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Abstract: The partial information decomposition (PID) framework is concerned with decomposing
the information that a set of random variables has with respect to a target variable into three types of
components: redundant, synergistic, and unique. Classical information theory alone does not provide
a unique way to decompose information in this manner, and additional assumptions have to be made.
Recently, Kolchinsky proposed a new general axiomatic approach to obtain measures of redundant
information based on choosing an order relation between information sources (equivalently, order
between communication channels). In this paper, we exploit this approach to introduce three
new measures of redundant information (and the resulting decompositions) based on well-known
preorders between channels, contributing to the enrichment of the PID landscape. We relate the new
decompositions to existing ones, study several of their properties, and provide examples illustrating
their novelty. As a side result, we prove that any preorder that satisfies Kolchinsky’s axioms yields a
decomposition that meets the axioms originally introduced by Williams and Beer when they first
proposed PID.

Keywords: information theory; partial information decomposition; channel preorders; intersection
information; shared information; redundancy

1. Introduction

Williams and Beer [1] proposed the partial information decomposition (PID) frame-
work as a way to characterize or analyze the information that a set of random variables
(often called sources) has about another variable (referred to as the target). PID is a use-
ful tool for gathering insights and analyzing the way information is stored, modified,
and transmitted within complex systems [2,3]. It has found applications in areas such as
cryptography [4] and neuroscience [5,6], with many other potential use cases, such as in
understanding how information flows function in gene regulatory networks [7], neural
coding [8], financial markets [9], and network design [10].

Consider the simplest case, that of a three-variable joint distribution p(y1, y2, t) describ-
ing three random variables: two sources Y1 and Y2 and a target T. Notice that despite the
names sources and target, there is no directionality assumption, either causal or otherwise.
The goal of PID is to decompose the information that Y = (Y1, Y2) has about T into the sum
of four non-negative quantities: the information that is present in both Y1 and Y2, known as
redundant information R; the information that only Y1 (respectively, Y2) has about T, known
as unique information U1 (respectively, U2); and the synergistic information S that is present
in the pair (Y1, Y2), and is not present in either Y1 or Y2 alone. That is, in this case with two
variables, the goal is to write

I(T; Y) = R + U1 + U2 + S, (1)
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where I(T; Y) is the mutual information between T and Y [11]. In this paper, mutual
information is always assumed to refer to Shannon’s mutual information, which for two
discrete variables X ∈ X and Z ∈ Z is provided by

I(X; Z) = ∑
x∈X

∑
z∈Z

p(x, z) log
p(x, z)

p(x) p(z)
,

and satisfies the following well-known fundamental properties: I(X; Z) ≥ 0 and I(X; Z) =
0 ⇔ X ⊥ Z (X and Z are independent) [11].

Because unique information and redundancy satisfy the relationship Ui = I(T; Yi)− R
(for i ∈ {1, 2}), it turns out that defining how to compute one of these quantities (R,
Ui, or S) is enough to fully determine the others [1]. As the number of variables grows,
the number of terms appearing in the PID of I(T; Y) grows super-exponentially [12].
Williams and Beer [1] suggested a set of axioms that a measure of redundancy should
satisfy and proposed a measure of their own. These axioms have become known as
the Williams–Beer axioms, although the measure they proposed has subsequently been
criticized for not capturing informational content, only information size [13].

Spawned by their initial work, other measures and axioms for information decomposi-
tion have been introduced; see, for example, the work by Bertschinger et al. [14], Griffith
and Koch [15], and James et al. [16]. There is no consensus about what axioms any measure
should satisfy or whether a given measure is capturing the information that it should capture
other than the Williams–Beer axioms. Today, debate continues about which axioms a
measure of redundant information ought to satisfy, and there is no general agreement on
what makes for an appropriate PID [16–20].

Recently, Kolchinsky [21] suggested a new general approach to defining measures of
redundant information, known as intersection information (II), the designation that we adopt
hereinafter. The core of this approach is the choice of an order relation between information
sources (random variables), which allows two sources to be compared in terms of how
informative they are with respect to the target variable.

In this work, we use previously studied preorders between communication channels,
which correspond to preorders between the corresponding output variables in terms of
information content with respect to the input. Following Kolchinsky’s approach, we show
that these orders lead to the definition of new II measures. The rest of the paper is organized
as follows. In Sections 2 and 3, we review Kolchinsky’s definition of an II measure and
the degradation order. In Section 4, we describe a number of preorders between channels
then, based on the work by Korner and Marton [22] and Américo et al. [23], we derive the
resulting II measures and study of their properties. Section 5 presents comments on the
optimization problems involved in computation of the proposed measures. In Section 6,
we explore the relationships between the new II measures and previous PID approaches,
then apply the proposed II measures to several famous PID problems. Section 7 concludes
the paper by pointing out suggestions for future work.

2. Kolchinsky’s Axioms and Intersection Information

Consider a set of n discrete random variables Y1 ∈ Y1, . . . , Yn ∈ Yn, called the source
variables, and let T ∈ T be the target variable (also discrete), with a joint distribution
(probability mass function) p(y1, . . . , yn, t). Let � denote some preorder between random
variables that satisfies the following axioms, herein referred to as Kolchinsky’s axioms [21]:

(i) Monotonicity of mutual information w.r.t. T: Yi � Yj ⇒ I(Yi; T) ≤ I(Yj; T).
(ii) Reflexivity: Yi � Yi for all Yi.
(iii) For any Yi, C � Yi � (Y1, . . . , Yn), where C ∈ C is any variable taking a constant

value with probability one, i.e., with a distribution that is a delta function or such
that C is a singleton.
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Kolchinsky [21] showed that such an order can be used to define an II measure via

I∩(Y1, . . . , Yn → T) := sup
Q: Q�Yi , i∈{1,..,n}

I(Q; T), (2)

and we now show that this implies that the II measure in (2) satisfies the Williams–Beer
axioms [1,2], establishing a strong connection between these formulations. Before stating
and proving this result, we first recall the Williams–Beer axioms [2], where the definition of
a source Ai is that of a set of random variables, e.g., A1 = {X1, X2}.

Definition 1. Let A1, . . . , Ar be an arbitrary number of r ≥ 2 sources. An intersection information
measure I∩ is said to satisfy the Williams-Beer axioms if it satisfies the following:

1. Symmetry: I∩ is symmetric in the Ais.
2. Self-redundancy: I∩(Ai) = I(Ai; T).
3. Monotonicity: I∩(A1, . . . , Ar−1, Ar) ≤ I∩(A1, . . . , Ar−1).
4. Equality for Monotonicity: If Ar−1 ⊆ Ar, then I∩(A1, . . . , Ar−1, Ar) = I∩(A1, . . . , Ar−1).

Theorem 1. Let� be some preorder that satisfies Kolchinsky’s axioms, and define its corresponding
II measure as in (2). Then, the corresponding II measure satisfies the Williams–Beer axioms.

Proof. Symmetry and monotonicity follow trivially given the form of (2) (the definition of the
supremum and restriction set). Self-redundancy follows from the reflexivity of the preorder
and monotonicity of mutual information. Now, suppose Ar−1 ⊆ Ar, and let Q be a solution of
I∩(A1, . . . , Ar−1), implying that Q � Ar−1. Now, because Ar−1 ⊆ Ar, the third Kolchinsky
axiom and transitivity of the preorder � guarantee that Q � Ar−1 � Ar, meaning that Q is
an admissible point of I∩(A1, . . . , Ar). Therefore, I∩(A1, . . . , Ar−1, Ar) ≥ I∩(A1, . . . , Ar−1)
and monotonicity guarantees that I∩(A1, . . . , Ar−1, Ar) = I∩(A1, . . . , Ar−1).

In conclusion, every preorder relation that satisfies the set of axioms introduced
by Kolchinsky [21] yields a valid II measure, in the sense that the measure satisfies the
Williams–Beer axioms. Having a more informative relation � allows us to draw conclusions
about information flowing from different sources, and allows for the construction of PID
measures that are well-defined for more than two sources. In the following, we omit “→ T”
from the notation unless we need to explicitly refer to it, with the understanding that the
target variable is always some arbitrary discrete random variable T.

3. Channels and the Degradation/Blackwell Order

In an information-theoretical perspective, given two discrete random variables X ∈ X
and Z ∈ Z , the corresponding conditional distribution p(z|x) corresponds to a discrete
memoryless channel with a channel matrix K such that K[x, z] = p(z|x) [11]. This matrix is
row-stochastic, i.e., K[x, z] ≥ 0 for any x ∈ X and z ∈ Z , and ∑z∈Z K[x, z] = 1.

The comparison of different channels (equivalently, different stochastic matrices) is
an object of study with many applications in different fields [24]. Such investigations
address order relations between channels and their properties. One such order, named the
degradation order (or Blackwell order) and defined next, was used by Kolchinsky to obtain a
particular II measure [21].

Consider the distribution p(y1, . . . , yn, t) and the channels K(i) between T and each Yi,
that is, K(i) is a |T | × |Yi| row-stochastic matrix with the conditional distribution p(yi|t).

Definition 2. We say that channel K(i) is a degradation of channel K(j), and write K(i) �d K(j)

or Yi �d Yj, if there exists a channel KU from Yj to Yi, i.e., a |Yj| × |Yi| row-stochastic matrix,
such that K(i) = K(j)KU .

Intuitively, consider two agents, one with access to Yi and the other with access to Yj.
The agent with access to Yj has at least as much information about T as the one with access
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to Yi, as it has access to channel KU , which permits sampling from Yi conditionally on
Yj [19]. Blackwell [25] showed that this is equivalent to saying that, for whatever decision
game where the goal is to predict T and for whatever utility function, the agent with access
to Yi cannot do better on average than the agent with access to Yj.

Based on the degradation/Blackwell order, Kolchinsky [21] introduced the degradation
II measure by plugging the “�d” order into (2):

Id
∩(Y1, . . . , Yn) := sup

Q: Q�dYi , i∈{1,..,n}
I(Q; T). (3)

As noted by Kolchinsky [21], this II measure has the following operational interpretation.
Supposing that n = 2 and considering two agents, 1 and 2, with access to variables Y1 and
Y2, respectively, Id

∩(Y1, Y2) is the maximum information that agent 1 (respectively 2) can
have with respect to T without being able to do better than agent 2 (respectively 1) on any
decision problem that involves guessing T. That is, the degradation II measure quantifies
the existence of a dominating strategy for any guessing game.

4. Other Orders and Corresponding II Measures
4.1. The “Less Noisy” Order

Korner and Marton [22] introduced and studied preorders between channels with the
same input. We follow most of their definitions, and change others when appropriate. We
interchangeably write Y1 � Y2 to mean K(1) � K(2), where K(1) and K(2) are the channel
matrices defined above.

Before introducing the next channel order, we need to review the notion of Markov
chains [11]. We can say that three random variables X1, X2, and X3 form a Markov chain,
for which we write X1 → X2 → X3, if the following equality holds: p(x1, x3|x2) =
p(x1|x2) p(x3|x2), i.e., if X1 and X3 are conditionally independent given X2. Of course,
X1 → X2 → X3 if and only if X3 → X2 → X1.

Definition 3. We say that channel K(2) is less noisy than channel K(1), and write K(1) �ln K(2),
if for any discrete random variable U with finite support (such that both U → T → Y1 and
U → T → Y2 hold) we have I(U; Y1) ≤ I(U; Y2).

The less noisy order has been primarily used in network information theory to study
the problems of the capacity regions of broadcast channels [26] and the secrecy capacity
of wiretap and eavesdrop channels [27]. The secrecy capacity (CS) is the maximum rate at
which information can be transmitted over a communication channel while keeping the
communication secure from eavesdroppers, that is, having zero information leakage [28,29].
It has been shown that CS > 0 unless K(2) �ln K(1), where CS is the secrecy capacity of
the Wyner wiretap channel, with K(2) as the main channel and K(1) as the eavesdropper
channel ([27], Corollary 17.11).

Plugging the less noisy order �ln into (2) yields a new II measure

Iln
∩ (Y1, . . . , Yn) := sup

Q: Q�lnYi , i∈{1,..,n}
I(Q; T). (4)

Intuitively, Iln
∩ (Y1, . . . , Yn) is the most information that a channel KQ can have about T such

that it is less noisy than any other channel K(i), i = 1, . . . , n, that is, a channel that leads to a
positive secrecy capacity, as compared to any other channel K(i).

4.2. The “More Capable” Order

The next order we consider, termed “more capable”, has been used in calculating the
capacity region of broadcast channels [30] and to help determine whether one system is
more secure than another [31]; see the book by Cohen et al. [24] for more applications of
the degradation, less noisy, and more capable orders.
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Definition 4. We say that channel K(2) is more capable than K(1), and write K(1) �mc K(2), if
for any distribution p(t) we have I(T; Y1) ≤ I(T; Y2).

Inserting the “more capable” order into (2) leads to

Imc
∩ (Y1, . . . , Yn) := sup

Q: Q�mcYi , i∈{1,..,n}
I(Q; T), (5)

that is, Imc
∩ (Y1, . . . , Yn) is the information that the ‘largest’ (in the more capable sense),

though no larger than any Yi, that the random variable Q has with respect to T. Whereas
under the degradation order it is guaranteed that agent 2 will make better decisions if
Y1 �d Y2 for whatever decision game, on average, under the “more capable“ order, such
a guarantee is not available. However, we do have a guarantee that, if Y1 �mc Y2, then
for a given distribution p(t) we know that agent 2 always has more information about T
than agent 1. This has an interventional approach meaning; if we intervene on variable T
by changing its distribution p(t) in whichever way we see fit, we have I(Y1; T) ≤ I(Y2; T)
(assuming that the distribution p(Y1, . . . , Yn, T) can be modeled as a set of channels from
T to each Yi); that is to say, Imc

∩ (Y1, . . . , Yn) is the highest information that a channel KQ

can have about T such that for any change in p(t), KQ knows less about T than any
Yi, i = 1, . . . , n. Because PID is concerned with decomposing a distribution that has fixed
p(t), the “more capable” measure is concerned with the mechanism by which T generates
Y1, . . . , Yn for any p(t), and is not concerned with the specific distribution p(t) yielded by
p(Y1, . . . , Yn, T).

For the sake of completeness, we could additionally study the II measure that would
result from the capacity order. Recall that the capacity of the channel from a variable X
to another variable Z, which is only a function of the conditional distribution p(z|x), is
defined as [11]

C = max
p(x)

I(X; Z). (6)

Definition 5. We can write W �c V if the capacity of V is at least as large as the capacity of W.

Even though it is clear that W �mc V ⇒ W �c V, the �c order does not comply
with the first of Kolchinsky’s axioms, as the definition of capacity involves the choice of a
particular marginal that achieves the maximum in (6), which may not coincide with the
marginal corresponding to p(y1, . . . , yn, t). For this reason, we do not define an II measure
based on it.

4.3. The “Degradation/Supermodularity” Order

In order to introduce the last II measure, we follow the work and notation of
Américo et al. [23]. Given two real vectors r and s with dimension n, let r∨ s := (max(r1, s1),
. . . , max(rn, sn)) and r ∧ s := (min(r1, s1), . . . , min(rn, sn)). Consider an arbitrary channel
K, and let Ki be its ith column. From K, we may define a new channel which we construct
column by column using the JoinMeet operator �i,j. Column l of the new channel is defined
for i 6= j as

(�i,jK)l =


Ki ∨ Kj, if l = i
Ki ∧ Kj, if l = j
Kl , otherwise

.

Américo et al. [23] used this operator to define the two new orders described below.
Intuitively, the operator �i,j makes the rows of the channel matrix more similar to each
other by putting all the maxima in column i and the minima in column j between every
pair of elements in columns i and j of every row. In the following definitions, the s stands
for supermodularity, a concept we need not introduce in this work.
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Definition 6. We can write W �s V if there exists a finite collection of tuples (ik, jk) such that
W = �i1,j1(�i2,j2(. . . (�im ,jm V)).

Definition 7. Ww write W �ds V if there are m channels U(1), . . . , U(m) such that W �0
U(1) �1 U(2) �2 . . . �m−1 U(m) �m V, where each �i stands for �d or �s. We call this the
degradation/supermodularity order.

Using the “degradation/supermodularity” (ds) order, we can define the ds II measure
as follows:

Ids
∩ (Y1, . . . , Yn) := sup

Q: Q�dsYi , i∈{1,..,n}
I(Q; T). (7)

The ds order was recently introduced in the context of core-concave entropies [23]. Given a
core-concave entropy H, the leakage about T through Y1 is defined as IH(T; Y1) = H(T)−
H(T|Y1). In this work, we are mainly concerned with the Shannon entropy H; however,
as we elaborate in the future work section at the end of this paper, PID may be applied to
other core-concave entropies. Although the operational interpretation of the ds order is not
yet clear, it has found applications in privacy/security contexts, as well as in finding the
most secure deterministic channel (under certain constraints) [23].

4.4. Relations between Orders

Korner and Marton [22] proved that W �d V ⇒ W �ln V ⇒ W �mc V, and
provided examples to show that the reverse implications do not hold in general. As
Américo et al. [23] note, the degradation (�d), supermodularity (�s), and degradation/
supermodularity (�ds) orders are structural orders, in the sense that they only depend on the
conditional probabilities that are defined by each channel. On the other hand, the less noisy
and more capable orders are concerned with information measures resulting from different
distributions. It is trivial to see (directly from the definition) that the degradation order
implies the degradation/supermodular order. In turn, Américo et al. [23] showed that the
degradation/supermodular order implies the more capable order. This set of implications
is schematically depicted in Figure 1.

Figure 1. Implications satisfied by the orders. The reverse implications do not hold in general.

For any set of variables Y1, . . . , Yn, T, these relations between the orders imply, via the
corresponding definitions, that

Id
∩(Y1, . . . , Yn) ≤ Iln

∩ (Y1, . . . , Yn) ≤ Imc
∩ (Y1, . . . , Yn) (8)

and

Id
∩(Y1, . . . , Yn) ≤ Ids

∩ (Y1, . . . , Yn) ≤ Imc
∩ (Y1, . . . , Yn). (9)

These, in turn, imply the following result.

Theorem 2. The preorders �ln, �mc, and �ds, satisfy Kolchinsky’s axioms.
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Proof. Let i ∈ {1, . . . , n}. Because any of the introduced orders implies the more capable
order, it follows that they all satisfy the axiom of monotonicity of mutual information.
Axiom 2 is trivially true, as reflexivity is guaranteed by the definition of preorder. For axiom
3, the rows of a channel corresponding to a variable C taking a constant value must all be the
same (and yield zero mutual information with any target variable T), from which it is clear
that any Yi satisfies C � Yi for any of the introduced orders per the definition of each order.
To see that Yi � Y = (Y1, . . . , Yn) for the less noisy and the more capable, recall that for any U
such that U → T → Yi and U → T → Y it is trivial that I(U; Yi) ≤ I(U; Y); hence, Yi �ln Y.
A similar argument can be used to show that Yi �mc Y, as I(T; Yi) ≤ I(T; Y). Finally, to see
that Yi �ds (Y1, . . . , Yn), note that Yi �d (Y1, . . . , Yn) [21]; hence, Yi �ds (Y1, . . . , Yn).

5. Optimization Problems

We now focus on certain observations around optimization problems involving the
introduced II measures. All of these problems seek to maximize I(Q; T) (under different
constraints) as a function of the conditional distribution p(q|t), and equivalently with
respect to the channel from T to Q, which we denote as KQ := KQ|T . For fixed p(t), as is
the case in PID, I(Q; T) is a convex function of KQ ([11], Theorem 2.7.4). As we will see,
the admissible region of all problems is a compact set, and because I(Q; T) is a continuous
function of the parameters of KQ, the supremum is achieved; thus, we replace sup here
with max.

As noted by Kolchinsky [21], the computation of (3) can be rewritten as an optimization
problem using auxiliary variables such that it involves only linear constraints, and because
the objective function is convex, its maximum is attained at one of the vertices of the
admissible region. The computation of the other measures, however, is not as simple, as
shown in the following subsections.

5.1. The “Less Noisy” Order

To solve (4), we can use one of the necessary and sufficient conditions presented by
(Makur and Polyanskiy [26], Theorem 1). For instance, let V and W be two channels with
input T, and let ∆T−1 be the probability simplex of the target T. Then, V �ln W, if and only
if the inequality

χ2(p(t)W||q(t)W) ≥ χ2(p(t)V||q(t)V) (10)

holds for any pair of distributions p(t), q(t) ∈ ∆T−1, where χ2 in the above equation
denotes the χ2-distance between two vectors. The χ2 distance between two vectors u
and v of dimension n is given by χ2(u||v) = ∑n

i=1(ui − vi)
2/vi. Notice that p(t)W is the

distribution of the output of channel W for input distribution p(t); thus, intuitively, the
condition in (10) means that the two output distributions of the less noisy channel are more
different from each other than those of the other channel. Hence, computing Iln

∩ (Y1, . . . , Yn)
can be formulated as solving the problem

max
KQ

I(Q; T)

s.t. KQ is a stochastic matrix,

∀p(t), q(t) ∈ ∆T−1, ∀i ∈ {1, . . . , n}, χ2(p(t)K(i)||q(t)K(i)) ≥ χ2(p(t)KQ||q(t)KQ).

Although the restriction set is convex, as the χ2-divergence is an f -divergence with
convex f [27], the problem is intractable because we have an infinite (uncountable) number
of restrictions. It is possible to construct a set S by taking an arbitrary number of samples S
of p(t) ∈ ∆T−1 to define the problem

max
KQ

I(Q; T),

s.t. KQ is a stochastic matrix,

∀p(t), q(t) ∈ S , ∀i ∈ {1, . . . , n}, χ2(p(t)K(i)||q(t)K(i)) ≥ χ2(p(t)KQ||q(t)KQ).

(11)
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The above problem yields an upper bound on Iln
∩ (Y1, . . . , Yn).

5.2. The “More Capable” Order

To compute Imc
∩ (Y1, . . . , Yn), we can define the problem

max
KQ

I(Q; T)

s.t. KQ is a stochastic matrix,

∀p(t) ∈ ∆T−1, ∀i ∈ {1, . . . , n}, I(Yi; T) ≥ I(Q; T),

(12)

which again leads to a convex restriction set, as I(Q; T) is a convex function of KQ. We can
discretize the problem in the same manner as above to obtain a tractable version

max
KQ

I(Q; T)

s.t. KQ is a stochastic matrix,

∀p(t) ∈ S , ∀i ∈ {1, . . . , n}, I(Yi; T) ≥ I(Q; T),

(13)

which again yields an upper bound on Imc
∩ (Y1, . . . , Yn).

5.3. The “Degradation/Supermodularity” Order

The final introduced measure, Ids
∩ (Y1, . . . , Yn), is provided by

max
KQ

I(Q; T)

s.t. KQ is a stochastic matrix,

∀i, KQ �ds K(i).

(14)

To the best of our knowledge, there is currently no known condition to check whether
KQ �ds K(i).

6. Relation to Existing PID Measures

Griffith et al. [32] introduced a measure of II as

I/∩(Y1, . . . , Yn) := max
Q

I(Q; T), such that ∀i Q / Yi, (15)

with the order relation / defined by A / B if A = f (B) for some deterministic function f ,
that is, I/∩ is used to quantify the redundancy as the presence of deterministic relations
between the input and target. If Q is a solution of (15), then there exist functions f1, . . . , fn
such that Q = fi(Yi), i = 1, . . . , n, which implies that for all i it is the case that T → Yi → Q
is a Markov chain. Therefore, Q is an admissible point of the optimization problem that
defines Id

∩(Y1, . . . , Yn), and we have I/∩(Y1, . . . , Yn) ≤ Id
∩(Y1, . . . , Yn).

Barrett [33] introduced the so-called minimum mutual information (MMI) measure of
bivariate redundancy as

IMMI
∩ (Y1, Y2) := min{I(T; Y1), I(T; Y2)}.

It turns out that if (Y1, Y2) is jointly Gaussian and T is univariate, then most of the intro-
duced PIDs in the literature are equivalent to this measure [33]. Furthermore, as noted
by Kolchinsky [21], it may be generalized to more than two sources:

IMMI
∩ (Y1, . . . , Yn) := sup

Q
I(Q; T), such that ∀i I(Q; T) ≤ I(Yi; T),
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which allows us to trivially conclude that for any set of variables Y1, . . . , Yn, T,

I/∩(Y1, . . . , Yn) ≤ Id
∩(Y1, . . . , Yn) ≤ Imc

∩ (Y1, . . . , Yn) ≤ IMMI
∩ (Y1, . . . , Yn).

One of the appeals of measures of II as defined by Kolchinsky [21] is that the under-
lying preorder determines what is intersection (or redundant) information. For example,
taking the degradation II measure in the n = 2 case, its solution Q satisfies T ⊥ Q |Y1 and
T ⊥ Q |Y2; that is, if either Y1 or Y2 are known, then Q has no additional information about
T. The same is not necessarily the case for the less noisy or the more capable II measures,
where the solution Q may have additional information about T even when a source is
known. However, the three proposed measures satisfy the property that any solution Q of
the optimization problem satisfies

∀i ∈ {1, . . . , n}, ∀t ∈ ST , I(Yi; T = t) ≥ I(Q; T = t),

where ST is the support of T and I(T = t; Yi) refers to the so-called specific
information [1,34]. This means that, independent of the outcome of T, Q has less spe-
cific information about T = t than any source variable Yi. This can be seen by noting
that any of the introduced orders imply the more capable order. This is not the case, for
example, for IMMI

∩ , which is arguably one of the reasons why it has been criticized for
depending only on the amount of information and not on its content [21]. As mentioned,
there is not much consensus as to which properties a measure of II should satisfy. The
three proposed measures for partial information decomposition do not satisfy the so-called
Blackwell property [14,35]:

Definition 8. An intersection information measure I∩(Y1, Y2) is said to satisfy the Blackwell
property if the equivalence Y1 �d Y2 ⇔ I∩(Y1, Y2) = I(T; Y1) holds.

This definition is equivalent to demanding that Y1 �d Y2 if and only if Y1 has no unique
information about T. Although the (⇒) implication holds for the three proposed measures,
the reverse implication does not, as shown by specific examples presented by Korner
and Marton [22], which we mention below. If we define the “more capable” property by
replacing the degradation order with the more capable order in the original definition of the
Blackwell property, then it is clear that measure k satisfies the k property, with k referring
to any of the three introduced intersection information measures.

In PID, the identity property (IP) has been frequently studied [13]. For this property, let
the target T be a copy of the source variables, that is, let T = (Y1, Y2). An II measure I∩ is
said to satisfy the IP if

I∩(Y1, Y2) = I(Y1; Y2).

Criticism has been levied against this proposal for being too restrictive [16,36]. A less strict
property was introduced by [20] under the name independent identity property (IIP). If the
target T is a copy of the input, an II measure is said to satisfy the IIP if

I(Y1; Y2) = 0 ⇒ I∩(Y1, Y2) = 0.

Note that the IIP is implied by the IP, while the reverse does not hold. It turns out that all
the introduced measures, as is the case for the degradation II measure, satisfy the IIP and
not the IP, as we show later. This can be seen from (8) and (9), as well as from the fact that
Imc
∩ (Y1, Y2 → (Y1, Y2)) equals 0 if I(Y1; Y2) = 0, as we argue now. Consider the distribution

where T is a copy of (Y1, Y2), as presented in Table 1.
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Table 1. Copy distribution.

T Y1 Y2 p(t, y1, y2)

(0, 0) 0 0 p(T = (0, 0))

(0, 1) 0 1 p(T = (0, 1))

(1, 0) 1 0 p(T = (1, 0))

(1, 1) 1 1 p(T = (1, 1))

We assume that each of the four events has non-zero probability. In this case, channels
K(1) and K(2) are provided by

K(1) =


1 0
1 0
0 1
0 1

, K(2) =


1 0
0 1
1 0
0 1

.

Note that for any distribution p(t) = [p(0, 0), p(0, 1), p(1, 0), p(1, 1)], if p(1, 0) = p(1, 1) = 0,
then I(T; Y1) = 0, which implies that for any such distributions the solution Q of (12)
must satisfy I(Q; T) = 0. Thus, the first and second rows of KQ must be the same. The
same is the case for any distribution p(t) with p(0, 0) = p(0, 1) = 0; on the other hand, if
p(0, 0) = p(1, 0) = 0 or p(1, 1) = p(0, 1) = 0, then I(T; Y2) = 0, implying that I(Q; T) = 0
for such distributions. Hence, KQ must be an arbitrary channel, that is, a channel that
satisfies Q ⊥ T, yielding Imc

∩ (Y1, Y2) = 0.
Now, recall the Gács–Korner common information [37], defined as

C(Y1 ∧Y2) := sup
Q

H(Q)

s.t. Q / Y1

Q / Y2

(16)

We use a similar argument, while slightly changing the notation, to show the follow-
ing result.

Theorem 3. Let T = (X, Y) be a copy of the source variables; then, Iln
∩ (X, Y) = Ids

∩ (X, Y) =
Imc
∩ (X, Y) = C(X ∧Y).

Proof. As shown by Kolchinsky [21], Id
∩(X, Y) = C(X∧Y). Thus, (8) implies that Imc

∩ (X, Y)
≥ C(X ∧ Y). The proof is completed by showing that Imc

∩ (X, Y) ≤ C(X ∧ Y). Construct
the bipartite graph with vertex set X ∪ Y and edges (x, y) if p(x, y) > 0. Consider the
set of maximally connected components MCC = {CC1, . . . , CCl} for some l ≥ 1, where each
CCi refers to a maximal set of connected edges. Let CCi, i ≤ l be an arbitrary set in MCC.
Suppose that the edges (x1, y1) and (x1, y2) (with y1 6= y2) are in CCi. This means that
the channels KX := KX|T and KY := KY|T have rows corresponding to the outcomes
T = (x1, y1) and T = (x1, y2) of the form

KX =


...

0 · · · 0 1 0 · · · 0
0 · · · 0 1 0 · · · 0

...

, KY =


...

0 · · · 0 1 0 0 · · · 0
0 · · · 0 0 1 0 · · · 0

...

.

Choosing p(t) = [0, . . . , 0, a, 1 − a, 0, . . . , 0], that is, p(T = (x1, y1)) = a and p(T =
(x1, y2)) = 1 − a, we have ∀a ∈ [0, 1], I(X; T) = 0, which implies that the solution Q
must be such that ∀a ∈ [0, 1], I(Q; T) = 0 (from the definition of the more capable order),
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which in turn implies that the rows of KQ corresponding to these outcomes must be the
same to ensure that they yield I(Q; T) = 0 under this set of distributions. We may choose
the values of those rows to be the same as those rows from KX, that is, a row that is com-
posed of zeros except for one of the positions whenever T = (x1, y1) or T = (x1, y2). On the
other hand, if the edges (x1, y1) and (x2, y1) (with x1 6= x2) are in CCi, the same argument
leads to the conclusion that the rows of KQ corresponding to the outcomes T = (x1, y1),
T = (x1, y2) and T = (x2, y1) must be the same. Applying this argument to every edge in
CCi, we can conclude that the rows of KQ corresponding to outcomes (x, y) ∈ CCi must all
be the same. Using this argument for every set CC1, . . . , CCl implies that if two edges are in
the same CC, the corresponding rows of KQ must be the same. These corresponding rows
of KQ may vary between different CCs; however, for the same CC they must be the same.

We are left with the choice of appropriate rows of KQ for each corresponding CCi.
Because I(Q; T) is maximized by a deterministic relation between Q and T and, as sug-
gested before, we choose a row that is composed of zeros except for one of the positions
for each CCi such that Q is a deterministic function of T, this admissible point Q implies
that Q = f1(X) and Q = f2(Y), as X and Y are also functions of T under the channel
perspective. For this choice of rows, we have

Imc
∩ (X, Y) = supQ I(Q; T)

s.t. Q �mc X
Q �mc Y

≤ supQ H(Q)

s.t. Q = f1(X)
Q = f2(Y)

= C(X ∧Y)

where we have used the fact that I(Q; T) ≤ min{H(Q), H(T)} to conclude that Imc
∩ (X, Y) ≤

C(X ∧ Y). Hence Iln
∩ (X, Y) = Ids

∩ (X, Y) = Imc
∩ (X, Y) = C(X ∧ Y) if T is a copy of

the input.

Bertschinger et al. [14] suggested what later became known as the (*) assumption,
which states that in the bivariate source case any sensible measure of unique information
should only depend on K(1), K(2), and p(t). It is not clear that this assumption should
hold for every PID. It is trivial to see that all the introduced II measures satisfy the
(*) assumption.

We conclude with several applications of the proposed measures to famous (bivariate)
PID problems; the results are shown in Table 2. Due to the channel design in these problems,
computation of the proposed measures is fairly trivial. We assume that the input variables
are binary (taking values in {0, 1}), independent, and equiprobable.

Table 2. Application of the proposed measures to famous PID problems.

Target I/∩ Id
∩ Iln

∩ Ids
∩ Imc

∩ IMMI
∩

T = Y1 AND Y2 0 0.311 0.311 0.311 0.311 0.311
T = Y1 + Y2 0 0.5 0.5 0.5 0.5 0.5

T = Y1 0 0 0 0 0 0
T = (Y1, Y2) 0 0 0 0 0 1

We note that in these fairly simple toy distributions all of the introduced measures yield
the same value. This is not surprising when the distribution p(t, y1, y2) yields K(1) = K(2),
which implies that I(T; Y1) = I(T; Y2) = Ik

∩(Y1, Y2), where k refers to any of the introduced
preorders, as is the case in the T = Y1 AND Y2 and T = Y1 + Y2 examples. Less trivial
examples lead to different values over the introduced measures. We present distributions
showing that our three introduced measures lead to novel information decompositions
by comparing them to the following existing measures: I/∩ from Griffith et al. [32], IMMI

∩
from Barrett [33], IWB

∩ from Williams and Beer [1], IGH
∩ from Griffith and Ho [38], IInce

∩
from Ince [20], IFL

∩ from Finn and Lizier [39], IBROJA
∩ from Bertschinger et al. [14], IHarder

∩
from Harder et al. [13], and Idep

∩ from [16]. We used the dit package [40] to compute
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them, along with the code provided in [21]. Consider counterexample 1 from [22] with
p = 0.25, ε = 0.2, δ = 0.1, provided by

K(1) =

[
0.25 0.75
0.35 0.65

]
, K(2) =

[
0.675 0.325
0.745 0.255

]
.

These channels satisfy K(2) �ln K(1) and K(2) �d K(1) from Korner and Marton [22].
This is an example that satisfies Iln

∩ (Y1, Y2) = I(T; Y2) for a given distribution p(t). It
is noteworthy to see that even though there is no degradation order between the two
channels, we nonetheless have Id

∩(Y1, Y2) > 0, as there is some non-trivial channel KQ that
satisfies KQ �d K(1) and KQ �d K(2). In Table 3, we present various PIDs under different
measures after choosing p(t) = [0.4, 0.6] (which yields I(T; Y2) ≈ 0.004) and assuming
p(t, y1, y2) = p(t)p(y1|t)p(y2|t).

Table 3. Different decompositions of p(t, y1, y2).

I/∩ Id
∩ Iln

∩ Ids
∩ Imc

∩ IMMI
∩ IWB

∩ IGH
∩ IInce

∩ IFL
∩ IBROJA

∩ IHarder
∩ Idep

∩

0 0.002 0.004 * 0.004 0.004 0.004 0.002 0.003 0.047 0.003 0.004 0

We write Ids
∩ = * here, as we do not yet have a way to find the ‘largest’ Q such that

Q �ds K(1) and Q �ds K(2) (see counterexample 2 from [22] for an example of channels
K(1), K(2) that satisfy K(2) �mc K(1) while K(2) �ln K(1), leading to different values of
the proposed II measures). An example of K(3), K(4) that satisfy K(4) �ds K(3) while
K(4) �d K(3) is presented by (Américo et al. [23], page 10), provided by

K(3) =

 1 0
0 1

0.5 0.5

, K(4) =

 1 0
1 0

0.5 0.5

.

There is no stochastic matrix KU such that K(4) = K(3)KU while K(4) �ds K(3), as K(4) =
�1,2K(3). Using (10), it is possible to check whether there is any less noisy relation between
the two channels. (Compute (10) with V = K(4), W = K(3), p(t) = [0, 0, 1], and q(t) =
[0.1, 0.1, 0.8] to conclude that K(4) �ln K(3), then switch the roles of V and W and set
p(t) = [0, 1, 0] and q(t) = [0.1, 0, 0.9] to conclude that K(3) �ln K(4)). We present the
decomposition of p(t, y3, y4) = p(t)p(y3|t)p(y4|t) for the choice of p(t) = [0.3, 0.3, 0.4]
(which yields I(T; Y4) ≈ 0.322) in Table 4.

Table 4. Different decompositions of p(t, y3, y4).

I/∩ Id
∩ Iln

∩ Ids
∩ Imc

∩ IMMI
∩ IWB

∩ IGH
∩ IInce

∩ IFL
∩ IBROJA

∩ IHarder
∩ Idep

∩

0 0 0∗ 0.322 0.322 0.322 0.193 0 0 0.058 0 0 0

We write Iln
∩ = 0∗ because we conjecture, after numerical experiments based on (10),

that the ‘largest’ channel that is less noisy than both K(3) and K(4) is a channel that satisfies
I(Q; T) = 0. (We tested all 3× 3 row-stochastic matrices with entries that take values in
{0, 0.1, 0.2, . . . , 0.9, 1} with all distributions p(t) and q(t) having entries that take values in
the same set.)

7. Conclusions and Future Work

In this paper, we have introduced three new measures of intersection information for
the partial information decomposition (PID) framework based on preorders between channels
implied by the degradation/Blackwell order. The new measures were obtained from
the orders by following the approach recently proposed by Kolchinsky [21]. The main
contributions and conclusions of this paper can be summarized as follows:
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• We show that a measure of intersection information that satisfies the axioms by Kolchin-
sky [21] and is based on a preorder, satisfies the Williams–Beer axioms as well [1].

• As a corollary of the previous result, the proposed measures satisfy the Williams–Beer
axioms, and can be extended beyond two sources.

• We demonstrate that if there is a degradation ordering between the sources, then
the measures coincide in their decomposition. Conversely, if there is no degrada-
tion ordering (i.e., only a weaker ordering) between the source variables, the pro-
posed measures lead to novel finer information decompositions that capture different
finer information.

• We show that while the proposed measures do not satisfy the identity property (IP) [13],
they do satisfy the independent identity property (IIP) [20].

• We formulate the optimization problems that yield the proposed measures, and derive
bounds by relating them to existing measures.

Finally, we believe that this paper opens several avenues for future research; thus, we
point to several directions that could be pursued in upcoming work:

• Investigating conditions to verify whether two channels K(1) and K(2) satisfy K(1) �ds

K(2).
• Kolchinsky [21] showed that when computing Id

∩(Y1, . . . , Yn), it is sufficient to consider
variables Q with a support size of at most ∑i |SYi | − n + 1, which is a consequence
of the admissible region of Id

∩(Y1, . . . , Yn) being a polytope. The same is not the case
with the less noisy or the more capable measures; hence, it is not clear whether it is
sufficient to consider Q with the same support size, which could represent a direction
for future research.

• Studying the conditions under which different intersection information measures are
continuous.

• Implementing the introduced measures by addressing their corresponding optimiza-
tion problems.

• Considering the usual PID framework, except that instead of decomposing I(T; Y) =
H(Y)− H(Y|T), where H denotes the Shannon entropy, other mutual informations
induced by different entropy measures could be considered, such as the guessing
entropy [41] or the Tsallis entropy [42] (see the work of Américo et al. [23] for other
core-concave entropies that may be decomposed under the introduced preorders, as
these entropies are consistent with the introduced orders).

• Another line for future work might be to define measures of union information using
the introduced preorders, as suggested by Kolchinsky [21], and to study their properties.

• As a more long-term research direction, it would be interesting to study how the
approach taken in this paper can be extended to quantum information; the fact that
partial quantum information can be negative might open up new possibilities or create
novel difficulties [43].
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