
Citation: Sivaram, A.;

Venkatasubramanian, V. Arbitrage

Equilibrium, Invariance, and the

Emergence of Spontaneous Order in

the Dynamics of Bird-like Agents.

Entropy 2023, 25, 1043. https://

doi.org/10.3390/e25071043

Academic Editors: Themis

Matsoukas and Milton W. Cole

Received: 21 May 2023

Revised: 3 July 2023

Accepted: 6 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Arbitrage Equilibrium, Invariance, and the Emergence of
Spontaneous Order in the Dynamics of Bird-like Agents
Abhishek Sivaram 1 and Venkat Venkatasubramanian 2,*

1 Department of Chemical and Biochemical Engineering, Technical University of Denmark,
2800 Kgs. Lyngby, Denmark; abhisi@kt.dtu.dk

2 Complex Resilient Intelligent Systems Laboratory, Department of Chemical Engineering,
Columbia University, New York, NY 10027, USA

* Correspondence: venkat@columbia.edu

Abstract: The physics of active biological matter, such as bacterial colonies and bird flocks, exhibit-
ing interesting self-organizing dynamical behavior has gained considerable importance in recent
years. Current theoretical advances use techniques from hydrodynamics, kinetic theory, and non-
equilibrium statistical physics. However, for biological agents, these approaches do not seem to
recognize explicitly their critical feature: namely, the role of survival-driven purpose and the attendant
pursuit of maximum utility. Here, we propose a game-theoretic framework, statistical teleodynamics,
that demonstrates that the bird-like agents self-organize dynamically into flocks to approach a stable
arbitrage equilibriumof equal effective utilities. This is essentially the invisible handmechanism of Adam
Smith’s in an ecological context. What we demonstrate is for ideal systems, similar to the ideal gas
or Ising model in thermodynamics. The next steps would involve examining and learning how real
swarms behave compared to their ideal versions. Our theory is not limited to just birds flocking but
can be adapted for the self-organizing dynamics of other active matter systems.

Keywords: self-organization; pattern formation; maximum utility; flocking; murmuration

1. Self-Organization in Active Matter: Background

Active matter describes systems composed of large numbers of self-actualizing agents
that consume and dissipate energy resulting in interesting dynamical behavior [1–9]. Bio-
logical examples of such systems include self-organizing bio-polymers, bacteria, schools of
fish, flocks of birds, and so on. This study is focused on birds flocking.

Flocking has been studied extensively from dynamical systems and statistical me-
chanics perspectives [10–14]. Such analyses have contributed substantially to our evolving
understanding of interesting emergent properties such as phase segregation, flock stabil-
ity, etc. However, these approaches typically do not seem to model explicitly the critical
feature of active biological agents, namely, the role of purpose and its attendant pursuit of
maximum utility. Being biological agents, birds are innately purposeful, driven by the goal
to survive and thrive in challenging environments as Darwin explained. We believe any
comprehensive theory of active biological matter needs to overtly account for this defining
characteristic of these agents.

We address this need by using a game-theoretic framework, which we call statistical
teleodynamics [15–20]. The name comes from the Greek word telos, which means goal.
Just as the dynamical behavior of gas molecules is driven by thermal agitation (hence,
thermodynamics), the dynamics of purposeful agents is driven by the pursuit of their goals
and, hence, teleodynamics. Statistical teleodynamics may be considered as the natural
generalization of statistical thermodynamics for purpose-driven agents in active matter. It is
a synthesis of the central concepts and techniques of potential games theory with those of
statistical mechanics toward a unified theory of emergent equilibrium phenomena in active
and passive matter [20].

Entropy 2023, 25, 1043. https://doi.org/10.3390/e25071043 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25071043
https://doi.org/10.3390/e25071043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e25071043
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25071043?type=check_update&version=1


Entropy 2023, 25, 1043 2 of 15

As noted, there is considerable literature on the Reynolds and Vicsek models of birds
flocking. Our purpose here is not to reproduce the results of these models, although our
approach, too, leads to similar flocking behavior. Our goal is to propose an alternative
modeling framework that explicitly accounts for the goal-driven behavior of biologically
active agents. Furthermore, our framework answers important questions that are not
addressed by the Reynolds model: (i) Is there an equilibrium outcome of this dynamics?
(ii) If yes, what is the nature of the equilibrium? (iii) What is the equilibrium configuration?
and (iv) Is the equilibrium stable? In addition, our formulation also has the benefit of
readily generalizing to other active matter systems in biology, ecology, sociology, and
economics, as we describe in the discussion section.

We wish to emphasize that the spirit of our modeling is similar to that of the ideal gas
or the Ising model in statistical thermodynamics. Just as real molecules are not point-like
objects or devoid of intermolecular interactions, as assumed in the ideal gas model in
statistical mechanics, we make similar simplifying assumptions in our bird model. These
can be relaxed to make them more realistic in subsequent refinements as van der Waals did,
for example, in thermodynamics. The ideal versions serve as useful starting and reference
points to develop more comprehensive models of self-organization in active matter systems.

2. Statistical Teleodynamics of Flocking: A Game-Theoretic Formulation

In modeling the dynamics of flocking, there are two dominant approaches: (i) the
bottom–up agent-based modeling perspective, as seen in the Reynolds’ Boids model [10]
and the Vicsek model [11], and (ii) the top–down statistical mechanics formulation that
starts with the specification of the Hamiltonian of the flock and then imposes the maximum
entropy distribution on it [13,14].

The Reynolds and Vicsek models specify agent-level dynamical behavior (such as the
three rules of cohesion, separation, and alignment for boids). However, they do not predict
a final equilibrium state, as there is no notion of equilibrium. The final state is determined
only computationally via agent-based simulations.

On the other hand, in the statistical mechanics formulation, it is not clear why maxi-
mum entropy, which is obviously relevant for passive matter systems, would be applicable
for survival-driven birds. The typical statistical mechanics approach uses the superficial
similarity between spins in magnetic systems (e.g., the Ising model) and the orientation
of the birds to apply maximum entropy methods. The deeper question of why is this
conceptually relevant for birds is not addressed. Most importantly, all these approaches do
not seem to recognize explicitly that active agents such as birds act instinctively to improve
their survival prospects.

We address these challenges using our statistical teleodynamics framework [15–20].
In this theory, the fundamental quantity is an agent’s effective utility, which is a measure
of the net benefits pursued by the agent. Every agent behaves strategically to increase its
effective utility by switching states and exploiting arbitrage opportunities. In our theory of
flocking, we propose that birds are arbitrageurs that maneuver to increase their effective
utilities dynamically in flight. The effective utility of a bird depends on its position, speed,
and alignment with the rest of the members in its neighborhood.

Hence, we believe that the proper formulation of flocking (in general, any herding
behavior) ought to start with a model of effective utility that an agent uses to make such
decisions dynamically in flight. Seen from this perspective, we suggest that birds do not
fly randomly (as statistical mechanics-based formulations implicitly assume) but maneuver
strategically to improve their utilities. We exploit this insight to model the dynamical
behavior of birds in flight by using the concepts and techniques from potential games.

In potential games, there exists a single scalar-valued global function called a potential
(φ(x)) that has the necessary information about the payoffs or the utilities of the agents.
The gradient of the potential is the utility, hik, of the ith agent in the kth state [15,21–24].
Therefore, we have

hik(x) ≡ ∂φ(x)/∂xk (1)
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where xk = Nk/N and x is the population vector, where Nk is the number of agents in
state k, and N is the total number of agents. A potential game reaches equilibrium, called
Nash equilibrium (NE), when the potential φ(x) is maximized. Furthermore, this Nash
equilibrium is unique if φ(x) is strictly concave [22]. At Nash equilibrium, all agents enjoy
the same effective utility, i.e., hik = h∗. It is an arbitrage equilibrium [19] where the agents
do not have any incentive to switch states anymore, as all states provide the same effective
utility h∗. Thus, the maximization of φ and hik = h∗ are exactly equivalent criteria (if φ(x)
is strictly concave), and both specify the same outcome, namely, an arbitrage equilibrium.

We are keenly aware, of course, of the simplifications we have made to make the
analysis analytically tractable. We realize that our bird-like agents are not real birds, and
our models and simulations are not real biological systems. They are stylized ideal systems
formulated in the spirit of similar ideal systems in statistical mechanics, as noted. Despite
such an ideal approximation, our results nevertheless suggest intriguing possibilities for
real biological entities that need to be explored further.

2.1. Agent’s Utility: Position Dependence

Our goal is to develop a simple model of the effective utility (hik) of our bird-like
agent i (which we call Garud to differentiate it from the agent Boid of the Reynolds model)
in the state k. We want the model to be an appropriate coarse-grained description of the
system that can make useful predictions not restricted by system-specific nuances. We have
tried, deliberately, to keep the model as simple as possible without losing key insights and
relevance to empirical phenomena. One can add more complexity, such as cooperation
among agents or environmental conditions, as and when desired later on. Again, what we
are aiming for is the equivalent of the ideal gas model or the Ising model for flocking.

Flocking dynamics is modeled by describing the time evolution of the position ri of the
ith agent and its velocity vi. Therefore, the state of the ith agent is specified by its position
ri and velocity vi. Since the index i itself now denotes the state, we do not need k as a
separate index and therefore drop it. The state of the flock at any given time is specified by
specifying ri and vi for all agents. When the agents move at a constant speed v0, the state
of the system is then determined by the set of agents’ positions and velocity directions or
orientations {ri, si}N

i=1, where N is the total number of agents.
An agent i is said to have affected an agent j if j is in the neighborhood of i, N i. The

neighborhood N i of i is defined by a matrix whose elements are nij, where

nij =

{
1 if j is a neighbor of i
0 otherwise

(2)

The span of the neighborhood is specified in terms of the absolute distance between i
and j, and a size parameter r0 [11,25], such that

nij =

{
1 |ri(t)− rj(t)| < r0

0 otherwise
(3)

As seen from Equation (3), we consider agent i to be its own neighbor. One can also
define a neighborhood in terms of a fixed topology of nearest neighbors [12–14], but we do
not use this specification in this study. It follows that the number of neighbors of an agent i
is given by ni = ∑j nij.

The effective utility hi is a model of the cost–benefit trade-offs that the agents use to
make decisions dynamically as they maneuver to increase their utilities. There are four
terms that contribute to the effective utility of an agent in state i: (i) utility of cohesion,
(ii) disutility of congestion, (iii) utility of alignment, and (iv) disutility of competition.
We believe that this structure is fairly general, capturing the essence of a wide variety of
herding phenomena. The first three are similar to the three rules of agent behavior in the
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Reynolds model: (i) rule of cohesion, (ii) rule of separation, and (iii) rule of alignment. Our
fourth term is unique and is not present explicitly in the Reynolds or the Vicsek models. As
we explain below, this term corresponds to an entropic restlessness of the agents.

We consider the ith agent’s position in the frame of reference of the center of mass
of its neighborhood. The utility of cohesion for the ith agent is proportional to its number
of neighbors, ni. However, this benefit comes at the cost of congestion, the disutility of
congestion. The trade-off between the two terms, the cost–benefit trade-off, results in an
inverted-U profile, which, following Venkatasubramanian [17], can be modeled as,

h(i)r = αni − βn2
i (4)

where h(i)r is the position component of the utility for the ith agent; α, β > 0. For many
things in life, the cost–benefit trade-off is in the form of an inverted-U curve. Consider,
for example, taking some medicine to cure an ailment. If one is suffering from a severe
headache, taking one tablet might make you feel a little better, but taking two might help
more. This does not mean that taking ten would help a lot more! It could actually make one
sicker, triggering a whole set of more serious problems. As the dosage increases beyond a
critical point, the benefit begins to go down, sometimes dramatically. This is so because
the cost of the treatment (in the form of negative side effects) begins to exceed the benefit.
Equation (4) captures and models this essential and near-universal trait in most things
in life.

Note that the positional dependence is accounted for in the computation of ni. Given
a configuration of all agents {ri}, the neighborhood of the ith agent is defined by the
parameter r0, where if the jth agent is within this radius, then it is considered a neighbor.

This, in turn, identifies a direction of increased utility, which is given by,

∂h(i)r
∂ri

= α
∂ni
∂ri
− 2βni

∂ni
∂ri

(5)

∂ni
∂ri

is dependent on the agents in the perimeter of the neighborhood of the reference

agent i.

2.2. Agent’s Utility: Velocity Dependence

The utility of an agent is also dependent on the velocity of its neighbors in that the
agent attempts to match the orientation with its neighboring agents. This utility of alignment
(h(i)v ) can be written as (γ > 0),

h(i)v = γ ∑
j

nij
vi
|vi|
·

vj

|vj|
(6)

The utility of the ith agent, then, depends on the orientation of the other agents in its
neighborhood, i.e., si · sj, where j is a neighbor of agent i. This gives the alignment utility
for the ith agent as,

h(i)v = γ ∑
j

nijsi · sj (7)

where nij shows if the jth agent is a neighbor of agent i, i.e.,

nij =

{
1 |ri(t)− rj(t)| < r0

0 otherwise
(8)

If each agent is perfectly aligned with its neighbors, this utility component is maximal,
whereas if they are oriented in the opposite direction, this is minimal. Therefore, the agents
prefer to be aligned. This gives the ith agent an arbitrage opportunity to adjust its velocity
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vector toward this direction to increase its utility. This opportunity for increasing its utility
generates a self-propelled force on the ith agent. If the ith agent is not aligned with its
neighbors, this direction of increased utility is given by,

∂h(i)v
∂si

= γ ∑
j

nijsj (9)

2.3. Agent’s Effective Utility

There is the fourth utility component remaining to be considered. As noted, this is
not stated explicitly in the three rules of the boids. However, it is implied because it is
assumed that the boids have to be constantly moving. So, as an agent incessantly jockeys
and moves for better positions and orientations, its ability to do so is hampered by the
competition from other agents in its neighborhood that are also trying to do the same. As
Venkatasubramanian explains [17], this disutility of competition can be modeled as−δ ln ni.
This term, when integrated to obtain the potential φ(x), leads to entropy in statistical
mechanics. Thus, maximizing the potential φ(x) is equivalent to maximizing entropy. This
is why we call this term entropic restlessness. In order to increase the effective utility hi, the
agents try to minimize ln ni (because of the negative sign in front of it). Thus, the agents
try to move to other states that have lower ni. Since they are constantly doing this, this
leads to restless behavior and constant movement. For more details, the reader is referred to
Venkatasubramanian [17,20].

Now, by combining all these components, we arrive at the effective utility for the ith
agent given by

hi = αni − βn2
i + γ ∑j nijsi · sj − δ ln ni

hi = αni − βn2
i + γnili − δ ln ni (10)

where li = 1
ni

∑j nijsi · sj is the average alignment of agent i. Without any loss of generality,
δ can be assumed to be 1 and will be assumed as such for the rest of this paper. When
α, β, γ = 0, the agents do not have any preferences and hence fly around randomly. This
is what is captured by the remaining − ln ni term, i.e., entropic restlessness. These four
components are summarized in Table 1 for the convenience of the reader.

Table 1. Components of the effective utility hi.

Utility of Cohesion αni Benefit of having ni neighbors
Disutility of Congestion −βn2

i Cost of crowding by ni neighbors
Utility of Alignment γ ∑j nijsi · sj Benefit of being aligned with the neighbors

Disutility of Competition − ln ni
Cost of competition from the ni neighbors

Entropic restlessness

Statistical teleodynamics, via potential game theory, proves that the self-organizing
dynamics of the agents would eventually result in arbitrage equilibrium, where φ(x) is
maximized, and the effective utilities of all the agents are the same, i.e., hi = h∗. This
proof is a well-known result, and our reader is referred to the literature for more de-
tails [15,16,18,20,22]. Thus, this answers the first question we raised in Section 1 in the
affirmative. The answer to the second question is that it is an arbitrage equilibrium where
the effective utilities of all the agents are equal.

In the next section, we discuss our agent-based simulation results that confirm this
prediction. We also answer the remaining two questions. Although our framework is
somewhat similar to the reward-driven agent-based model of Durve et al. [26] or of Katare
et al. [27], it is entirely different in the conceptual and mathematical formulation. The
other approaches do not use potential game theory and arbitrage equilibrium in their
formulations, which are important distinctions.
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3. Results

For illustrative purposes, we show that our formulation leads to flocking behavior
that is similar to that of the Reynolds model. Again, we wish to remind the reader that our
objective is not to mimic Reynolds’s model. Our objective is to demonstrate an entirely
different modeling framework of self-organization that is founded on goal-driven arbitrage
behavior and utility maximization by biological agents.

The Reynolds model for the ith agent is given by the equation (see Supplementary
Information, Equation (11)),

vi(t + ∆t) = vi(t) +

(
a
ni

∑
j

nij(rj − ri) + b ∑
j

nij(ri − rj) +
c
ni

∑
j

nij(vj − vi) + η(t)

)
∆t (11)

where a, b, and c are parameters corresponding to the rules of cohesion, separation, and
alignment, respectively. Parameter η(t) is the uncorrelated noise in the agent’s velocity.
The time-scale, ∆t, in Equation (11), can be subsumed in a, b, c. For the simulation details,
the reader is referred to Methodology in Section 5 below. If the agents are flying randomly,
without pursuing utility, then this base case corresponds to α, β, γ,= 0; δ = 1. This result is
discussed in Section S4.

For the other cases, the effective utility function in Equation (10) is plotted in Figure 1
in terms of the number of neighbors of agent i (ni) for different alignments (li) for a given
set of α, β, γ. We see that there are two values of n̂i (n̂− and n̂+) where the gradient of
utility, for a given value of alignment, is zero. These correspond to the optimal flock size
n̂i for maximum effective utility (hi). These values are determined by (see Supplementary
Information, Section S1).

n̂i =
(α + γli)∓

√
(α + γli)2 − 8βδ

4β
(12)

0 25 50 75 100
ni

30

20

10

0

10

20

h
i

(αni − βn2
i + γnili − δlnni)

li = -1.0
li = 0.0
li = 1.0

0 25 50 75 100
ni
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0.50

0.25

0.00

0.25

0.50

h
i

n
i

(α− 2βni + γli − δ
ni

)

li = -1.0
li = 0.0
li = 1.0

Figure 1. Effective utility and its derivative as a function of the number of neighbors, ni, for different
values of alignment li (α, β, γ, δ = 0.5, 0.005, 0.25, 1). There are two points where the derivative of the
effective utility is zero for different alignments.

In Figure 1, at the lower value (n̂−), any deviation in n̂− increases the utility of the
agent and hence leads to an unstable point. However, for the higher point (n̂+), we see
that any deviation reduces the agent’s utility. Therefore, this leads to a stable point, as
any deviation would bring an agent back to the higher utility state. Therefore, this is the
point an agent will try to reach to maximize its utility. For example, for the red curve, this
would correspond to the point where n̂+ = 73.6. However, despite this point’s stability, an
agent will not be able to stay there indefinitely, as the other agents in its neighborhood are
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competing for its position by constantly changing their positions and orientations in their
flights. Therefore, the ith agent would be fluctuating around this point. This behavior is
similar to what is seen in other systems around the spinodal and binodal points [20]. While
the individual agents would prefer to be at their maximum utility point (the spinodal
point), the system as a whole is driven by the competition among the agents to the binodal
point where the potential φ(x) is maximized. Thus, the agents wander around in phase
space between these two points at equilibrium, as shown in the following.

In Figures 2 and 3, we show the simulation results of both the Reynolds model and
our utility-driven agent model. The results are shown for different parameter values of
(a, b, c) and (α, β, γ). From the simulations, we obtain a set of position and velocity values
{ri, vi} of each agent i at every time-step. Once this is obtained, we extract the features ni
and li for all the agents. This, in turn, is used to compute the average number of neighbors
n̄ and average alignment l̄ for the entire population for all time points (Figure 2).

Figure 2 shows the snapshots at different time points of the evolution in 3D space and
the ni − li phase space. While the exact dynamics, the exact configuration of the population,
and the time scale of evolution of these two models cannot be the same (and that is not the
aim, either), we observe that the qualitative patterns of collective behavior are very similar
in both cases. In particular, we see that all agents gravitate toward a certain region in the
ni − li phase space for both models. They both start at the lower far right point (where the
average alignment is near zero as the agents are all randomly oriented initially and closely
packed) and evolve toward the upper center-right region in black. We notice a qualitative
match of both trajectories.

Furthermore, we can also see a quantitative similarity between the two models for
specific parameters (Figure 3). Figure 3a shows the phase space for the Reynolds model,
and Figure 3b shows the same for the utility-driven model. In both models, we notice
similar features of evolution toward the arbitrage equilibrium states, starting from the
lower right point at time t = 0 to ending in the colored regions, where the average number
of neighbors and the average alignment fall in similar corresponding regions. The plots on
the right show the average alignment and average number of neighbors of the agents in
the last 100 time-steps.
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Figure 2. Trajectory of the agents and the corresponding phase portrait in ni − li space for the average
number of neighbors of each individual agent during the course of the simulation, corresponding
to (a) Reynolds’ boids for a = 0.5, b = 0.01, c = 0.5 and (b) Utility-driven agents for α = 0.5,
β = 0.01, γ = 0.25, δ = 1.
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Figure 3. Trajectory of the average of number of neighbors of each agent and average alignment
of the agents in the ni, li phase space, and corresponding estimated averages for the (a) Reynolds’
model (b) Utility-driven model (δ = 1).

Although both models exhibit similar collective behaviors, it is not apparent, however,
from the three rules of the Reynolds model that its dynamics would result in an equilibrium
state in the ni − li phase space. This is an important difference between the two approaches.
Since the potential game formulation predicts an arbitrage equilibrium outcome (thus
answering questions (i) and (ii)), it is clear right from the beginning where in the phase
space the system is going to end up (and hence answer the question (iii)). We can therefore
make a quantitative prediction about the optimal flock size n̂+ and the corresponding
effective utility ĥ values at equilibrium. From Equation (12), we can calculate the optimal
flock size n̂+ for the three configurations shown in Figure 3b. We compare these predictions
with the observed values from the simulations (Table 2). As we can see, the predictions are
consistent with the simulation results. As noted above, given the competitive dynamics of
the garuds, the agents are not able to stay with the optimal flock size but keep fluctuating
around it as the standard deviation metrics indicate.

Table 2. Optimal flock sizes at equilibrium.

Configuration Predicted Flock Size Observed Flock Size

α = 0.1, β = 0.005, γ = 0.25 31.9 25.3 ± 8.0
α = 0.3, β = 0.005, γ = 0.25 53.1 50.1 ± 16.0
α = 0.5, β = 0.005, γ = 0.02 50.0 44.5 ± 13.4

This ability to predict the final outcome of the collective behavior of the population,
given the individual agent-level properties captured in the utility function hi, is an im-
portant defining feature and strength of the statistical teleodynamics framework. An
additional characteristic is the ability to prove the stability of the final outcome, as we
discuss in Section 3.1, and answer our fourth question [15,17].

We also ran the simulations for different time-step sizes of ∆t = 0.01, 0.1, 0.5 in
Equation (11) to understand the dynamics of the evolution better. Note in Figure 4 that at
the start (t = 0), the utilities of all the agents are spread out, with many having negative
utility values and the average utility being (h̄) low. However, as the dynamics evolves,
every agent tries to increase its utility by maneuvering to a better neighborhood and
better orientation, the distribution becomes narrower, the average utility keeps increasing,
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and it reaches a near-maximum value (h̄ = 22.17 ± 2.90 in Figure 4a) and fluctuates
around it. Note that this is around the maximum theoretical value of about 23.8 (given by
Equation (10)), where the histogram peaks. This suggests that nearly all the agents have
similar effective utilities asymptotically, approaching the maximum. This, of course, is the
arbitrage equilibrium outcome predicted by the theory (see also Supplementary information,
Figure S3). The agents do not converge exactly on h∗ but fluctuate around it because of the
stochastic dynamics. This is also seen in Table 3 where nearly the top 10 % of the agents at
a particular time-step are very close to the maximum utility value. In fact, the top 50% of
the agents have an average utility of greater than 23.

At the risk of belaboring this point, we reiterate, in order to be clear, that as noted
in Figures 1 and 4, the self-organized dynamics strives toward maximum utility. From
Equation (10), for a given set of α, β, γ, and δ values, we can determine the arbitrage
equilibrium state defined by ĥ and n̂+. For α = 0.5, β = 0.005, γ = 0.25, and δ = 1, we
have ĥ = 23.8 and n̂+ = 73.6. This is predicted by our model analytically. We see this
confirmed in the simulation as shown in Figure 4 and Table 1. Due to the inherent stochastic
dynamical nature of the agents’ movements, the agents cannot stay at the optimum even
after finding it. They keep moving around about it. We see this from the table: we see
that about 50% of the agents enjoy a utility of 23.6, which is very close to the theoretical
maximum of 23.8 (for a step size of 0.01).

This arbitrage equilibrium state is unique only if the potential φ(x) is strictly con-
cave [22]. For our boids-like agents, this is not the case in general, as the concavity would
depend on α, β, and γ having some particular values. So, for the typical case where φ(x)
is not concave, there could be multiple equilibrium configurations of the agents. Thus,
instead of an equilibrium point in the ni − li phase space, one has an equilibrium region in
general. In other words, invoking a terminology from chaos and nonlinear dynamics, there
is a basin of attraction in the phase space where the agents finally settle in and fly around.
We see this in Figures 2 and 3—the basins are the colored regions.
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Figure 4. Histogram of the utility (hi) of the agents for α, β, γ, δ = 0.5, 0.005, 0.25, 1 corresponding to
(a) ∆t = 0.01, (b) ∆t = 0.1 and (c) ∆t = 0.5. Dashed line shows the average utility at a particular time.
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Table 3. Utility of different percentiles of the agents at the 1000th time-step corresponding to Figure 4.

Population Time-Step Size, ∆t Average Utility

Top 1% 0.01 23.79
0.1 23.80
0.5 23.76

Top 1–10% 0.01 23.77
0.1 23.78
0.5 23.68

Top 10–50% 0.01 23.60
0.1 23.51
0.5 23.35

Top 50–75% 0.01 22.83
0.1 22.64
0.5 22.58

Bottom 50% 0.01 18.59
0.1 15.59
0.5 17.91

3.1. Stability of the Arbitrage Equilibrium

We can answer our fourth question and determine the stability of this equilibrium by
performing a Lyapunov stability analysis [15,17]. A Lyapunov function V is a continuously
differentiable function that takes positive values everywhere except at the equilibrium point
(i.e., V is positive definite), and it decreases (or is nonincreasing) along every trajectory
traversed by the dynamical system (V̇ is negative definite or negative semidefinite). A
dynamical system is locally stable at equilibrium if V̇ is negative semidefinite and is
asymptotically stable if V̇ is negative definite.

Following Venkatasubramanian [17], we identify our Lyapunov function V(n)

V(n) = φ∗(n∗)− φ(n) (13)

where φ∗ is the potential at the Nash equilibrium (recall that φ∗ is at its maximum at
NE), φ(n) is the potential at any other state, and n is the vector of the neighbors (ni) of
all agents. Note that V(n) has the desirable properties we seek: (i) V(n∗) = 0 at NE and
V(n) > 0 elsewhere, i.e., V(n) is positive definite; (ii) since φ(n) increases as it approaches
the maximum, V(n) decreases with time, and hence, it is easy to see that V̇ is negative
definite. Therefore, the arbitrage equilibrium is not only stable but also asymptotically stable.

Our simulation results confirm this theoretical prediction (see Figure 5). After the
agents population reached equilibrium, we disturbed the equilibrium state by randomly
changing the positions and/or velocities of the agents. The simulation is then continued
from the new disturbed far-from-equilibrium state. We conducted experiments with three
kinds of disturbances:

• Disturbance 1: Velocity disturbance, where each agent’s velocity is changed to a random
orientation and magnitude.

• Disturbance 2: Position disturbance, where each agent’s position is randomly changed.
• Disturbance 3: Position and velocity disturbance, where both position and velocity

vectors are changed.

As seen in Figure 5, after the 100th time-step, when the population had reached
equilibrium, we introduced these disturbances. The 101st time-step shows in red color the
new far-from equilibrium states, where the average utility (h) has dropped considerably. In
all cases, the population recovers quickly, typically in another 100 time-steps or so, to reach
the original equilibrium region (shown in green). The figure shows the disturbance (red)
and recovery (green) in both the 3D space and the phase space.
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Figure 5. The trajectory of the agents as a function of time and the corresponding phase portraits for
α, β, γ, δ = 0.5, 0.005, 0.25, 1 for stability analysis case studies (a) Disturbance 1, (b) Disturbance 2,
and (c) Disturbance 3. The disturbances occur after equilibrium at a time-step of 101 (in red). The
configuration at the end of the simulation is also shown is shown (in green).

In Figure 5a, as the velocities are randomized at the 101st time-step, the alignment
goes down to 0, but it recovers to the original equilibrium quickly. In Figure 5b, as the new
configuration corresponds to a similar value of an average number of neighbors as before,
the disturbance is not that much. Note that the drop in average utility is small. In Figure 5c,
we see that this disturbance is huge, pushing the configuration close to the original random
state. Still, the population is able to recover to the arbitrage equilibrium quickly.

This shows that the arbitrage equilibrium region is not only stable but asymptotically
stable. That is, the agents’ flocking configuration is resilient and self-healing. Given the
speed of the recovery, it could possibly be exponentially stable, but we have not proved
this analytically here. It is interesting to observe that this result is similar to that of the
income-game dynamics [15,17].

4. Conclusions

For three centuries, we have known that there are constants of motion, such as energy
and momentum, for passive matter. Nevertheless, it comes as a surprise to discover that the
dynamics of active matter populations could also have an invariant, namely, the effective
utility. However, the role of invariance here is different from its role in classical mechanics.
The constants of motion, such as energy and momentum, are conserved, whereas the
effective utility is not. The role of this invariance is more like that of set-point tracking
and disturbance rejection in feedback control systems [28,29]. The system, i.e., the agents’
population, adjusts itself dynamically and continually, in a feedback control-like manner,
to maintain its overall maximum potential φ(x).

It is important to emphasize, however, that this control action is decentralized as
opposed to the typical centralized control system in many engineering applications. The
agents individually self-organize, adapt, and dynamically course correct to offset the
negative impact on their effective utilities by other agents or other external sources of
disturbance. The population as a whole stochastically evolves toward the stable basin of
attraction in the phase space in a self-organized and distributed-control fashion.

The same mathematical framework has been demonstrated for other dynamical sys-
tems, as summarized in Table 4, in biology [20], ecology [20], sociology [20], and eco-
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nomics [15,17,19] to predict emergent phenomena via self-organization. As Venkatasub-
ramanian et al. [20] showed, the emergence of the exponential energy (i.e., Boltzmann)
distribution for gas molecules can be modeled by the effective utility

hi = −β ln Ei − ln ni. (14)

Table 4. Utility function in different domains.

Domain System Utility Function (hi)

Physics Thermodynamic game −β ln Ei − ln ni
Biology Bacterial chemotaxis αci − ln ni

Ecology Ant crater formation b−
ωra

i
a
− ln ni

Sociology Segregation dynamics ηni − ξn2
i + ln(H − ni)− ln ni

Economics Income game α ln Si − β(ln Si)
2 − ln ni

Ecology Garuds game αni − βn2
i + γnili − ln ni

Similarly, they showed [20] that for biological systems, the cost–benefit trade-off in
effective utility hi for bacterial chemotaxis can be modeled by

hi = αci − ln ni (15)

where the first term is the benefit derived from a resource (ci, α > 0) and the second is the
cost of competition as modeled in Equation (10).

In a similar vein, the emergence of ant craters can be modeled by

hi = b−
ωra

i
a
− ln ni. (16)

where the first term (b) is the benefit of having a nest for an ant, the second term is the cost
of work performed when carrying the sand grains out to build the nest, and the last term is
again the cost of competition as before.

The same study showed how the Schelling game-like segregation dynamics in sociol-
ogy can be modeled by

hi = ηni − ξn2
i + ln(H − ni)− ln ni (17)

where the first term is the benefit of the community of neighbors, the second is the con-
gestion cost of such neighbors, the third is the benefit of relocation options, and the last is
again the cost of the competition.

In economics, the emergence of an income distribution can be modeled by

hi = α ln Si − β(ln Si)
2 − ln ni. (18)

where the first term is the benefit of income, the second is the cost of work expended to
earn this income, and the last is again the cost of the competition.

By comparing Equations (14) through (18) with equation Equation (10) for garuds
(δ = 1),

hi = αni − βn2
i + γnili − ln ni

We observe a certain universality in the structure of the effective utility functions in
different domains. They are all based on cost–benefit trade-offs, but the actual nature of the
benefits and costs depends on the details of the specific domain, as one would expect. Thus,
we see that the same conceptual and mathematical framework is able to predict and explain
the emergence of spontaneous order via self-organization to reach arbitrage equilibrium in
dynamical systems in physics, biology, ecology, sociology, and economics.
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These results suggest that the pursuit of maximum utility or survival fitness could
be a universal self-organizing mechanism. In the case of birds, the incessant search for
improving survival fitness occurs in the three-dimensional physical space, with the birds
trying to move to a better location. In biology, in general, the search for improving one’s
fitness occurs in the design space of genetic features. Here, the mutation and crossover
operations facilitate the movements in the feature space, such that an agent improves
itself genetically via Darwinian evolution to increase its utility, i.e., the survival fitness.
In economics, on the other hand, agents search in the products and/or services space so
that they can offer better products/services to improve their economic survival fitness in a
competitive marketplace. Thus, this mechanism is essentially the same as Adam Smith’s
invisible hand. In all these different domains, every agent is pursuing its own self-interest to
increase its own hi, but a stable collective order emerges, nevertheless, spontaneously via
self-organization.

Thus, our theory shows an important result that these so-called out-of-equilibrium
systems are actually in equilibrium, an arbitrage equilibrium. Just as systems can be in
mechanical equilibrium when forces or pressures are equal or in thermal equilibrium when
temperatures are equal, or in phase equilibrium when the chemical potentials are equal, we
have active matter systems in arbitrage equilibrium when the utilities are equal.

As noted, we do realize that our bird-like agents are not real birds, and we are
not implying that real birds make decisions along the lines of our model necessarily.
Nevertheless, our results suggest interesting possibilities for real biological entities that
need to be studied further. What we have here is for ideal systems, of course, similar
to the ideal gas or the Ising model in thermodynamics. Just as real gases and liquids
do not behave exactly like their ideal versions in statistical thermodynamics, we do not
expect real biological systems (or economic or ecological systems) to behave like their ideal
counterparts in statistical teleodynamics. Nevertheless, the ideal versions serve as useful
starting and reference points as we develop more comprehensive models of active matter
systems. The next steps would involve examining and learning how real-world biological
systems behave compared to their ideal versions. This would, of course, necessitate several
modifications to the ideal models.

5. Methods

We created a simulation of 1000 agents in a periodic box of dimensions 20× 20× 20,
where each agent’s neighborhood is a sphere with radius r0 = 3. Each agent starts at a
random location and orientation inside a 10× 10× 10 block. The speed of each agent
is limited between 0.5 and 1. The update algorithm works similar to Reynolds’ agent’s
update, except the force is driven by the numerical estimates of the direction of increased
utility (additively based on position and velocity). An additional noise is also added to the
velocity update strategy similar to Reynolds’ model to capture the erroneous strategies of
velocity update for each agent. This is given by a noise parameter (0.01, unless specified)
times the magnitude of the velocity. The noise indicates that an agent does not make perfect
choices in updating its velocity. It is to be noted that there are different ways of realizing
the dynamics of the system, which may result in distinctive dynamic behaviors. The goal,
however, is to show that they eventually reach the same game-theoretic equilibrium.
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