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Abstract: Community detection is widely used in social networks to uncover groups of related
vertices (nodes). In cryptocurrency transaction networks, community detection can help identify users
that are most related to known illegal users. However, there are challenges in applying community
detection in cryptocurrency transaction networks: (1) the use of pseudonymous addresses that are not
directly linked to personal information make it difficult to interpret the detected communities; (2) on
Bitcoin, a user usually owns multiple Bitcoin addresses, and nodes in transaction networks do not
always represent users. Existing works on cluster analysis on Bitcoin transaction networks focus on
addressing the later using different heuristics to cluster addresses that are controlled by the same user.
This research focuses on illegal community detection containing one or more illegal Bitcoin addresses.
We first investigate the structure of Bitcoin transaction networks and suitable community detection
methods, then collect a set of illegal addresses and use them to label the detected communities. The
results show that 0.06% of communities from daily transaction networks contain one or more illegal
addresses when 2,313,344 illegal addresses are used to label the communities. The results also show
that distance-based clustering methods and other methods depending on them, such as network
representation learning, are not suitable for Bitcoin transaction networks while community quality
optimization and label-propagation-based methods are the most suitable.

Keywords: bitcoin; transaction networks; blockchain; cryptocurrency; community detection

1. Introduction

Blockchain is a secured, distributed storage of records organized in a chain of blocks
of transactions. Records cannot be modified or deleted once they have been added to
the blockchain, which ensures data integrity. In permissioned blockchains [1], only au-
thorized individuals can access transactions, whereas in permissionless blockchains such
as Bitcoin [2], transactions are publicly available, and anyone can join the network. Bit-
coin is a protocol launched in 2009 to facilitate the transfer of its cryptocurrency, Bitcoin
(BTC), between users without the need for a central authority, as opposed to other digi-
tal payments that are governed by financial institutions [2]. Bitcoin transactions do not
reveal personal information about the involved users; instead, users are represented by
pseudonymous addresses.

A Bitcoin address consists of at least 26 alphanumeric characters beginning with 1,
3 or bc1 depending on the type of the address: (a) P2PKH, (b) P2SH, or (c) Bech32 [3].
By using such addresses, it is hard to trace the owner. There are concerns that Bitcoin
and other cryptocurrency platforms can be used for illegal activities. Researchers and
governments are interested in understanding interactions in cryptocurrency transaction
networks. Interactions can be modelled as a network (graph) G consisting of a set of vertices
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(nodes) V and a set of edges E, where n = |V| and m = |E|. For example, the Bitcoin
transaction network can be modelled as a set of transactions: https://www.blockchain.
com/explorer/api/blockchain_api (accessed on 28 February 2023) with a directed link
from an input transaction to output transactions. It can also be modelled as a network of
users where users are vertices, and a link between users indicates the flow of BTC from
one user to another. Vallarano et al. [4] used this modelling to investigate the relationship
between users’ behaviour and cryptocurrency pricing in exchange markets by focusing
on Bitcoin, while De Collibus et al. [5,6] focused on understanding the growth of the
Ethereum network. Other works focused on the forensics, such as entity identification [7,8]
and using machine learning to detect illegal transactions [9–11]. Another way to analyse
blockchain transaction networks is to understand the cohesive sub-groups that exist in
such networks. Previous work on cluster analysis in blockchain transaction networks
focused on address clustering, a task that uses heuristics to group addresses that are
assumed to be controlled by the same user [3,12]. Community detection was used to cluster
users of similar characteristics [13] but the obtained communities could not be interpreted
further as they consisted of pseudonymous addresses. This work combines community
detection and off-chain information to quantify the presence of illegal addresses in daily
Bitcoin transactions.

This work provides the following contributions: We address the illegal community
detection problem in blockchain transaction networks with an emphasis on Bitcoin. Using
a set of known illegal addresses linked to illegal darknet markets that have been shut down,
we quantify the presence of illegal communities from daily Bitcoin transactions. Illegal
community detection is essential in Bitcoin forensics as it helps to identify the addresses
most related to known illegal addresses. We benchmark different community detection
methods and explain why some are not suitable for Bitcoin transaction networks. From
various community detection methods [14,15], we benchmark representative methods from
distance-based clustering, network representation learning, spectral clustering, community
quality optimization, label propagation and clique-based methods using the conductance,
modularity and running time.

The rest of the article is organized as follows: Section 2 discusses the preliminaries,
which include blockchain, community, and community evaluation measures. Section 3
discusses materials and methods, which include the data, community detection methods,
and the approach used to detect illegal communities. Section 4 consists of experiments and
results. Section 5 provides a conclusion.

2. Preliminaries

Traditional electronic payments rely on financial institutions as trusted third parties,
Bitcoin was launched in 2009 as a decentralized, trustless electronic cash system that offer
individuals the ability to transact without a trusted third-party [2]. This was achieved by
using a public blockchain to store transactions on a distributed network of nodes and the
proof-of-work consensus mechanism to confirm transactions rather than a central authority.
When a user initiates a transaction, it is propagated over the network as an unconfirmed
transaction. Miners on the network use their powerful computing hardware to compete
in solving complex mathematical puzzles (mining) to validate blocks of unconfirmed
transactions. Once validated, a block is disseminated over the network and appended to
the previous block. The miner of the block receives rewards in the form of minted BTC
and transaction fees. Once a block is confirmed and added to the blockchain, its contents
become immutable, ensuring the integrity of the recorded data.

While most blockchains store data linearly, emerging ways of storing data using
directed acyclic graphs (DAG) have been used [16,17]. A blockchain transaction refers to an
action that adds data to the blockchain. It can be a payment in cryptocurrency blockchains;
registration or transfer of land ownership in a blockchain-based land management system;
or a vote in a blockchain-based voting system, which can be used to ensure the immutability
of votes and transparency. As opposed to banking systems or traditional voting systems

https://www.blockchain.com/explorer/api/blockchain_api
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where users can be identified with personal information, in blockchain-based systems,
users use pseudonymous addresses, which make it difficult to trace the owner [7].

User interactions such as friendships in social networks and blockchain transactions
are often represented with a network. A network is modelled as a graph G = (V, E) where
V is a set of n vertices (nodes): V = {v1 · · · vn} and E a set of m edges:
E = {e1 · · · em} ⊆ V × V. Network nodes can be organized into k sets of related nodes
known as communities C = {C1 · · · Ck}. We define a Bitcoin transaction network as a
graph in which nodes are Bitcoin addresses and the edges denote the flow of bitcoins (BTC)
between addresses.

Networks usually consist of cohesive subgroups of nodes known as communities. A
community is generally defined as a group of nodes that are densely connected between
themselves with sparse connections to the rest of the network [18]. This definition focuses
on disjointed communities. In overlapping communities, if most of the community mem-
bers belong to other communities, the overlapping section can become denser than the
community. In this case, a community is considered to be a group of nodes with a high
probability of being connected to one another than to any other node of the network [14].
An illegal community Ci ∈ C consists of one or more members who have been involved in
illegal activities, such as money laundering, scam, terrorism financing and many more.

The conductance of a community Ci of a network G, is a community evaluation
measure indicating a fraction of community edges that point outside the community [19]:

∅(G, Ci) =
e′(Ci)

min(e(Ci), e(V − Ci))
(1)

e(x) denotes the total number of edges pointing to nodes in x, while e′(x) denotes the total
number of edges that link x to the rest of the network. The lower the conductance, the
better the community.

The modularity Q measures the strength of the division of a network G into its
communities C. As opposed to conductance, the higher the modularity, the better the
communities. For disjointed communities, the modularity is defined as [20]:

Q(G, C) =
1

2m∑ij

[(
Aij −

didj

2m

)
δ
(
hi, hj

)]
(2)

where A is the adjacency matrix, di is the degree of the node i, m is the number of edges
of the network and h ∈ Nn is a community assignment vector for n nodes. The function
δ
(
hi, hj

)
is 1 if the community assignment value hi for node i is the same as the commu-

nity assignment hj for node j. An adapted version has been proposed for overlapping
communities [21]:

Q(G, C) =
1
k

k

∑
i=1

q(Ci) (3)

q(c) =
1
nc

∑
i∈c

∑j∈c, j 6=i Aij −∑j/∈c, Aij

di · ki
· mc(

nc
2

) (4)

where k is the number of communities in G; ki the number of communities containing node
i; di the degree of a node i; nc the number of nodes in the community c; mc the number of
edges in the community c and Aij an entry in the adjacency matrix A for nodes i and j.

3. Materials and Methods

Bitcoin transactions are publicly accessible using blockchain data APIs: https://www.
blockchain.com/explorer/api/blockchain_api (28 February 2023). As a single user often
owns multiple addresses, heuristics are used to create a user transaction network (user
detection) from the original transaction network. Community detection can be used to

https://www.blockchain.com/explorer/api/blockchain_api
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group related network users into clusters, which can be labeled using off-chain information
to interpret what the communities represent.

3.1. Illegal Community Detection

We use community detection to detect a group of users associated with illegal Bitcoin
addresses. In the cryptocurrency sense, we define a community as a group of users who
often send coins between themselves, rather than conducting transactions with the rest
of the network. Ground-truth illegal communities could be useful when evaluating the
performance of algorithms in detecting illegal communities, but such labeled communities
are not available for blockchain transaction networks. However, the known illegal addresses
could be used to identify illegal communities, which help to identify more users that are
likely to be associated with illegal activities.

We used a two-step approach: (1) we used a community detection method to detect
unlabeled communities; (2) then, we used known illegal addresses to label the detected
communities. In the first step, we initially benchmarked the representative algorithms
discussed in Section 3.4 on Bitcoin user transaction networks in Table 1. The networks
were obtained by applying the multi-input heuristic on raw Bitcoin transactions. For each
network in Table 2, we used the selected algorithm with the best modularity, average
conductance, and speed results to detect the unlabeled communities. In the second step,
we iterated through the detected communities, checking the presence of a user with illegal
addresses linked to darknet markets in Table 3. Some communities consist of users associ-
ated with many illegal addresses, while other communities are associated with one illegal
address. Although illegal activities such as money laundering can be carried out by one
community member (by sending BTC to addresses he/she controls), other members that
often transact with the member might be subject to investigation or become victims. For
this reason, we mark the entire community as illegal.

Table 1. Bitcoin transaction networks we used to investigate the structure of Bitcoin transaction
networks and suitable community detection methods.

Bitcoin User Transaction Networks Nodes Edges

G1: 31 December 2010 584 667
G2: 31 December 2011 5976 7553
G3: 31 December 2012 17,594 29,730
G4: 31 December 2013 56,454 93,612
G5: 31 December 2014 81,490 127,796
G6: 31 December 2015 147,813 238,988
G7: 31 December 2016 285,391 421,900
G8: 31 December 2017 365,761 557,759
G9: 31 December 2018 300,135 418,657
G10: 31 December 2019 346,181 507,036
G11: 31 December 2020 516,398 666,037

Table 2. Bitcoin user transaction networks we used to detect illegal communities.

Bitcoin User Transaction Networks Nodes Edges

G12: 25 January 2017 711,255 1,376,711
G13: 26 January 2017 720,994 1,560,367
G14: 27 January 2017 645,053 1,400,766
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Table 3. Darknet markets and their bitcoin address count.

Darknet Market Bitcoin Address Count

AlphaBayMarket 189,776
SilkRoad2Market 350,036

SilkRoadMarketplace 372,753
YABTCL.com 3243
AgoraMarket 498,001

SheepMarketplace 53,639
BlackBankMarket 50,878

PandoraOpenMarket 55,757
NucleusMarket 146,381

BlueSkyMarketplace 18,997
MiddleEarthMarketplace 34,149

AbraxasMarket 119,119
EvolutionMarket 420,615

Total 2,313,344

3.2. Data

We used the Blockchain Data API (https://www.blockchain.com/explorer/api/blockchain_
api) to obtain blocks of transactions on different dates, then parse the blocks to construct
transaction networks. The multi-input heuristic (Section 3.3) is used to construct user
transaction networks, as shown in Tables 1 and 2. To detect illegal communities, we use
networks constructed on dates where illegal activities were detected and reported. Based on
the money laundering reported by the Federal Bureau of Investigation (FBI) and Homeland
Security Investigations (HSI), as discussed in the Case 1:22-mj-00022-RMM [22], we selected
blocks of transactions for the 25 January 2017, 26 January 2017 and 27 January 2017, in
which money laundering took place. We also randomly selected a recent date 17 January
2023, then construct networks on the selected dates using multi-input heuristics.

Community detection alone does not provide meaningful information, as community
nodes are just pseudonymous addresses. Using the Wallet Explorer API: https://www.
walletexplorer.com/ (accessed on 21 October 2022), the IKNAIO API (https://www.ikna.
io/) and darknet markets, we selected 13 illegal darknet markets that were shut down and
collect the associated 2,313,344 Bitcoin addresses, which we consider to be illegal addresses.
Wallet Explorer maps entities to Bitcoin addresses used before 2018 [8,23], while IKNAIO
is a CryptoAsset Analytics tool with an API that can be used to access its data. Both data
sources have been used for data validation.

3.3. User Detection

Multi-input, peel chain and change address identification heuristics were previously
proposed for user detection tasks [3,24]. A peel chain is a transaction pattern, which reduces
the large amount of cryptocurrency associated with an address through a series of small
transactions [3]. The change is the amount that goes back to the sender, who initiated
the transaction, and different heuristics have been proposed to detect this [3,24,25]. The
multi-input heuristic assumes that multiple input addresses to a transaction are controlled
by the same user, as the user collects coins from different addresses to make a payment
of a greater amount than that in each of the input addresses [3,24]. Multi-input heuristics
are the most consistently used in the literature. We use this in this work to create user
transaction networks.

3.4. Community Detection

Different community detection methods exist [14,26]. We investigate and group
different methods into six categories based on the techniques used to detect communities.
From each category, we select popular methods based on their performance on other social
networks. We benchmark them on Bitcoin transaction networks to select a suitable method
for illegal community detection.

YABTCL.com
https://www.blockchain.com/explorer/api/blockchain_api
https://www.blockchain.com/explorer/api/blockchain_api
https://www.walletexplorer.com/
https://www.walletexplorer.com/
https://www.ikna.io/
https://www.ikna.io/
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3.4.1. Distance-Based Methods

K-means [27], DBSCAN [28] and hierarchical clustering [29] are popular distance-
based clustering methods. Specifically, k-means and DBSCAN are the most used for cluster
analysis in Bitcoin transaction networks [13,24]. We select k-means and DBSCAN from this
category for our benchmark.

3.4.2. Spectral Clustering

Spectral clustering starts by computing the Laplacian matrix L = D− A or its vari-
ants [30], where D is a degree matrix. The next step computes the eigenvectors of L,
which can be achieved using eigenvalue decomposition, to find an approximation of L
as L ∼= UΛUT . The columns of U are eigenvectors of L, while Λ consists of eigenvalues
on the diagonal. The third step extracts from U a matrix H, corresponding to the top k
eigenvalues, where each row represents a vertex’s representation in k dimensional space.
Then, a clustering algorithm such as k-means is applied to H to group its vertices into k
communities. The number of communities k is often estimated using eigengap heuristic,
where k is related to the largest gap between consecutive eigenvalues λk and λk+1 of L
compared to gaps between λ1, λ2 . . . λk [31].

3.4.3. Community Quality Optimization

This category consists of methods that find communities that maximize the modular-
ity [20], minimize the conductance [32], or optimize any other community quality measure.
Modularity maximization is the most popular. This method aims to split the network
into communities that maximize the modularity measure in Equation (2). Leiden [33] and
Louvain [34] are recent popular algorithms based on the modularity maximization, while
the first modularity maximization method was introduced by Newman and Girvan [20].
Louvain combines the label propagation method (Section 3.4.4) with the modularity op-
timization for a fast community detection that is scalable to large networks. We selected
Leiden and Louvain for global community detection, and Personalized PageRank (PPR)
and heat kernel (HK) [32] to optimize the conductance in Equation (1) for local commu-
nity detection.

3.4.4. Label Propagation

Label propagation (LP) assumes that a vertex v chooses to be in a community to which
most of its neighbors belong [35]. LP starts by ranking all vertices of the input network in a
certain order, and each vertex is assigned a unique label. From various iterations, labels
propagate through the network until each vertex has a community label, carried by the
maximum number of neighbors. As all labels are unique at the first iteration, the first vertex
takes a random label from its neighbors and, in the subsequent iterations, ties are broken
uniformly and randomly. The adapted label propagation methods have been proposed
to handle community detection in dynamic networks [36], to improve the speed [37] and
detect overlapping communities [38]. The LP [39] was selected for disjoint community
detection, while DEMON [40] was selected for overlapping community detection.

3.4.5. Clique Percolation Method (CPM)

CPM finds communities based on adjacent cliques of size k [41]. A clique is a set of
vertices that are completely connected to one another. Two cliques of size k are adjacent if
they share k− 1 vertices. As the detected communities depend on the clique size k being
used as input, these communities are known as k-communities. For example, one may
find communities based on adjacent 3-cliques or 5-cliques. We used a 2-cliques approach
in our benchmark to capture communities consisting of two users who often transact
between themselves.
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3.4.6. Network Representation Learning

This category consists of matrix-decomposition-based methods: PCA, SVD [42],
NMF [43]; graph-diffusion-based methods: LINE [44], DeepWalk [45], Node2Vec [46];
Autoencoder [47], and graph neural networks [48]. These methods aim to learn a represen-
tation of the network that captures similarities between nodes better than the adjacency
matrix. Apart from NMF, which can output communities without requiring an additional
clustering method [49], other methods in this category require that the obtained embeddings
are clustered using distance-based clustering methods. Some methods, such as Cluster-
GCN include a clustering layer, but require that the number of clusters is specified [50].
We selected Node2Vec due to its popularity for generating embeddings, and DBSCAN to
cluster the embeddings into disjoint communities. We also selected BigClam [51], a popular
matrix decomposition-based method for overlapping community detection.

4. Experiments and Results

From the different community detection methods that exist, this section aims to
investigate the most suitable methods for Bitcoin transaction networks. We also investi-
gate the presence and interactions of 2,313,344 known Bitcoin illegal addresses in daily
Bitcoin transactions.

We compared methods that detect communities of the same category using community
quality measures and execution time: (1) Leiden, Louvain, label propagation, Node2Vec
followed by DBSCAN, and spectral clustering with k-means are compared in terms of
their ability to detect disjoint communities in the entire network; (2) clique percolation
method (CPM), DEMON and BigClam are compared for their ability to detect overlapping
communities; (3) heat kernel (HK) and personalized PageRank (PPR) for their ability to
detect local communities to which a seed node of interest belongs. For local community
detection, we randomly selected 100 seed nodes and averaged the obtained scores. The
modularity measure is only computed on global communities, as it is a global measure,
and the average conductance is used to measure the quality of both global and local
communities. In the benchmarked algorithms, Node2Vec with DBSCAN denotes that
DBSCAN was used to cluster the embeddings generated by Node2Vec. Spectral clustering
with k-means denotes that k-means was used to cluster the eigenvectors obtained from
the Laplacian matrix. Eigengap heuristic was used to estimate k. Default parameters were
used, except for CPM, where 2-cliques were selected to capture the communities consisting
of two isolated users who only transacted between themselves.

4.1. Results

The results show that the structure of Bitcoin transaction networks consist of discon-
nected components as shown in Figure 1.
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4.1.1. Benchmark Results

The benchmark of different community detection methods shows that distance-based
methods struggle to detect communities on Bitcoin transaction networks that consist of
disconnected components. Network representation learning methods also suffer from their
dependence on distance-based methods in the clustering phase.

Algorithms that return communities with the highest modularity (Figure 2) also have
the lowest conductance (Figures 3 and 4), which indicates that the detected communities
are dense, with few or no connections to the rest of the network. This can occur when a
dense component is detected as a community. Leiden, Louvain, and label propagation
outperformed spectral clustering with k-means and Node2Vec with DBSCAN in detecting
densely connected disjoint communities based on modularity and average conductance
scores. For global overlapping community detection, the clique percolation method (CPM)
outperformed other algorithms from G1 to G7 but did not scale beyond networks with
more than 300,000 nodes and its results from G8 to G11 were empty (Figure 2).
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4.1.2. Illegal Community Detection Results

Based on the performance of Louvain in the first experiment, we used it to detect
communities that were labeled using known illegal addresses (Table 3) to detect illegal
communities. The results show that 0.06% of the detected communities are illegal, with one
or more illegal addresses. Figure 6 shows a community from the transactions of 25 January
2017 (G12) containing 19 users associated with 69 illegal addresses.
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Figure 6. An illegal community consisting of 19 illegal users. Most of these users interact between
themselves, as shown by red nodes.

Figure 7 shows ranked communities by size, with associated conductance (left) and
size (right). Red markers represented illegal communities. We identified some illegal
communities that were isolated from the rest of the network, as indicated by their zero
conductance.
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Figure 7. Conductance and size of the detected communities in G12. Red markers indicate illegal
communities. We identify large communities with a low conductance (<0.5), which is not usually the
case in other social networks. Regarding the distribution of community sizes (right), the steep drop
after 102 on the x-axis and close to 103 on the y-axis indicates that few communities (around 100) are
very big, and each of the remaining communities consist of less than 1000 members (the network
consisted of 35,296 communities in total).



Entropy 2023, 25, 1069 11 of 14

4.2. Discussion

As community detection with spectral clustering and Node2Vec consists of two phases,
embedding and clustering, we investigated the phase that contributed to the poor commu-
nity detection results. We identified that the embedding phase could learn representations
with visible clusters (Figure 8) and the clustering phase was the issue (Figure 9). Figure 8
shows the embedded representation of G2 presented in Figure 1 (right section) with visible
clusters while Figure 9 shows poor performance of k-means with different values of k.
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detected have a modularity close to zero and an average conductance close to 1, which indicates a
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The same problem was identified with DBSCAN. By using a grid search that aimed to
find the best combinations of its parameters, we could not find any combination that could
generate good clusters on bitcoin transaction networks, as shown in Figure 10.
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5. Conclusions

Community detection can be used in blockchain transaction networks to detect illegal
communities containing users associated with illegal activities. It becomes easy to identify
other users in the community that are likely to be involved in illegal activities based on
their interactions in the community. However, the lack of illegal ground-truth communities
makes the illegal community detection task challenging in terms of validating the detected
communities. We addressed the challenge by using known illegal addresses to label the
detected communities. By using 2,313,344 Bitcoin addresses associated with illegal darknet
markets and a community detection method selected based on the results of the benchmark,
0.06% of the detected communities on daily transaction networks contain one or more
illegal addresses involved in illegal transactions. Illegal transactions include the purchase
of illegal products and money laundering.

The results also showed that distance-based clustering methods, specifically k-means
and DBSCAN, did not yield good results in our benchmark of different community de-
tection methods on Bitcoin transaction networks. Spectral clustering and network repre-
sentation learning-based methods are affected depending on the k-means or DBSCAN
in their clustering phase. Adapting distance-based clustering methods to improve their
performance on disconnected networks would improve their performance on blockchain
transaction networks. Obtaining a larger dataset of illegal addresses could help to identify
more illegal communities from daily transactions.
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