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Abstract: Recently, there has been growing interest in alternative measures of uncertainty, including
cumulative residual entropy. In this paper, we consider a mixed system consisting of n components,
assuming that all components are operational at time t. By utilizing the system signature, we are
able to compute the cumulative residual entropy of a mixed system’s remaining lifetime. This metric
serves as a valuable tool for evaluating the predictability of a system’s lifetime. We study several
results related to the cumulative residual entropy of mixed systems, including expressions, limits,
and order properties. These results shed light on the behavior of the measure and provide insights
into the predictability of mixed systems. In addition, we propose a criterion for selecting a preferred
system based on the relative residual cumulative entropy. This criterion is closely related to the
parallel system and provides a practical way to choose the best system configuration. Overall, the
present study of cumulative residual entropy and the proposed selection criterion provide valuable
insights into the predictability of mixed systems and can be applied in various fields.
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1. Introduction

Exploring distribution functions with limited information involves a host of com-
pelling activities, such as poverty assessment, model selection, portfolio analysis, hypothe-
sis testing, and estimation. The entropy measure of a probability distribution has a diverse
range of applications across multiple fields including statistics, physics, economics, infor-
mation sciences, and communication theory. The origin of this measure can be traced back
to Shannon’s extensive article [1]. If X is an absolutely continuous non-negative random
variable with the probability density function (pdf) f (x), the Shannon differential entropy
can be defined as H(X) = −E[log f (X)] (provided that the expectation exists). Due to its
versatility and practicality, this measure has become widely used in many areas of research.

Despite the many advantages of differential entropy, Rao et al. [2] proposed an al-
ternative measure called cumulative residual entropy (CRE). This measure is obtained by
replacing the pdf f (x) with the survival function S(x) = P(X > x) and is defined as follows:

E(X) = −
∫ ∞

0
S(x) log S(x)dx, (1)

provided that the integral exists. Rao et al. [2] noted that for the finiteness of CRE, it is
necessary to have E|X|p < ∞ for some p > N, where N is a natural number. The CRE is
particularly well-suited for describing the dispersion of information in problems related to
the aging properties of reliability theory. This measure has been used in various studies,
including those by Asadi and Zohrevand [3], Baratpour [4], Baratpour and Habibi Rad [5],
Navarro et al. [6], Rao [7] and Toomaj et al. [8], among others. As an example, Asadi and
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Zohrevand [3] demonstrated that the CRE is the expected value of the mean residual life
(MRL) function m(x) = E(X− x|X > x), which can be expressed as E(m(X)) = E(X).

For engineers, it is crucial to perform and quantify uncertainty in the lifetime of a
system. The reason for preferring systems with lower uncertainty and longer lifetimes is
that reliability tends to decrease as uncertainty increases. This concept has been studied
extensively, as demonstrated by Ebrahimi and Pellery [9]. In situations where operators
have some knowledge of the system’s current age, measuring the uncertainty of the system’s
residual lifetime can be of interest. In such cases, the dynamic cumulative residual entropy
(DCRE) is a more appropriate measure than E(X), where X denotes the lifetime of a new
system. The DCRE is defined as follows (see Asadi and Zohrevand [3]):

E(Xt) = −
∫ ∞

0
St(x) log St(x)dx

= −
∫ ∞

0

(
S(x + t)

S(t)

)
log
(

S(x + t)
S(t)

)
dx, (2)

= −
∫ 1

0

ψ(u)
ft(S−1

t (u))
du, (3)

where

ft(x) =
f (x + t)

S(t)
,

is the pdf of Xt = [X− t|X > t], and S−1
t (u) = inf{x; St(x) ≥ u} is the quantile function of

St(x) = S(x+t)
S(t) , x, t > 0. Here, we use the function ψ(u) = −u log u, 0 < u < 1, to define

the DCRE. To apply this concept, we consider a mixed system comprising n components,
all of which are alive at a given time t.

Many authors have shown a keen interest in exploring the information properties of
mixed systems, as evidenced by their studies on system signatures. For instance, Toomaj
and Doostparast [10,11] derived an expression for the entropy of mixed systems and
established bounds for the entropy of the system’s lifetime. They also provided formulas for
the Kullback–Leibler discrimination information of mixed systems and component lifetimes.
Asadi et al. [12] introduced the Jensen–Shannon (JS) information criteria, a scalar function
of the signature that ranks mixed systems based on their designs. They demonstrated that
the JS information is always non-negative and that r-out-of-n systems attain their minimum.
Most recently, Toomaj [13] and Toomaj et al. [8] delved into stochastic comparisons of R’enyi
entropy and cumulative residual entropy of mixed systems, respectively, demonstrating
that both systems yield similar signatures. Exciting recent research has delved into the
study of coherent systems comprising n components, where all components are alive at
time t. Toomaj et al. [14] investigated the Shannon differential entropy of the system’s
lifetime, while [15] explored the Tsallis entropy of the same. Mesfioui et al. [16] also
investigated the Tsallis entropy of coherent systems with identical properties, making this
a fascinating area of current research. This research aims to investigate the uncertainty
properties of mixed system lifetimes, specifically in terms of CRE. In contrast to Kayid
and Alshehri’s prior work [15], our research centers on mixed systems composed of n
components, all of which are operational at a given time t. Through the application of the
system signature, we determine the CRE of a mixed system’s residual lifetime and establish
an equation for the CRE of the conditional residual lifetime of the mixed system.

This paper presents the findings in the following structure: In Section 2, we introduce
an expression for the CRE of a mixed system’s lifetime, assuming that all components of
the system have survived up to time t. To achieve this, we utilize the powerful concept of
system signature, which is particularly effective when component lifetimes are independent
and identically distributed in a mixed system. Section 3 presents a series of useful bounds
that further illuminate the properties of mixed systems. In Section 4, we propose a novel
criterion for selecting the most suitable mixed system. Finally, we conclude with some
closing reflections in Section 5.
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2. CRE of the Residual Lifetime

This section introduces a groundbreaking concept known as the system signature,
which we apply to define the CRE of a mixed system’s residual lifetime. A mixed system
represents a stochastic blend of coherent systems, where a coherent system is a system
if it does not have any irrelevant components and its structure function is monotone. In
reliability engineering, the structure function is a mathematical function that describes
the relationship between the reliability of a system and the reliability of its individual
components. It is used to model complex systems and to evaluate their reliability. The
signature of such a system is represented by an n-dimensional vector p = (p1, . . . , pn),
where pi = P(T = Xi:n), i = 1, 2, . . . , n, is the probability that the i-th failure causes the
system failure. Here, Xi:n denotes the lifetime of an i-out-of-n system, where the system
fails when the i-th component failure occurs. Notice that p1, · · · , pn are non-negative real
numbers that do not depend on the common cumulative distribution function (cdf) F and
such that ∑n

i=1 pi = 1.
Suppose we examine a mixed system consisting of a set of independently and iden-

tically distributed (i.i.d.) component lifetimes X1, . . . , Xn, alongside a signature vector
p = (p1, . . . , pn) that is known in advance. Let Tn

t = [T − t|X1:n > t] denote the residual
lifetime of the system under the condition that all components are operational at time t.
Here, X1:n denotes the lifetime of the series system. By leveraging the results of [17], the
survival function of Tn

t can be elegantly expressed as follows:

STn
t
(x) =

n

∑
i=1

piSTi,n
t
(x), x, t > 0. (4)

Here, the function STi,n
t
(x) corresponds to the survival function of the residual lifetime of

an i-out-of-n system, where Ti,n
t = [Xi:n − t|X1:n > t] denotes the time remaining for the

i-th component to fail, given that all n components are operational at time t. The survival
function of Ti,n

t can be represented by the following expression:

STi,n
t
(x) =

i−1

∑
k=0

(
n
k

)
(1− St(x))k(St(x))n−k, x, t > 0.

Our attention now shifts to investigating the CRE of the random variable Tn
t . To facilitate

our analysis, we utilize the probability integral transformation V = St(Tn
t ), which recreates

a vital part of our research. It is important to note that the transformation Ui:n = St(Ti,n
t )

follows a beta distribution with parameters n − i + 1 and i. Moreover, its distribution
function can be expressed as

Gi(u) =
i−1

∑
k=0

(
n
i

)
(1− u)kun−k, 0 < u < 1, i = 1, · · · , n. (5)

The upcoming theorem presents a concise expression for the CRE of Tn
t , utilizing the

probability integral transformation and the beta distribution.

Theorem 1. We can express the CRE of Tn
t as follows

E(Tn
t ) =

∫ 1

0

ψ(GV(u))
ft(S−1

t (u))
du, t > 0, (6)

where ψ(u) = −u log u, 0 < u < 1, and

GV(u) =
n

∑
i=1

piGi(u), 0 ≤ u ≤ 1, (7)
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represents the distribution function of V = St(Tn
t ). Here, V is the lifetime of the system with i.i.d.

uniform distribution.

Proof. Using the change of variables u = St(x), we can rewrite (1) and (4) as follows:

E(Tn
t ) = −

∫ ∞

0
STn

t
(x) log STn

t
(x)dx

= −
∫ ∞

0

(
n

∑
i=1

piSTi,n
t
(x)

)
log

(
n

∑
i=1

piSTi,n
t
(x)

)
dx

= −
∫ 1

0

(∑n
i=1 piGi(u)) log(∑n

i=1 piGi(u))
ft(S−1

t (u))
du,

where Gi(u) is the distribution function of Ui:n = St(Ti,n
t ) given in (5). Upon using

Equation (7), we obtain the relation (6), which completes the proof.

If p = (0, . . . , 0, 1i, 0, . . . , 0), i = 1, 2, . . . , n, we arrive at a particular instance of
Equation (6), which can be simplified to:

E(Ti,n
t ) =

∫ 1

0

ψ(Gi(u))
ft(S−1

t (u))
du, t > 0. (8)

The next theorem is a straightforward consequence of Theorem 1 and is formulated in
terms of the aging characteristics of the system’s components. It is worth noting that a
random variable X is said to have an increasing failure rate (IFR) (decreasing failure rate
(DFR)) if its hazard rate function λ(x) = f (x)/S(x) increases (decreases) in x > 0.

Theorem 2. If X is IFR (DFR), then E(Tt
1,n) is decreasing (increasing) in t.

Proof. From the definition of the hazard function, we have ft(S−1
t (u)) = uλt(S−1

t (u)) for
0 < u < 1. By substituting this expression into (6), we derive the subsequent alternative
formulation for the CRE of T1,n

t .

E(Tt
1,n) =

∫ 1

0

ψ(GV(u))
uλt(S−1

t (u))
du, (9)

for all t > 0. One can show that λt(S−1
t (u)) = λ(S−1(uS(t))) for 0 < u < 1. If t1 ≤ t2,

then S−1(uS(t1)) ≤ S−1(uS(t2)). Consequently, in the case where X is IFR (DFR), we can
observe that ∫ 1

0

ψ(GV(u))
uλt1(S

−1
t1

(u))
du =

∫ 1

0

ψ(GV(u))
uλ(S−1(uS(t1))

du

≥ (≤)
∫ 1

0

ψ(GV(u))
uλ(S−1(uS(t2))

dudu

=
∫ 1

0

ψ(GV(u))
uλt2(S

−1
t2

(u))
du.

Using (9), we conclude that E(Tt1
1,n) ≥ (≤)E(Tt2

1,n) for all t1 ≤ t2. This concludes the
proof.

The subsequent example illustrates how Theorems 1 and 2 can be implemented in
practical applications to evaluate the CRE of a coherent system at the system level and
investigate the system’s aging characteristics.

Example 1. Let p = (1/3, 2/3, 0) be the system signature of a coherent system as illustrated in
Figure 1.
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1

2

3

Figure 1. A system characterized by the system signature p = (1/3, 2/3, 0).

We suppose that the system’s component lifetimes are characterized by the survival function
given by

S(t) = e−tk
, k, t > 0. (10)

Upon performing some manipulation, we can represent the cumulative residual entropy of T3
t as

E(T3
t ) =

∫ 1

0

ψ(GV(u))
ku
(
tk − log u

)du,

for t > 0. Regrettably, there is no explicit expression available for this relationship, and numerical
methods must be employed to evaluate it. In Figure 2, we illustrate the CRE of Tt

1,3 as a function
of time t for various values of k. It is well known that X has a decreasing failure rate (DFR) when
0 < k < 1 and an increasing failure rate (IFR) when k > 1. As predicted by Theorem 2, we observe
that E(T3

t ) increases with t for 0 < k < 1 and decreases for k > 1.

0.0
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E

k = 0.9 k = 0.5 k = 0.3
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k = 3 k = 2 k = 1

Figure 2. The exact values of E(T3
t ) with respect to t as illustrated in Example 1 for various values of

k > 0.

The following theorem demonstrates that the cumulative residual entropy of a mixed
system lifetime, given that all components of the system are operational at time t, is
dominated by the CRE of a new system lifetime.

Theorem 3. Let us examine a mixed system comprising i.i.d. component lifetimes that follow the
IFR(DFR) distribution. Then, for all t > 0, we have E(Tt

1,n) ≤ (≥)E(T).

Proof. Since X follows the IFR(DFR) distribution, we can utilize Theorem 3.B.25 of [18] to
infer that X ≥ (≤)dXt, which further implies that

ft(S−1
t (u)) ≥ (≤) f (S−1(u)), 0 < u < 1,
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for all t > 0. Therefore, we have∫ 1

0

ψ(GV(u))
ft(S−1

t (u))
du ≤ (≥)

∫ 1

0

ψ(GV(u))
f (S−1(u))

du, t > 0, (11)

since ψ(GV(u)) ≥ 0 for all 0 < u < 1. Using (6) and (11), we conclude that E(Tn
t ) ≤ (≥)E(T),

which completes the proof.

In engineering reliability, the concept of duality proves to be quite useful for reducing
the computational burden of calculating the signatures of all coherent systems of a particular
size by approximately half. If the minimal path sets of a mixed system A represent the
minimal cut sets of another mixed system B, and vice versa, then we refer to mixed system
A as the dual of mixed system B. Specifically, if a mixed system has a lifetime of Tn

t with a
signature of p = (p1, · · · , pn), then the signature of its dual system with a lifetime of Tt

D,n is
pD = (pn, · · · , p1), (see, Samaniego [19]). Leveraging the concept of duality, the upcoming
theorem reduces the computational complexity involved in calculating the residual CRE of
mixed systems.

Theorem 4. If the condition ft(S−1
t (v)) = ft(S−1

t (1− v)) holds for all 0 < v < 1 and t, we can
deduce that E(Tn

t ) = E(Tt
D,n) for all p and n.

Proof. It is worth noting that Gi(1− v) = Gn−i+1(v) holds true for all i = 1, . . . , n and
0 < v < 1. By assuming that ft(S−1

t (v)) = ft(S−1
t (1− v)) for all 0 < v < 1, we can use (6)

to obtain

E(Tt
D,n) = −

∫ 1

0

(∑n
i=1 pn−i+1Gi(u)) log(∑n

i=1 pn−i+1Gi(u))
ft(S−1

t (u))
du

= −
∫ 1

0

(∑n
r=1 prGn−r+1(u)) log(∑n

r=1 prGn−r+1(u))
ft(S−1

t (u))
du

= −
∫ 1

0

(∑n
r=1 prGr(1− u)) log(∑n

r=1 prGr(1− u))
ft(S−1

t (1− u))
du

= −
∫ 1

0

(∑n
r=1 prGr(v)) log(∑n

r=1 prGr(v))
ft(S−1

t (v))
dv

= E(Tn
t ).

This completes the proof.

Hereafter, we explore the partial ordering of the conditional lifetimes of two mixed
systems, taking into account their uncertainties. We investigate the CRE ordering of the
residual lifetimes of the two systems based on various existing orderings between the
lifetimes of the components and their signature vectors. The following theorem compares
the CREs of residual lifetimes of two mixed systems. Let X and Y be two non-negative
random variables with distribution functions F and G,, respectively. Let F−1 and G−1 be
the right continuous inverses of F and G,, respectively. We recall that X is smaller than Y
in the dispersive order (denoted by X ≤d Y) if F−1(u)− F−1(v) ≤ G−1(u)− G−1(v), 0 <
v ≤ u < 1.

Theorem 5. Let us consider two mixed systems with the same signatures and n i.i.d. component
lifetimes X1, . . . , Xn and Y1, . . . , Yn. The residual lifetimes of these systems are denoted as TX,n

t =

[T − t|X1:n > t] and TY,n
t = [T − t|Y1:n > t], respectively. If X ≤d Y and either X or Y is IFR,

then we can conclude that E(TX,n
t ) ≤ E(TY,n

t ) for all t.

Proof. Using the relation (6), we can show that Xt ≤d Yt, which is sufficient to establish the
desired inequality between the cumulative residual entropies. Since we assume that either
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X or Y is IFR and X ≤d Y, Theorem 5 of Ebrahimi and Kirmani [20] implies that Xt ≤d Yt.
Thus, the proof is complete.

The following example showcases an application of Theorem 5.

Example 2. Consider two coherent systems characterized by their residual lifetimes, denoted by
TX,4

t and TY,4
t , respectively, which share the common signature p = ( 1

2 , 1
4 , 1

4 , 0). Let X and Y
follow the Weibull distributions with shape and scale parameters (3, 1) and (2, 1), respectively.
It is noteworthy that X ≤d Y and both distributions belong to the class of increasing failure rate
distributions. Consequently, invoking Theorem 5 leads to the conclusion that E(TX,4

t ) ≤ E(TY,4
t )

for all t > 0. The associated dynamic CRE measure for these systems are depicted in Figure 3.

0.0

0.1

0.2

0.3

0 1 2 3 4
t

D
yn

am
ic

 C
R

E

E(Tt
X,4) E(Tt

Y,4)

Figure 3. The exact values of E(TX,4
t ) (blue color) and E(TY,4

t ) (green color) with respect to t.

3. Bounds for CRE of the Residual Lifetime

When dealing with highly complex systems with a large number of components,
computing the cumulative residual entropy E(Tn

t ) of a mixed system can be challenging.
This is a common practical issue that arises in many applications. To address this challenge,
researchers have recently developed bounds for the uncertainty of the lifetimes of mixed
systems, as discussed in studies such as [14], and their related references. In the following
theorem, we provide bounds for the residual cumulative residual entropy of a mixed
system’s lifetime, in terms of the residual entropy of the parent distribution E(Xt). These
bounds can be valuable for approximating the lifetime of a mixed system, particularly in
scenarios where the computation of its exact cumulative residual entropy is challenging.

Proposition 1. Consider a mixed system with the same signature p = (p1, . . . , pn) and n i.i.d
component lifetimes X1, . . . , Xn with residual lifetime denoted as Tn

t = [T − t|X1:n > t]. Then,

B1E(Xt) ≤ E(Tn
t ) ≤ B2E(Xt)

where B1 = infu∈(0,1)
ψ(GV(u))

ψ(u) , B2 = supu∈(0,1)
ψ(GV(u))

ψ(u) and ψ(u) = −u log(u).
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Proof. We can obtain an upper bound for E(Tn
t ) of a mixed system with n i.i.d. component

lifetimes by using (6). Specifically, we have

E(Tn
t ) =

∫ 1

0

ψ(GV(u))
ft(S−1

t (u))
du

=
∫ 1

0

ψ(GV(u))
ψ(u)

ψ(u)
ft(S−1

t (u))
du

≤ sup
u∈(0,1)

ψ(GV(u))
ψ(u)

∫ 1

0

ψ(u)
ft(S−1

t (u))
du

= B2E(Xt),

where B2 is a constant that depends on the distribution of V. Similarly, we can obtain a
lower bound for E(Tn

t ) using the same approach.

In the above theorem, the lower bound B1 is determined by the minimum value of the
ratio ψ(GV(u))/ψ(u), evaluated at u ∈ (0, 1). The upper bound B2 is determined by the
maximum value of the same ratio, evaluated at u ∈ (0, 1). These bounds provide a useful
tool for estimating the residual cumulative residual entropy of a mixed system based on
the cumulative residual entropy of its component lifetimes.

Remark 1. We would like to emphasize that the lower bound B1 in Proposition 1 is equal to zero
for all the mixed systems with i.i.d. components and signature (p1, . . . , pn) satisfying s1 = 0 or
sn = 0. In particular, it is zero for all the coherent systems with n > 1 i.i.d. components; (see [8]).

Here, we derive a comprehensive lower bound for the CRE of Tn
t by leveraging the

system signature and CRE of k-out-of-n systems.

Proposition 2. Suppose we have a mixed system with a signature of (p1, . . . , pn) composed of n
i.i.d. components, denoted by Tn

t . Then, we can make the following statement:

E(Tn
t ) ≥ EL(Tn

t ), (12)

where EL(Tn
t ) = ∑n

i=1 piE(Ti,n
t ).

Proof. Using Samaniego’s representation, we can express the distortion function GV(v) as-
sociated with the signature vector p = (p1, . . . , pn) and the component lifetimes X1, X2, . . . , Xn
as GV(v) = ∑n

i=1 piGi:n(v), where Gi:n(v) is the distortion function associated with the
ith order statistic Xi:n. By applying (6) and the concavity of the distortion function
ψ(u) = −u log(u), we obtain the lower bound:

E(Tn
t ) =

∫ 1

0

ψ(GV(u))
ft(S−1

t (u))
du

≥
∫ 1

0

∑n
i=1 piψ(Gi:n(u))

ft(S−1
t (u))

du

=
n

∑
i=1

piE(Ti,n
t ),

where E(Ti,n
t ) is the cumulative residual entropy of Ti,n

t .

This bound shows that the cumulative residual entropy of the mixed system is lower-
bounded by a linear combination of the cumulative residual entropies of the component
lifetimes, with weights given by the signature vector. This result can be particularly useful
when the signature vector is known and the component lifetimes have a monotone hazard
rate function, as it allows for a direct estimation of the cumulative residual entropy of the
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mixed system without the need for complex computations. It is worth noting that equality
in (12) is valid for i-out-of-n systems, where we have pj = 0 for j 6= i, pj = 1 for j = i,
and E(Tn

t ) = E(T
i,n
t ). When the lower bounds in both parts of Theorems 1 and 2 can be

computed, one may use the maximum of the two lower bounds.

Example 3. Let us consider a coherent system with the signature p = (0, 3
10 , 5

10 , 2
10 , 0), comprising

n = 5 i.i.d. component lifetimes drawn from a uniform distribution in the interval [0, 1]. Let T5
t

denote the residual lifetime of this system, defined as T5
t = [T − t|X1:5 > t]. Remarkably, due

to Remark 1, we have B1 = 0, while B2 = 18.21 and E(Xt) =
1
4 (1− t), 0 < t < 1. Utilizing

Theorem 1, we conclude that the conditional residual entropy of T1,5
t is bounded as follows:

0 ≤ E(T1,5
t ) ≤ 4.55(1− t), 0 < t < 1. (13)

In addition, since ∑n
i=1 piE(Ui:n) = 0.16, the lower bound given in (12) can be expressed as:

E(T1,5
t ) ≥ 0.16(1− t), (14)

for all 0 < t < 1. By combining the lower bound in (14) and the upper bound in (13), we obtain the
following inequality for the conditional CRE of T1,5

t :

0.16(1− t) ≤ E(T1,5
t ) ≤ 4.55(1− t),

for all 0 < t < 1. This provides a tight bound on the conditional CRE of T1,5
t for all values of t in

the interval (0, 1).

4. Preferable System

In pairwise comparisons, the typical stochastic ordering may not suffice due to the
intrinsic nature of certain system structures. Several pairs of systems remain incomparable
under any of the conventional stochastic indices. To overcome this limitation, we delve
into various metrics for comparing the performance of systems.

In the next section, we present a novel approach for comparing information mea-
sures. When comparing systems, engineers generally prefer those systems with longer
operational times.

Therefore, it is essential to ensure that the competing systems have similar characteris-
tics. Furthermore, assuming identical characteristics, a parallel system design is the most
suitable option as it provides superior performance and a longer residual lifetime compared
to other systems. Concerning reliability, we can utilize (4) to establish the following property:

P(T1,n
t > x) ≤ P(Tn

t > x) ≤ P(Tn,n
t > x), x > 0,

for all t > 0. Rather than relying on pairwise comparisons, we can instead search for
a system whose structure or distribution is more akin to that of the parallel system. In
essence, we seek to answer the following question: which of these systems bears greater
similarity (or proximity) to the parallel system’s configuration while being dissimilar to
the series system’s configuration? To address this query, we utilize the concept of relative
CRE discrimination. To simplify our analysis, we use the distance measure between two
distributions proposed by Toomaj et al. [8].

Definition 1. Suppose that Xt = [X − t|X > t] and Yt = [Y − t|Y > t] are two non-negative
residual random variables that share a common support, with CDFs Ft and Gt, respectively. In such
a scenario, the Symmetric Kullback–Leibler (SKL) divergence is defined as follows:

SCE(Xt, Yt) =
∫ ∞

0

[
Ft(x)− Gt(x)

]
log

Ft(x)
Gt(x)

dx. (15)
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The metric (15) that we have introduced is both non-negative and symmetric and
satisfies the condition SCE(Xt, Yt) = 0 if and only if Ft(x) = Gt(x) almost everywhere.
Based on this, we propose the following Symmetric Dynamic Distance Measure (DDSM)
for Tn

t :

DDSM(Tn
t ) =

SCE(Tn
t , T1,n

t )− SCE(Tn
t , Tn,n

t )

SCE(T1,n
t , Tn,n

t )
. (16)

Proposition 3 establishes that −1 ≤ DS(Tn
t ) ≤ 1. It follows that DS(Tn

t ) = 1 if and only if
Tn

t =st Tn,n
t , and DS(Tn

t ) = −1 if and only if Tn
t =st T1,n

t . In simpler terms, we can infer
that a value of DS(Tn

t ) closer to 1 indicates that the distribution of Tn
t is more similar to

that of a parallel system. Conversely, a value of DS(Tn
t ) closer to −1 suggests that the

distribution of Tn
t is more similar to that of a series system. With this understanding, we

propose the following definition. For the sake of simplicity, we will henceforth examine two
mixed systems, each comprised of n i.i.d. component lifetimes and possessing signatures
p1 and p2. We denote the residual lifetimes of these systems as Tn

1,t and Tn
2,t, respectively.

Definition 2. We say that Tn
2,t is more preferable than Tn

1,t in terms of the Dynamic Distance
Symmetric Measure, denoted by Tn

1,t ≤DDSM Tn
2,t, at time t, denoted by Tn

1,t ≤DDSM Tn
2,t, if and

only if DDSM(Tn
1,t) ≤ DDSM(Tn

2,t) for all t > 0. more preferable than Tn
1,t in the Distance

Symmetric Measure, denoted by Tn
1,t ≤DDSM Tn

2,t, if DDSM(Tn
1,t) ≤ DDSM(Tn

2,t).

It is worth noting that DDSM(Tn
1,t) = DDSM(Tn

2,t) does not necessarily imply that
Tn

1,t =st Tn
2,t. Under the conditions stipulated in Definition 2, we define DDS(Tn

t ) =

SCE(Tn
t , T1,n

t ) − SCE(Tn
t , Tn,n

t ). In the case of i.i.d. components, equation (15) and the
aforementioned transformations result in the following expression:

SCE(Tn
t , Ti,n

t ) =
∫ 1

0

[ψ(GV(u))− ψ(Gi:n(u))]
ft(S−1

t (u))
log

ψ(GV(u))
ψ(Gi:n(u))

du, (17)

for i = 1, n. Then, from (17), we obtain

DDS(Tn
t ) =

∫ 1

0

[ψ(GV(u))− ψ(G1:n(u))]
ft(S−1

t (u))
log

ψ(GV(u))
ψ(G1:n(u))

du

−
∫ 1

0

[ψ(GV(u))− ψ(Gn:n(u))]
ft(S−1

t (u))
log

ψ(GV(u))
ψ(Gn:n(u))

du,

and

SCE(T1,n
t , Tn,n

t ) =
∫ 1

0

[ψ(Gn:n(u))− ψ(G1:n(u))]
ft(S−1

t (u))
log

ψ(Gn:n(u))
ψ(G1:n(u))

du.

In the case where the components are i.i.d., we have ψ(G1:n(u)) = vn and ψ(Gn:n(u)) =
1− (1− v)n. Given that T1,n

t ≤st Tt ≤st Tn,n
t holds true for any system Tt, and by recalling

Lemma 1 of Toomaj et al. [8], we can obtain the following fascinating outcome.

Proposition 3. It holds that SCE(Tn
t , Ti,n

t ) ≤ SCE(T1,n
t , Tn,n

t ), for i = 1, n.

We immediately have the following theorem.

Theorem 6. Under the conditions of Definition 2, if the component lifetimes have a common
exponential distribution, then the dynamic distance symmetric measure does not depend on time t,
i.e., DDSM(Tn

t ) = DDSM(Tn), for all t > 0.

Proof. Upon using the memoryless property of exponential distribution, we obtain ft(S−1
t (u))

= f (S−1(u)) for all t > 0. Therefore, we have the result.
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Example 4. Suppose we have two systems with different signatures, denoted by T4
1,t and T4

2,t,
whose components’ lifetimes follow the standard exponential distribution with signatures p1 =
(0, 2/3, 1/3, 0) and p2 = (1/4, 1/4, 1/2, 0),, respectively. Despite being incomparable in the
usual stochastic orders, we can evaluate their relative performance using the in terms of Dynamic
Distance Symmetric Measure. By computing the values of DDSM(T4

1,t) and DDSM(T4
2,t), we

find that the latter system outperforms the former with a higher score of −0.1505, compared to
−0.1918 for the former. This suggests that the system with signature p1 = (1/4, 1/4, 1/2, 0) is a
better choice than the one with signature p2 = (0, 2/3, 1/3, 0), as it is more similar to a parallel
system.

Theorem 7. If p1 ≤st p2, we can assert that Tn
1,t ≤DDSM Tn

2,t.

Proof. Excitingly, the desired result can be derived from Theorem 2.3 of Khaledi and
Shaked [17], as p1 ≤st p2 implies T1,n

t ≤st Tn
1,t ≤st Tn

2,t ≤st Tn,n
t . By applying Lemma 1

of Toomaj et al. [8], we obtain SCE(Tn
1,t, T1,n

t ) ≤ SCE(Tn
2,t, T1,n

t ) and SCE(Tn
1,t, Tn,n

t ) ≥
SCE(Tn

2,t, Tn,n
t ), leading to the desired result due to relation (16).

An intriguing finding is that DDSM comparison can serve as a prerequisite for the
conventional stochastic order, which enables us to compare systems that cannot be com-
pared using the conventional stochastic order. In particular, if Tn

1,t and Tn
2,t are two coherent

(or mixed) systems based on component lifetimes X1, . . . , Xn, and Tn
1,t ≤st Tn

2,t, then we
can conclude that Tn

1,t ≤DDSM Tn
2,t. Hence, the DDSM order provides us with a means

of comparing systems that would otherwise be challenging to compare. Remarkably, if
Tn

1,t =st Tn
2,t, then Tn

1,t =DDSM Tn
2,t, highlighting the potential of DDSM comparison in

system analysis.

5. Conclusions

Recent years have seen an increase in interest in measuring the uncertainty associated
with engineering systems’ lifetimes. An assessment of predictability over a system’s
lifetime can be determined through this criterion. The CRE measure, being an extension
of the Shannon entropy, proves to be a highly appealing tool in such scenarios. In this
paper, we introduced an approach for calculating the CRE of a system’s lifetime, with the
assumption that all system components are functional at a given time t. Furthermore, we
explored several properties of this metric, established various bounds, and examined the
relationships between the residual lifetimes of two mixed systems in terms of their CRE
uncertainties. Our research offers new insights into the field of reliability engineering and
provides practical implications for the design and optimization of complex systems. To
illustrate our findings, we provided several examples. Lastly, we introduced a criterion,
based on relative CRE, to select a preferable system that bears a closer resemblance to the
parallel system.
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