1226  0.0602  0.2427 0.0961 0.2537 0.2125 0.2059 0.1921 0.2115 0.3085 0.3077 0.3094 0.2382
A20 0.0096 0.0139 0.2239 0.0467 0.0148 0.3449 0.2113 0.0994 0.0092 0.0219 0.3077 0.2142 0.2490

Next, we determined the weights of the criteria using our extended entropy method
with two-step normalization and full consistency. Using Equation (8), the entropy values of
the criteria were obtained. For example:

20 ig njp In(n;p)
B = =k L ijIn(n) == = —(A9781) _ 166174

1

E, = 1.58534; E5 = 2.00484; E, = 1.88651; E5 = 2.10671; E4 = 1.68761; E; = 2.14716
Eg = 2.10329; Eg = 1.87936; E1g = 2.23583; E1q = 2.31798; E1p = 2.28773; E13 = 2.10065

Then, using the entropy values, the comparative priorities of the criteria were set. It can
be noted that the higher the entropy value, the higher the information contained in the
corresponding criterion. Table 5 provides the weights of the technical attributes using
the procedural steps of the FUCOM, as presented in Section 2.3. The final model was
derived using Equations (9)—(11). The value of the DFC indicates that there was negligible
deviation from the full consistent value despite having 13 criteria. In addition, the criteria
weights were rationally distributed (i.e., no apparent outlier). Therefore, the outcome
clearly suggests the robustness of the full consistent entropy method.

Table 5. Weights of the technical attributes.

Criterion E; @ (kik +1) w (k/k + 1) w (klk + 2) w
TA11 2.3180 1.0132 1.0132 1.0367 0.08914
TA12 2.2877 1.0232 1.0232 1.0655 0.08798
TA10 2.2358 1.0413 1.0413 1.0613 0.08598
TA7 2.1472 1.0192 1.0192 1.0209 0.08257
TA5 2.1067 1.0016 1.0016 1.0029 0.08101
TAS8 2.1033 1.0013 1.0013 1.0491 0.08088

TA13 2.1007 1.0478 1.0478 1.1135 0.08078
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Table 5. Cont.
Criterion E; ¢ (klk +1) w (klk +1) w (klk + 2) w
TA3 2.0048 1.0627 1.0627 1.0668 0.07709
TA4 1.8865 1.0038 1.0038 1.1179 0.07254
TA9 1.8794 1.1136 1.1136 1.1310 0.07227
TA6 1.6876 1.0156 1.0156 1.0645 0.06489
TA1 1.6617 1.0482 1.0482 0.06390
TA2 1.5853 0.06096
DEC 0.00002 Y 1.0000
Final model:
Miny
s.t
% —1.0132| < x; |22 —1,0232| < x; wlo -1 0413‘ <x | -1 0192‘ <X |w ‘”5 1.0016‘ <x
L5 1.0013] < ;|42 - 1.0478) < x| 22— 1.0627) < |22 — 1.0088| < ;|2 1.1136] < x;
w | w .
4 —1.0156| < ;|4 —1.0482) < ;
Ui 1.0367| < x; |92 —1.0655| < x; |2 1. 0613‘ <xl|2z-1 0209} <l 1 0029’ <x
w w w .
© —1.0491) < |45~ 1.1135| < | %2 — 1.0668| < x| % — 1. 1179| < x| 1.1310‘ <x
w 3
o — 1.0645| < x;
Using the weights of the technical attributes, the final ranking of the EVs was determined.
The computational steps of the AROMAN method, as given by Equations (4)—(7), were
applied. Table 6 exhibits the weighted normalized decision matrix, and Table 7 shows the
final appraisal scores and ranking of the EVs.
Table 6. Weighted normalized decision matrix (technical attributes).
S/L TA1 TA2 TA3 TA4 TA5 TA6 TA7 TAS TA9 TA10 TA11 TA12 TA13
Al 0.0012 0.0018 0.0033 0.0031 0.0128 0.0081 0.0140 0.0080 0.0036 0.0265 0.0274 0.0272  0.0201
A2 0.0044 0.0039 0.0090 0.0073 0.0197 0.0167 0.0155 0.0130 0.0036 0.0265 0.0274 0.0272 0.0195
A3 0.0043 0.0035 0.0090 0.0073 0.0126 0.0190 0.0155 0.0130 0.0036 0.0265 0.0274 0.0272 0.0197
A4 0.0227 0.0225 0.0167 0.0243 0.0263 0.0021 0.0261 0.0205 0.0241 0.0265 0.0274 0.0272  0.0088
A5 0.0141 0.0118 0.0123 0.0168 0.0186 0.0060 0.0028 0.0205 0.0182 0.0265 0.0274 0.0272 0.0174
A6 0.0128 0.0094 0.0205 0.0166 0.0233 0.0023 0.0215 0.0205 0.0211 0.0265 0.0274 0.0272 0.0170
A7 0.0087 0.0098 0.0152 0.0183 0.0256 0.0081 0.0208 0.0205 0.0211 0.0265 0.0274 0.0188 0.0165
A8 0.0139 0.0143 0.0140 0.0207 0.0187 0.0039 0.0215 0.0255 0.0211 0.0265 0.0274 0.0272 0.0092
A9 0.0051 0.0049 0.0141 0.0098 0.0211 0.0154 0.0167 0.0155 0.0153 0.0265 0.0274 0.0272 0.0192
A10 0.0049 0.0051 0.0018 0.0053 0.0103 0.0122 0.0154 0.0155 0.0065 0.0265 0.0190 0.0272 0.0177
All 0.0150 0.0116 0.0248 0.0198 0.0216 0.0057 0.0228 0.0180 0.0153 0.0265 0.0274 0.0272 0.0135
Al2 0.0134 0.0094 0.0167 0.0150 0.0175 0.0091 0.0230 0.0255 0.0153 0.0265 0.0274 0.0272 0.0138
Al13 0.0027 0.0024 0.0209 0.0152 0.0185 0.0141 0.0200 0.0155 0.0094 0.0265 0.0274 0.0272 0.0189
Al4 0.0182 0.0190 0.0250 0.0207 0.0199 0.0018 0.0215 0.0230 0.0153 0.0265 0.0274 0.0188 0.0096
Al5 0.0134 0.0155 0.0250 0.0207 0.0201 0.0039 0.0215 0.0230 0.0182 0.0265 0.0274 0.0188 0.0107
Al6 0.0142 0.0087 0.0250 0.0211 0.0188 0.0081 0.0219 0.0230 0.0211 0.0265 0.0274 0.0272 0.0141
Al17 0.0006 0.0002 0.0064 0.0009 0.0063 0.0094 0.0082 0.0030 0.0036 0.0019 0.0021 0.0021 0.0204
A18 0.0165 0.0118 0.0167 0.0173 0.0212 0.0065 0.0211 0.0180 0.0241 0.0265 0.0274 0.0272 0.0148
A19 0.0078 0.0037 0.0187 0.0070 0.0206 0.0138 0.0170 0.0155 0.0153 0.0265 0.0274 0.0272 0.0192
A20 0.0006  0.0008 0.0173 0.0034 0.0012 0.0224 0.0174 0.0080 0.0007 0.0019 0.0274 0.0188 0.0201
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Table 7. Ranking of the EVs (technical attributes).

Model p; L; S; Rank Model P; L; S; Rank
Al 0.1371 0.0201 0.5119 18 All 0.2358 0.0135 0.6016 5
A2 0.1742 0.0195 0.5571 15 Al2 0.2262 0.0138 0.5931 7
A3 0.1689 0.0197 0.5514 16 Al13 0.1999 0.0189 0.5847 11
A4 0.2664 0.0088 0.6102 2 Al4 0.2372 0.0096 0.5851 10
A5 0.2024 0.0174 0.5816 13 Al5 0.2342 0.0107 0.5875 8
A6 0.2292 0.0170 0.6090 3 Alé 0.2431 0.0141 0.6118 1
A7 0.2209 0.0165 0.5986 6 A17 0.0446 0.0204 0.3540 20
A8 0.2348 0.0092 0.5806 14 Al8 0.2344 0.0148 0.6057 4
A9 0.1989 0.0192 0.5846 12 A19 0.2005 0.0192 0.5865 9
Al10 0.1498 0.0177 0.5199 17 A20 0.1200 0.0201 0.4882 19
For example:
011 = winq = 0.06390 x 0.0182 = 0.0012
n
P =Yy vt jejt
j=1
=011 t012+013+...+ 0112
= 0.0012 4 0.0018 + ... 4 0.0272 = 0.1371
It can be noted that TA; to TAj, are the criteria of the max type. Here, only TAj3 is a
criterion of the min type. Therefore:
n . .
L1=Y ?Jl]'i,' j€] =013 = 0.0201
=1
S1 = Li" + P19 = (0.0201)%° + (0.1371) 1% = 05119
Here, T ranges from 0 to 1 and is known as a coefficient degree of the criterion type. As
suggested in [47] for the initial case, its value is considered as 0.5.
3.2. Evaluation of the Performance Based on Users’ Opinions
In stage 2, the EVs were compared based on the opinions of users in a group decision-
making environment utilizing an integrated framework of qROF-entropy with two-step
normalization and AROMAN with Einstein aggregation. In the following, the findings at
various steps of the process are presented.
First, we collected the opinions of the three experts, as provided in Appendix C. Next,
the Einstein aggregation (EA) operation was applied to obtain an aggregated rating of each
EV with respect to each criterion. The qROF decision matrix is presented in Table 8.
Table 8. qROF decision matrix (aggregated response).
Model UA1 UA2 UA3 UA4 UA5 UAe6 UA7
Al 0.3167 0.7414 0.8500 0.2494 0.7000 0.3958 0.5500 0.5355 0.4000 0.6640 0.2500 0.7774 0.7000 0.3958
A2 0.5099 0.5777 0.7000 0.3958 0.5500 0.5355 0.5500 0.5355 0.4000 0.6640 0.4616 0.6208 0.7000 0.3958
A3 0.2500 0.7774 0.7627 03402 0.6589 0.4392 0.5500 0.5355 0.5500 0.5355 0.5099 0.5777 0.8500 0.2494
A4 0.8500 0.2494 0.6101 04859 0.8115 0.2915 0.7000 0.3958 0.8115 0.2915 0.7000 0.3958 0.8500 0.2494
A5 0.5500 0.5355 0.4000 0.6640 0.4000 0.6640 0.5500 0.5355 0.7871 0.3251 0.4000 0.6640 0.7000 0.3958
A6 0.8500 0.2494 0.4000 0.6640 0.3167 0.7414 0.4000 0.6640 0.6101 0.4859 0.7000 0.3958 0.5500 0.5355
A7 0.8500 0.2494 0.5500 0.5355 0.8115 0.2915 0.8500 0.2494 0.7000 0.3958 0.7000 0.3958 0.8500 0.2494
A8 0.5099 0.5777 0.5500 0.5355 0.7000 0.3958 0.8500 0.2494 0.8500 0.2494 0.6589 0.4392 0.8500 0.2494
A9 0.6101 0.4859 0.2500 0.7774 0.4000 0.6640 0.5500 0.5355 0.5500 0.5355 0.6101 0.4859 0.5099 0.5777
Al10  0.2500 0.7774 0.2500 0.7774 0.3167 0.7414 0.5500 0.5355 0.5500 0.5355 0.4000 0.6640 0.6101 0.4859
All  0.7000 0.3958 0.7000 0.3958 0.7627 0.3402 0.5500 0.5355 0.7000 0.3958 0.5500 0.5355 0.8500 0.2494
Al12 05099 05777 0.8500 0.2494 0.8115 0.2915 0.7000 0.3958 0.8500 0.2494 0.7000 0.3958 0.7000 0.3958
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Table 8. Cont.

Model UA1 UA2 UA3 UA4 UA5 UA6 UA7
Al13 04616 0.6208 0.7000 0.3958 0.7000 0.3958 0.5500 0.5355 0.7000 0.3958 0.7000 0.3958 0.4000 0.6640
Al4 0.7000 0.3958 0.5500 0.5355 0.5500 0.5355 0.7000 0.3958 0.7000 0.3958 0.7000 0.3958 0.8500 0.2494
Al5 0.7000 0.3958 0.7000 0.3958 0.5500 0.5355 0.7000 0.3958 0.7000 0.3958 0.7000 0.3958 0.7000 0.3958
Al6  0.6101 0.4859 0.4000 0.6640 0.4000 0.6640 0.7000 0.3958 0.4000 0.6640 0.7627 0.3402 0.7000 0.3958
Al7 02500 0.7774 03167 0.7414 0.5500 0.5355 0.5500 0.5355 0.2500 0.7774 0.5099 0.5777 0.5500 0.5355
Al18 0.7000 0.3958 0.5099 05777 0.8500 0.2494 0.7000 0.3958 0.7000 0.3958 0.8500 0.2494 0.8500 0.2494
A19  0.7000 0.3958 0.8500 0.2494 0.7000 0.3958 0.2500 0.7774 0.2500 0.7774 0.4000 0.6640 0.7000 0.3958
A20 0.2500 0.7774 0.7000 0.3958 0.5500 0.5355 0.2500 0.7774 0.5500 0.5355 0.5500 0.5355 0.7000 0.3958
Model UAS UA9 UA10 UA11 UA12 UA13
Al 0.2500 0.7774 0.4000 0.6640 0.2500 0.7774 0.5500 0.5355 0.2500 0.7774 0.2500 0.7774
A2 0.2500 0.7774 0.4616 0.6208 0.4000 0.6640 0.5099 05777 0.2500 0.7774 0.4000 0.6640
A3 0.4000 0.6640 0.5099 0.5777 0.2500 0.7774 0.5500 0.5355 0.2500 0.7774 0.5434 0.5682
A4 03167 0.7414 04000 0.6640 0.8115 0.2915 0.7000 0.3958 0.5500 0.5355 0.8115 0.2915
A5 0.6589 0.4392 0.7000 0.3958 0.7000 0.3958 0.4000 0.6640 0.4000 0.6640 0.4000 0.6640
Ab 0.7627 0.3402 0.7000 0.3958 0.7000 0.3958 0.6101 0.4859 0.5500 0.5355 0.4000 0.6640
A7 0.5500 0.5355 0.5500 0.5355 0.7000 0.3958 0.5500 0.5355 0.7000 0.3958 0.5099 0.5777
A8 0.2500 0.7774 03167 0.7414 0.7000 0.3958 0.7000 0.3958 0.5500 0.5355 0.8115 0.2915
A9 0.7000 0.3958 0.5099 0.5777 0.5500 0.5355 0.8500 0.2494 0.4000 0.6640 0.2500 0.7774
Al10 0.7000 0.3958 0.6101 0.4859 0.4616 0.6208 0.7000 0.3958 0.4000 0.6640 0.4000 0.6640
All 02500 0.7774 02500 0.7774 0.5099 0.5777 0.4000 0.6640 0.8500 0.2494 0.7000 0.3958
Al12 05099 0.5777 05500 0.5355 0.5500 0.5355 0.5500 0.5355 0.5500 0.5355 0.7000 0.3958
Al13  0.6101 04859 0.7000 0.3958 0.4000 0.6640 0.7000 0.3958 0.4616 0.6208 0.2500 0.7774
Al4  0.5500 0.5355 0.5500 0.5355 0.5500 0.5355 0.5500 0.5355 0.5099 0.5777 0.8500 0.2494
Al15 04000 0.6640 0.5500 0.5355 0.7000 0.3958 0.2500 0.7774 0.6101 0.4859 0.8500 0.2494
Al6 05500 0.5355 0.5500 0.5355 0.7627 0.3402 0.4000 0.6640 0.5500 0.5355 0.7000 0.3958
Al7  0.5500 0.5355 0.7000 0.3958 0.2500 0.7774 0.5500 0.5355 0.4000 0.6640 0.2500 0.7774
Al18 02500 0.7774 0.2500 0.7774 0.8500 0.2494 0.7627 0.3402 0.5500 0.5355 0.7627 0.3402
A19 08500 0.2494 0.8500 0.2494 0.5500 0.5355 0.3167 0.7414 0.2500 0.7774 0.4616 0.6208
A20 0.8500 0.2494 0.8500 0.2494 0.2500 0.7774 0.4000 0.6640 0.2500 0.7774 0.2500 0.7774
For example:
Xq11 = qROFEWA (al‘ill’aqul’a3‘711)
1
I ()~ T (=)
=1 t=1
T )+ 1T -y
t=1 t=1
= 1
zﬁ lg;"]ttq 1
3 = 3
IT (2-8f,)"" + 11 &7
t=1 t=1
We considered all of the experts to have equal importance. Therefore, w1 = wy = w3 = %

In addition, g = 3 was also set to formulate the qROF decision matrix (Table 8). Then, the
score values of all elements of the qROF decision matrix were calculated using Equation (13).

For example:

Xy = w + A+ 917 +2)

_ (031673 —2x0.7414%—1)

3

+ %8(0.3167 + 0.7414% + 2) = 0.0561

Here, A is a constant scalar value. We assumed A = 0.8, as used in [54].
Table 9 represents the score-value-based decision matrix for comparison of the EVs.
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Table 9. Score-value-based decision matrix (user opinions).

Model UA1 UA2 UA3 UA4 UA5 UA6 UA7 UAS UA9 UA10 UA11 UAl12 UA13
Al 0.0561 0.5623 0.3810 0.2384 0.1213 0.0214 0.3810 0.0214 0.1213 0.0214 0.2384 0.0214 0.0214
A2 0.2024 0.3810 0.2384 0.2384 0.1213 0.1633 0.3810 0.0214 0.1633 0.1213 0.2024 0.0214 0.1213
A3 0.0214 04505 0.3378 0.2384 0.2384 0.2024 0.5623 0.1213 0.2024 0.0214 0.2384 0.0214 0.2229
A4 0.5623 0.2904 0.5107 0.3810 0.5107 0.3810 0.5623 0.0561 0.1213 0.5107 0.3810 0.2384 0.5107
A5 0.2384 0.1213 0.1213 0.2384 04789 0.1213 0.3810 0.3378 0.3810 0.3810 0.1213 0.1213 0.1213
A6 0.5623 01213 0.0561 0.1213 0.2904 0.3810 0.2384 0.4505 0.3810 0.3810 0.2904 0.2384 0.1213
A7 0.5623 0.2384 0.5107 0.5623 0.3810 0.3810 0.5623 0.2384 0.2384 0.3810 0.2384 0.3810 0.2024
A8 0.2024 0.2384 0.3810 0.5623 0.5623 0.3378 0.5623 0.0214 0.0561 0.3810 0.3810 0.2384 0.5107
A9 0.2904 0.0214 0.1213 0.2384 0.2384 0.2904 0.2024 0.3810 0.2024 0.2384 0.5623 0.1213 0.0214
A10 0.0214 0.0214 0.0561 0.2384 0.2384 0.1213 0.2904 0.3810 0.2904 0.1633 0.3810 0.1213 0.1213
All 0.3810 0.3810 0.4505 0.2384 0.3810 0.2384 0.5623 0.0214 0.0214 0.2024 0.1213 0.5623 0.3810
Al12 0.2024 05623 0.5107 0.3810 0.5623 0.3810 0.3810 0.2024 0.2384 0.2384 0.2384 0.2384 0.3810
Al13 0.1633 0.3810 0.3810 0.2384 0.3810 0.3810 0.1213 0.2904 0.3810 0.1213 0.3810 0.1633 0.0214
Al4 0.3810 0.2384 0.2384 0.3810 0.3810 0.3810 0.5623 0.2384 0.2384 0.2384 0.2384 0.2024 0.5623
A15 0.3810 0.3810 0.2384 0.3810 0.3810 0.3810 0.3810 0.1213 0.2384 0.3810 0.0214 0.2904 0.5623
Al6 0.2904 0.1213 0.1213 0.3810 0.1213 0.4505 0.3810 0.2384 0.2384 0.4505 0.1213 0.2384 0.3810
Al7 0.0214 0.0561 0.2384 0.2384 0.0214 0.2024 0.2384 0.2384 0.3810 0.0214 0.2384 0.1213 0.0214
A18 0.3810 0.2024 0.5623 0.3810 0.3810 0.5623 0.5623 0.0214 0.0214 0.5623 0.4505 0.2384 0.4505
A19 0.3810 0.5623 0.3810 0.0214 0.0214 0.1213 0.3810 0.5623 0.5623 0.2384 0.0561 0.0214 0.1633
A20 0.0214 0.3810 0.2384 0.0214 0.2384 0.2384 0.3810 0.5623 0.5623 0.0214 0.1213 0.0214 0.0214

Following similar calculations demonstrated in Section 3.1, the final appraisal scores
of the EVs were obtained in order to rank them. Table 10 provides the criteria weights, and
Table 11 presents the final rankings of the EVs.
Table 10. Criteria weights (user opinions).
Criteria E; @ (kik+1) w (klk +1) w (klk +2) w
UA12 2.2146 1.0806 1.0806 1.0881 0.0944
UA13 2.0494 1.0069 1.0069 1.0993 0.0873
UA7 2.0353 1.0917 1.0917 1.1105 0.0867
UA6 1.8643 1.0172 1.0172 1.0235 0.0794
UA4 1.8328 1.0062 1.0062 1.0294 0.0781
UA5 1.8215 1.0230 1.0230 1.0453 0.0776
UA3 1.7805 1.0217 1.0217 1.0252 0.0759
UA11 1.7427 1.0034 1.0034 1.0305 0.0743
UA2 1.7367 1.0270 1.0270 1.0734 0.0740
UA9 1.6910 1.0452 1.0452 1.0455 0.0721
UA10 1.6180 1.0003 1.0003 1.1046 0.0689
UA1l 1.6174 1.1042 1.1042 0.0689
UAS8 1.4648 0.0624
DFC 0.00003 ¥ 1.0000
Table 11. Rankings of the EVs (user opinions).

Model P; L; S; Rank Model P; L; S; Rank
Al 0.0942 0.0463 0.5220 17 All 0.1357 0.0264 0.5309 16
A2 0.0970 0.0438 0.5206 18 Al12 0.1765 0.0330 0.6016 4
A3 0.1191 0.0413 0.5482 13 Al13 0.1403 0.0434 0.5829 7
A4 0.1957 0.0297 0.6148 2 Al4 0.1593 0.0292 0.5699 9
A5 0.1267 0.0418 0.5602 11 Al5 0.1459 0.0274 0.5475 14
A6 0.1401 0.0394 0.5727 8 Al6 0.1277 0.0330 0.5389 15
A7 0.1962 0.0345 0.6287 1 Al7 0.0788 0.0442 0.4911 20
A8 0.1701 0.0297 0.5848 5 Al18 0.1887 0.0312 0.6111 3
A9 0.1189 0.0442 0.5552 12 A19 0.1416 0.0427 0.5831 6
A10 0.0926 0.0418 0.5086 19 A20 0.1203 0.0463 0.5619 10
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Assuming T = 0.5.
The final rankings of the EVs (considering both the technical performance and user
opinions) were obtained using the following relation:

Sittochmi 1-0)S;
Si(final) _ 4 i(technical) +2( g) i(user) (14)

where { can take any value between 0 and 1 depending on the choice of the decision
makers. However, in this study we assumed that { = 0.5, because the weights obtained
by subjective and objective means were equally appreciated. Table 12 provides the final
aggregated rankings of the EVs.

Table 12. Aggregated final rankings of the EVs (technical performance and user opinions).

S; S;
Model : - ; Model : - :
Technical User Final Rank Technical User Final Rank
Al 0.5119 0.5220 0.2585 18 All 0.6016 0.5309 0.2831 14
A2 0.5571 0.5206 0.2694 16 Al12 0.5931 0.6016 0.2987 4
A3 0.5514 0.5482 0.2749 15 Al3 0.5847 0.5829 0.2919 7
A4 0.6102 0.6148 0.3062 2 Al4 0.5851 0.5699 0.2888 9
A5 0.5816 0.5602 0.2855 11 A15 0.5875 0.5475 0.2838 13
A6 0.6090 0.5727 0.2954 5 Ale 0.6118 0.5389 0.2877 10
A7 0.5986 0.6287 0.3068 1 Al17 0.3540 0.4911 0.2113 20
A8 0.5806 0.5848 0.2913 8 A18 0.6057 0.6111 0.3042 3
A9 0.5846 0.5552 0.2850 12 A19 0.5865 0.5831 0.2924 6
A10 0.5199 0.5086 0.2571 19 A20 0.4882 0.5619 0.2625 17

We also examined the consistency among the rankings of the EVs based on the tech-
nical attributes and user opinions using the Spearman’s rank correlation (SRC) test (see
Table 13). The SRC test is a nonparametric counterpart of the Pearson’s product moment
correlation test. The SRC test is performed in cases where the distribution is non-normal,
one of the variables is discrete, or the variables are measured on the ordinal scale [55]. In
this case, a comparison was made of the orders of the rankings provided by the different
MCDM models and between the attractiveness of the EVs based on the technical attributes
and user opinions. Hence, it was justified to use the SRC test for evaluating the compa-
rability of the various models. The general definition of the coefficient of the SRC (p) is
given by:

2
p=1-— _ oy di (15)
m(m? —1)
where d; is the difference between two ranks for the i observation (i.e., a particular
alternative in this study), and m is the number of observations.

It can be observed from Table 13 that there is a significant consistency of moderate

strength between the rankings based on the technical attributes and user opinions.

Table 13. SRC test-I.

Method
Coefficient Rank (User Opinions)
Spearman’s rho Rank (Technical Attributes) 0.528 *
Sig. (2-tailed) 0.017

* Correlation is significant at the 0.05 level (2-tailed).
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3.3. Comparative Analysis with Other MCDM Models

To validate the results obtained using the entropy-AROMAN framework, a com-
parison was made with other the MCDM models, such as the multi-attributive border
approximation area comparison (MABAC) [56], proximity indexed value (PIV) [57], and
compromise ranking of alternatives from distance to ideal solution (CRADIS) [58] methods.

From Table 14, it can be seen that the results of the rankings with the AROMAN
method do not differ significantly from the other models. Therefore, it can be contended
that the AROMAN is a considerably reliable solution. The AROMAN method provides the
following advantages compared with the MABAC, PIV, and CRADIS methods. AROMAN
uses two different normalization schemes: linear max-min (LMM) and vector normaliza-
tion (VN). As a result, it combats the effect of variations in the performance values (in the
decision matrix) on the final order. Previous studies (for instance, [59-61]) required the
selection of appropriate schemes for normalization and advocated for the use of a com-
bination of normalization techniques instead of using a predefined approach. This helps
the decision maker select the best possible solution. LMM is particularly advantageous
for comparing the alternatives depending on their closeness to the target reference values
(ideal or nonideal) and works well when negative values are present in the decision matrix.
However, LMM does not capture the size effect of the criteria units, i.e., differences in the
discrete degrees of the performance values of the alternatives under the effect of the criteria.
VN is a computationally efficient and symmetric approach that helps in capturing the size
effect. Hence, the advantages of AROMAN are reflected in more stable decision making,
because the application of two normalizations results in stability in the final order of the
alternatives. This is because the different normalizations lead to different final orders. The
use of two normalizations contributes to equalizing the value of the alternatives, and based
on this, any method can be used without the order of the alternatives remaining stable. Fur-
thermore, AROMAN provides decision makers with flexibility on using thrust on a specific
normalization scheme depending on the structure of the decision matrix and requirements
of the given problem. In addition, it also separately calculates the sum of the weighted
performance values for beneficial and nonbeneficial criteria and provides flexibility in the
selection of the coefficient value for the derivation of the final appraisal score.

Table 14. SRC test-II.

Method
Coefficient MABAC PIV CRADIS
Spearman’s rho AROMAN 0.928 ** 0.905 ** 0.926 **

** Correlation is significant at the 0.01 level (2-tailed).

3.4. Sensitivity Analysis

The outcomes of MCDM models often become unstable because of sudden changes in
the governing conditions, such as changes in the criteria set, variations in the weights, se-
lection of the alternatives, and addition/removal of elements of the decision matrix [62-68].
Therefore, it is important to carry out a sensitivity analysis (SA) to examine the stability
of the solution. The present work follows the SA scheme adopted in [27]. This work
includes a good number of external parameters. A sample demonstration of the SA for the
user-opinion-based rankings result is provided below. Table 15 shows the SA scheme, and
the results of the SA (i.e., the rankings of the EVs under various experimental cases) are
also pictorially represented in Figure 2.
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Table 15. Experimental results of the SA.

Parameter Values

Case q A B T 4
Initial 3 0.8 0.5 0.5 0.5
Exp. 1 1 0.8 0.5 0.5 0.5
Exp. 2 5 0.8 0.5 0.5 0.5
Exp. 3 10 0.8 0.5 0.5 0.5
Exp. 4 3 0.9 0.5 0.5 0.5
Exp. 5 3 0.4 0.5 0.5 0.5
Exp. 6 3 0.8 0.3 0.5 0.5
Exp.7 3 0.8 0.8 0.5 0.5
Exp. 8 3 0.8 0.5 0.9 0.5
Exp. 9 3 0.8 0.5 0.2 0.5
Exp. 10 3 0.8 0.5 0.5 0.4
Exp. 11 3 0.8 0.5 0.5 0.8
— H - Exp.10
T M m Exp.8
T 7 m Exp.6
T 1 m Exp.2
—T = — Initial
AL - I
Alternatives (EVs)

Figure 2. Results of the SA.

Figure 2 shows that most of the alternatives did not change their ranking positions
irrespective of the changes in the values of the parameters. The top three and bottom three
positions remained unaltered, which allows for the clear differentiation of the performers
and nonperformers under all conditions for effective decision making. It can be observed
that A2 and A3 showed sensitivity to the changes in the g-values, as they changed their
positions. It can be observed that for the ordinary fuzzy sets (q = 1), A2 and A3 did not hold
their initial positions. Given the changes in A, there was a slight variation in the rankings
order for A6 and A12, suggesting a change in the preferential orders of A6 and A12. On
the other hand, A10 was only susceptible to changes in the value of T. This means that for
any alteration to the relative importance of the beneficial or nonbeneficial criteria effects,
A10 showed a slightly better performance. It could also be observed that with variations
in the value of (, the alternative A20 showed a minor variation in its ranking. However,
all variations showed only minor changes in their ranking positions (one or two positions)
which reflects the considerable stability of the results.

4. Discussion

In order for transport to be sustainable, it is necessary to choose those means of trans-
port that do not harm the environment. EVs represent an alternative to classic transport,
because they do not emit harmful gases into the atmosphere, and they contribute to the
preservation of the environment [69]. In addition, these vehicles contribute to a reduction
in costs, especially transport in urban areas [70]. This is because fossil fuel cars consume
more in urban areas and pollute the environment more [71]. However, in addition to
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these positive aspects, EVs also have negative aspects, namely, car range, charging time,
higher cost, and greater vehicle weight [72], while the increase in the number of EVs in
the country increases the cost of electricity. Therefore, when choosing an EV, the technical
characteristics of these vehicles must be taken into account.

From the analysis of technical performance, it was observed that battery, range, safety,
and comfort took priority. However, we noticed some similarities when taking into consid-
eration expert opinions related to users. We observed that cost, electricity consumption,
features, aesthetics, and brand image were also priorities. These results support the views
in [10,73-75]. We further noticed that technical-attribute-based rankings significantly
maintained moderate consistency with user-opinion-based rankings. However, the final
rankings were more related to the user opinions. Hence, it may be inferred that user opin-
ions influence the choice of EVs. Technical attributes may further reinforce the purchase
decision. From the overall rankings of the EVs, it was also noticed that the price of the
car was not a top influence. In this regard, the present work adds value to the extant
literature. Further, the results of the proposed model showed stability and robustness,
as was evident from the validation test and sensitivity analysis. While our approach has
many advantages, there are some disadvantages too. Our model poses a slightly higher
computational complexity, as it involves hybridization.

The present work contributes to the growing strand of literature in the following ways.
First, it provides an apparently rare integrated framework (based on technical attributes
and user opinions) to compare popular EVs in India. Secondly, a new extension of the
entropy method using two-step normalization with full consistency and qROEN is provided.
Hybridization of the entropy method with FUCOM while using double normalizations has
not been used in previous research. Third, a novel extension of the very recently developed
AROMAN model with qROEN is formulated. Fourth, the current work is the first of its
kind that uses a new hybrid entropy AROMAN framework with qROFN using the Einstein
aggregation operator.

Our work has a number of technical and managerial implications. First, the present
work sheds light on a user-opinion-based selection framework for comparing EVs that
may help designers to focus on issues of priority. Secondly, the results may help decision
makers formulate strategically appropriate marketing materials. Thirdly, the EA-based
qROF entropy with full consistency and two-step normalization with AROMAN can help
analysts solve real-life complex issues involving group decision making.

This work posits a number of future scopes of research. First, ongoing work may add
further theoretical foundations for technological acceptance and user opinions to conduct
a large-scale holistic comparison of EVs. Secondly, it may be interesting to compare the
models to various EVs and then examine the commonalities and differences. Thirdly, based
on user opinions, a comparison of EVs and the leading normal vehicles could be compared.
Fourth, an in-depth exploratory study could be carried out to curate the opinions of users
to compare the EVs before applying the MCDM. Fifth, the entropy—~AR-MAN framework
could be extended using other aggregation techniques (for example, Dombi) and/or other
fuzzy numbers for application in real-life decision-making problems. Only a handful of
experts (three) participated in this work. As a general scope, future work could include
more experts to formulate a focus group discussion and subsequent model building.

5. Conclusions

Transportation is an integral part of all aspects of human life. Social well-being and
trade and business largely depend on transportation systems. Over the last few decades,
global warming has been a top priority for people, organizations, and national leaders.
To safeguard lives and livelihoods, it is imperative to reduce carbon emissions and the
greenhouse effect. Quite understandably, sustainable city planning to achieve net zero
emissions is emphasized by countries (especially those experiencing rapid industrialization
and urbanization) across the globe as a long-term strategic action goal. In this regard,
transportation is a major area of focus, as it contributes significantly to total carbon emis-
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sions. To reduce the CO, footprint for ensuring better air quality, electric cars (ECs) have
emerged as a future alternative for sustainable transportation planning. Designing EVs
is, today, a distinguished area. ECs are environmentally friendly, as they emit less CO,
and other toxic gases and do not use fossil fuels. To this end, the present paper applied a
multicriteria decision-making (MCDM)-based framework for the comparison of the leading
electric vehicles (EVs) used in India. The comparison was conducted using two dimensions:
technical attributes and user opinions. Finally, the outcomes of both of these dimensions
were combined to obtain the final rankings. The objective-information-based analysis was
carried out for the technical performance analysis based on 12 max-type and one min-type
criteria. In this regard, the present work extended the entropy method with two-step
normalization and full consistency and used the same for the first time in combination with
a very recently developed MCDM model: AROMAN. For the user-opinion-based analysis,
qROFNs were used to extend the entropy method with an EA application. It was found
that A7, A4, and A18 remained in the top three positions, while A20, A1, and A7 held
the bottom three positions irrespective of the changes in the given conditions. It was also
observed that A2 and A3 showed sensitivity to changes in the positions of the g-values.
With changes in A, there were slight variations in the order of the rankings for A6 and A12.
A10 was only susceptible to changes in the value of 7. It was seen that with variation in the
value of (, the alternative A20 showed a minor variation in its ranking. Further, the results
of the rankings with AROMAN compared with the other MCDM models were found to
be consistent. Hence, the results of the proposed model showed stability and robustness,
as evident from the validation test and sensitivity analysis. The technical-attribute-based
rankings significantly maintained a moderate consistency with the user-opinion-based
rankings. However, the final rankings were more related to the user opinions. Hence, it
may be inferred that user opinions influence the choice of EVs.
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Appendix A Preliminaries of qROFS

In this section, some preliminary concepts and operations of the qROFS are described
briefly [30].

Definition Al. A q-ROFS is defined as:

Ay ={{xnz, (2),85 (x))ix € X} (A1)

where X is the universe of discourse.
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ygq(x) : X —[0,1] and ﬁgq(x) : X — [0, 1] are the degree of membership (DoM) and de-
gree of nonmembership (DoNM), respectively.

0< (s, ()7 + (9 (1) < LV € X

The degree of indeterminacy (Dol) is given by:

i (x) = </1 — 1, (X)) = (85, (0)Vx € X7z (x) : X = [0,1] (A2)

Ifg=1: Aq is the Atanassov’s intuitionistic fuzzy set (IFS);
Ifg=2: ﬁq is the Pythagorean fuzzy sets (PyFS);
Ifg=3: gq is converted into Fermatean fuzzy sets (FFS).

Let Ay = {u, 0} be a general gROFN representing the gROFS for convenience in explaining
and applying the concepts while keeping the meaning of the terms and their fundamental definitions.

Definition A2. Basic operations of g-ROFN.

Let Ay = {p, 8}, Aj1 = {p1,01}. A2 = {p2, 92} are the three -ROFNs. Then, we have
the following operations:
Ag = {0 p} (A3)

Ap @ Ap = { 1+ 13— i, 191192} (A4)
Ag1 ® Aga = { papia, /07 + 05 — 19;’19;} (A5)
wA; = {{7/ 1—(1—wu1)", 19”‘}; a is a constant (A6)
Al = {y“, 01— (1 1911)“} (A7)

Definition A3. Score and accuracy function.

As per the definition provided by Peng and Dai [54], the definition of the score function (SF) is
given below:

92099 —
g*:@‘%ﬁl)_i_%(ycu_m_,_z);/\e [0,1] (A8)
Here, A is a constant scalar value.

The accuracy function (AF) is defined by Liu and Wang [76] as:

H=ul+95H¢cl01] (A9)

The rules for comparison are as follows:
If:

SF, >~ SF = Aq1 - qu,'

Elseif SF| < Sh, = Ag1 < Ag2;

Else lfSFl =Sk then;

IfAFl - AR = A,ﬂ - qu.
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Definition A4. qROF-weighted averaging operator (-ROFWA).

The definition is provided by Liu and Wang [76]:
q— ROFWA(Aq, Ag2, .., Agr) = <(1 — -
k=1 k=1

Here, wy is the weight of Agy.
Definition A5. Einstein sum and product.

The definitions, as provided in Weber [77], are given below:

Leta, b € [0,1].
Then, the Einstein sum and product are derived as:

a+b
ﬂ@sb— 1—|—le

Qe b= ab
e I A —a)(1—0)

Definition A6. gROF-weighted aggregation.

The qROF Einstein-weighted average (JROFEWA) for the qROFNs Ag1, Aga, -

computed [48] as:
qROFEWA (Aq1, Ag2, - .., Agr

(, <1+u?>wfﬁ<w7>wf)

9\%i
(1*%‘) !
= 14 w; a
217 874 i
=1
. r .
(2-07)" i+ 11 9"
i=1

r
i=1

I~
-
Il
—
RSN

==~

(1+y?)wi+

==~

i=1

Il
—

(A10)

(A11)

(A12)

oy Agris

(A13)

Similarly, the qROF Einstein-weighted geometric average (JROFEWG) for the gqROFNS is defined as:

GROFEWG (Ag1, Aqa, -, Agr)

211 " !
i1
. r .
_ 1<2—u?>’”’+n1 pit?
=

1

( IT (1+07)"

/
T~

o

Il
—_

110\ !
i—1 !
, 3 ;.
A+ "+ 1T (1-00)"
i=1

o B

Il
—_

(Al14)
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Appendix B

Table Al. Decision matrix for comparing the EVs based on technical attributes.

Model TA1 TA2 TA3 TA4 TA5 TA6 TA7 TAS8 TA9 TA10 TA11 TA12 TA13

Al 114 73.75 240 24 315 5.7 2400 14 2 8 5 5 0.10
A2 250 141 350 40.5 437 9 2498 16 2 8 5 5 0.19
A3 245 127 350 40.5 312 9.9 2498 16 2 8 5 5 0.16
A4 1020 751 500 107.8 553 3.4 3210 19 9 8 5 5 2.00
A5 660 402.3 414 78 418 49 1652 19 7 8 5 5 0.56
Ab 605 320.6 572 77.4 500 3.5 2900 19 8 8 5 5 0.62
A7 430 335.3 470 83.9 541.5 5.7 2856 19 8 8 5 4 0.70
A8 650 482.8 446 93.4 420 41 2900 21 8 8 5 5 1.94
A9 280 173.8 448 50.3 461 8.5 2581 17 6 8 5 5 0.25
A10 270 181 211 32.6 270 7.3 2495 17 3 8 4 5 0.51
All 696 394.3 656 90 470 4.8 2990 18 6 8 5 5 1.22
Al12 630 321.8 500 71 398.5 6.1 3000 21 6 8 5 5 1.16
Al3 180 93.87 580 71.7 415 8 2800 17 4 8 5 5 0.29
Al4 830 637 660 93.4 441 3.3 2903 20 6 8 5 4 1.87
Al5 630 523 660 93.4 444 4.1 2903 20 7 8 5 4 1.68
Al6 664 300 660 95 421.5 5.7 2928 20 8 8 5 5 1.11
Al17 90 20.11 300 15 200 6.2 2012 12 2 3 2 2 0.05
Al8 760 402.3 500 80 463 5.1 2873 18 9 8 5 5 1.00
Al19 395 134.1 538 39.2 452 79 2600 17 6 8 5 5 0.24
A20 91 41.57 510 25 110 11.2 2630 14 1 3 5 4 0.09
Appendix C

Table A2. Rating of the alternatives by expert 1.

Model UA1 UA2 UA3 UA4 UA5 UA6 UA7 UAS UA9 UA10 UA11 UA12 UA13
Al VL VH H M L VL H VL L VL M VL VL
A2 M H M M L L H VL L L M VL L
A3 VL H H M M M VH L M VL M VL L
A4 VH M VH H VH H VH VL L VH H M VH
A5 M L L M VH L H H H H L L L
A6 VH L VL L M H M H H H M M L
A7 VH M VH VH H H VH M M H M H M
A8 M M H VH VH H VH VL VL H H M VH
A9 M VL L M M M M H M M VH L VL

A10 VL VL VL M M L M H M L H L L
All H H H M H M VH VL VL M L VH H
Al2 M VH VH H VH H H M M M M M H
Al13 L H H M H H L M H L H L VL
Al4 H M M H H H VH M M M M M VH
Al5 H H M H H H H L M H VL M VH
Alé M L L H L H H M M H L M H
Al17 VL VL M M VL M M M H VL M L VL
A18 H M VH H H VH VH VL VL VH H M H
A19 H VH H VL VL L H VH VH M VL VL L
A20 VL H M VL M M H VH VH VL L VL VL
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Table A3. Rating of the alternatives by expert 2.

Model UA1 UA2 UA3 UA4 UA5 UA6 UA7 UAS8 UA9 UA10 UA11 UA12 UA13
Al VL VH H M L VL H VL L VL M VL VL
A2 M H M M L L H VL L L M VL L
A3 VL H M M M M VH L M VL M VL H
A4 VH M H H H H VH L L VH H M H
A5 M L L M M L H M H H L L L
Ab VH L VL L H H M VH H H M M L
A7 VH M VH VH H H VH M M H M H M
A8 L M H VH VH M VH VL VL H H M VH
A9 H VL L M M H M H M M VH L VL

A10 VL VL L M M L M H M M H L L
All H H VH M H M VH VL VL L L VH H
Al2 M VH H H VH H H M M M M M H
Al3 L H H M H H M H L H M VL
Al4 H M M H H H VH M M M M L VH
A15 H H M H H H H L M H VL H VH
Al6 H L L H L H H M M H L M H
Al7 VL VL M M VL M M M H VL M L VL
A18 H M VH H H VH VH VL VL VH H M VH
A19 H VH H VL VL L H VH VH M VL VL M
A20 VL H M VL M M H VH VH VL L VL VL

Table A4. Rating of the alternatives by expert 3.

S/L UA1 UA2 UA3 UA4 UA5 UA6 UA7 UAS UA9 UA10 UA11 UA12 UA13
Al L VH H M L VL H VL L VL M VL VL
A2 L H M M L M H VL M L L VL L
A3 VL VH H M M L VH L L VL M VL L
A4 VH H VH H VH H VH VL L H H M VH
A5 M L L M VH L H H H H L L L
A6 VH L L L M H M H H H H M L
A7 VH M H VH H H VH M M H M H L
A8 M M H VH VH H VH VL L H H M H
A9 M VL L M M M L H L M VH L VL
A10 VL VL VL M M L H H H L H L L
All H H H M H M VH VL VL M L VH H
Al12 L VH VH H VH H H L M M M M H
Al3 M H H M H H L H H L H L VL
Al4 H M M H H H VH M M M M M VH
A15 H H M H H H H L M H VL M VH
Al6 M L L H L VH H M M VH L M H
Al7 VL L M M VL L M M H VL M L VL
Al18 H L VH H H VH VH VL VL VH VH M H
A19 H VH H VL VL L H VH VH M L VL L
A20 VL H M VL M M H VH VH VL L VL VL
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