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Abstract: Saving and investment behaviour is crucial for all individuals to guarantee their welfare
during work-life and retirement. We introduce a deep reinforcement learning model in which agents
learn optimal portfolio allocation and saving strategies suitable for their heterogeneous profiles.
The environment is calibrated with occupation- and age-dependent income dynamics. The research
focuses on heterogeneous income trajectories dependent on agents’ profiles and incorporates the
parameterisation of agents’ behaviours. The model provides a new flexible methodology to estimate
lifetime consumption and investment choices for individuals with heterogeneous profiles.
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1. Introduction

Retirement financing has been experiencing a clear transition trend from defined
benefit (DB) schemes to defined contribution (DC) schemes, as reported by [1]. DB schemes
require scheme sponsors as ultimate guarantors which can bail out funds in case of deficit.
Employers prefer DC schemes because the risk and responsibility of managing funds,
longevity risk, and market risks are transferred to contributors in DC schemes. Furthermore,
the contribution rates in DC schemes in the UK are on average significantly less, 5.1%,
in comparison to DB average contributions of 28.5% [2]. The effects of economic shocks
during the accumulation phase are critical; some people were raiding retirement accounts
during COVID-19. Under-pensioned groups [3] faced significant wage shocks, and this
also affected their future cumulative wealth and earnings. Exceptional government policies
were critical to alleviate the effects of COVID-19 on pension savings and wages, but a
significant shock with effects to the labour market could not be avoided. It has become
apparent how different professions can be affected differently by economic shocks, bringing
attention to the role of profile heterogeneity also in the context of pension management. For
instance, the rise of the gig economy [4] and irregular workforce participation modes enable
more flexible work-life conditions but introduce larger variations to income trajectories due
to the lack of guaranteed income streams.

Previous research has addressed the income distribution and its relationship with
age [5], which can be used to quantify the effects of demographic shifts and aging popula-
tion on income. The increasing heterogeneity of career paths and income trajectories require
addressing the questions of how much to save in a more consistent way as well as how
to allocate the savings between spendable liquid investments and non-liquid retirement
investments. The foundations of the theories presented in following section are based on
the life-cycle hypothesis of saving by [6], which states that individuals aim to maintain a
consistent level of consumption throughout their lifetime. In the literature, the life-cycle
models of income, consumption, and portfolio allocation have been analysed from various
perspectives. Samuelson approached lifetime portfolio selection [7] in the context of dy-
namic stochastic programming in discrete time and solved the multi-period generalisation
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corresponding to lifetime planning of consumption and investment decisions. Merton
formulated the continuous-time version [8] of the same approach for portfolio selection
under uncertainty. Later, he extended these results [9] to more general utility functions,
price behaviour assumptions, and for income generated also from non-capital gains sources.
A comprehensive study [10] proposes a life-cycle model of consumption and portfolio
choice as a temporal portfolio optimisation problem where labour income is assumed to be
a risk-free asset, and where the portfolio choice is calibrated with real-world data. Ref. [10]
presents a model where risky income is invested in either risky asset or riskless asset; both
are liquid and can be used for consumption, and they model the income process explicitly
and analytically. They solve the optimal portfolio allocation problem at a given age by
numerical solution of their model with backward induction. A following study by [11]
presents a model which includes an explicit formulation of the income process; it differs
from previous research by introducing liquidity friction to risky assets by charging an
excess cost if consumption is financed through the risky asset. The model must be solved
numerically, and the solution is described by authors as slow and difficult due to three
continuous state variables, two continuous control variables, and a fixed transaction cost
breaking the concavity of the objective function. The Campanale model assumes that a
person has the freedom to switch between liquid and non-liquid asset types, which is not
the case with locked pension savings. Campanale et al. use dynamic programming to
optimise the [12] preference utility of a household, given specific labour income process
consisting of the deterministic G(t) of a third-order polynomial and idiosyncratic shock.
In the Campanale et al. model, the most important calibration challenge is the transaction
cost, which also includes psychological and non-monetary costs.

Further studies focus on liquid and non-liquid retirement savings accounts where
liquidity is constrained by introducing cost to liquidate retirement savings [11,13]. Previous
research fails to address the heterogeneity of contributor profiles and falls short of address-
ing the idiosyncratic challenges of avoiding consumption crisis during unemployment
periods and saving an adequate pension pot for retirement.

Advances in agent-based modelling of complex financial systems, increased compu-
tational power, and advances in techniques for optimising agent behaviour in complex
environments motivated our investigation. In particular, a deep learning approach for ad-
dressing an economic optimisation problem is introduced in the model called AI Economist
by [14]. It uses AI-assisted deep reinforcement learning and implements an agent-based
model to address the needs of socioeconomic challenges introduced by designing and
testing economic policies, where modules called social planners are trained to discover
tax policies in dynamic economies that can effectively trade off economic equality and
productivity. A two-level deep reinforcement learning approach is applied to learn dynamic
tax policies, based on economic simulations in which both agents and a government learn
and adapt.

In this paper, we introduce a simple model of contributor agents who decide how
much to save and how to allocate the savings, this decision is affected by state variables,
specific behavioural parameters and by the information flow in the peer network. Agents
decide and optimise their allocation strategy using a deep neural network trained with re-
inforcement learning. We introduce a simple simulation environment for the agents, which
encapsulates employment and income dynamics. Our research bridges a gap between
agent-based modelling of the pension system and deep reinforcement learning for finance.

We provide results from agents trained with a state of the art learning methodology and
implementing agent-specific optimal behaviour with high granularity for heterogeneous
profiles. The model is dynamic, scalable, and can be calibrated to different scenarios.
The results show that the balance between near-term consumption safety and retirement
savings can be achieved by profile-specific allocation strategies.

RL algorithms are able to learn from data and adapt to changing conditions that can
not be expressed with simple mathematical formulations, which means they can be more
flexible and responsive to changes and non-linear dynamics. Our model is suitable for
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tailoring to specific pension fund management goals and constraints. Our model contributes
to development of personalised portfolios, which can factor in profile heterogeneity of
age, profession, risk tolerance, and financial goals. The model can be trained to mitigate
potential risks such as market volatility, labour risk, and changes to geopolitical conditions
as well as sustainability goals. The RL algorithm can be trained to identify and mitigate
potential risks that are specific to certain groups of pensioners. All of these can be achieved
by incorporating relevant property into simulation dynamics and training the same model
with the new simulator. Such a model is also adaptive to changes in the market conditions
and can be used for dynamic asset allocation strategies.

The recurrent nature of our deep neural network model makes it possible not only to
provide good saving and pension investment decisions at any time given the profile and
current data of the agent but also makes it possible to capture historical income trajectory via
the recurrent embedding, which is a great difference with available models [8,11,15], where
the decisions are made by processing current income but not the trajectory. Our recurrent-
neural-network-powered policy model can also learn the dynamics of heterogeneous
income trajectories, which is great progress towards more capable decision making of
retirement finances.

Our framework is suitable for incorporating extensive behavioural modelling and
parameterisation of the agents. It captures the effect of information transmission [16],
emphasises consumption sensitivity against negative shocks, as well as covering utility
perception [17].

In addition, our model makes it possible for contributors to account for occupation-
specific dynamics of life-time income trajectories, which in turn makes it possible to prepare
against profile-specific income shocks by allocating savings to cash buffer at the right time
frames of their lives.

Our research represents a significant first step to model pension finances in an agent-
based model with deep reinforcement learning which permits modelling configurations
with increased complexity and realism, in our paper we presented a simple two asset
version with simple environment dynamics.

In the following sections, in order to evaluate the performance of the proposed deep
reinforcement learning model, we conducted a series of simulations using synthetic data.
The simulations were designed to mimic the income trajectories of different occupation
groups and to test the ability of the model to determine optimal saving and investment
strategies for these scenarios.

We first generated synthetic data for a range of occupation groups, including low-
income, medium-income, and high-income groups. The income trajectories for each group
were generated using age-dependent income dynamics, with different growth rates and
volatility levels for each group. We also included random shocks to the income streams,
such as sudden decreases or increases in income due to economic events or changes in
employment status.

Next, we used the proposed deep reinforcement learning model to train agents be-
longing to different occupation groups. The agents were trained with the objective of
maximizing long-term wealth while taking into account the age-dependent income dynam-
ics and the income shocks. We incorporated behavioural parameters for each agent, such as
risk aversion, shock sensitivity, and individuality factors in order to make the model more
realistic and to capture the different decision-making styles of individuals. This is the first
time this has been performed for a pension ecosystem.

Once the agents were trained, we ran a series of simulations to evaluate their perfor-
mance. In each simulation, the agents were given an initial wealth level and were required
to make decisions about how much to save and invest in each time period based on their
current income and the expected future income. We measured the performance of each
agent by tracking their cumulative wealth over time and comparing it to the optimal wealth
that could be achieved given the same income streams as well as their ability to sustain
themselves during unemployment periods.
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Overall, our simulations showed that the proposed deep reinforcement learning model
was able to accurately capture the profession and age-dependent income dynamics and that
it was able to learn optimal saving and investment strategies for the different occupation
groups for the first time. The agents were able to maximise their long-term wealth while
taking into account the income volatility, liquidity, and the trade-off between immediate
consumption and future savings. These results demonstrate the power of the proposed
model for tackling the challenges of personalised retirement planning.

Our model is able to account for the unique income profiles and decision-making
styles of each individual, rather than focusing on average or typical income trajectories.
This is an important improvement over many previous models by Merton, Campanale, and
Cocco, which have often focused on average income trajectories, rather than accounting for
the diversity and complexity of individual income profiles.

In terms of empirical results, the proposed model has been extensively tested and
validated using simulations calibrated with synthetic data generated from a range of
different occupation groups and age ranges. The simulations demonstrated that the model
was able to capture the effects of occupation and age on income dynamics, and that it was
able to learn optimal saving and investment strategies for the different occupation groups.
The agents were able to maximise their long-term wealth while taking into account the
potential for income volatility, liquidity, and the trade-off between immediate consumption
and future savings towards retirement. These results provide strong evidence that our
model is able to provide accurate and effective recommendations for individual saving and
investment decisions for retirement finances.

2. Model

We introduce a simple model where the agents interact with the simulation environ-
ment and optimise their savings behaviour. Dynamics of asset prices are features of the
simulation environment, and various dynamics can be used, which provides flexibility.
For our simulations, we proceed with simple assumptions of constant return rates for each
asset class. Endowment dynamics are not hard-coded into the system, and the investment
behaviour of our agents at each time step, Figure 1, which is governed by a deep recur-
rent neural network, determines the agent specific endowment dynamics. These neural
networks are trained by reward outcomes from interactions of agents with the environment.

Figure 1. Agent and Environment.

During each cycle, agents observe the environment in which they are situated; they
choose to allocate their income between consumption and liquid and non-liquid assets.

Each agent has a heterogeneous profile reflecting the occupation and demographic
characteristics; these characteristics are determinants of the unique income and consump-
tion trajectories of each agent. Agents also have characteristic behavioural parameters
such as shock sensitivity, consumption utility, and peer-influence factors, which effect the
way agents perceive the world and assign value to their stances. In particular, agents are
bootstrapped in a social graph which is used for the transmission of information such as
employment status.
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Each month, agents receive their income according to their employment. Simulated
employment and market dynamics, such as asset return rates, are exogenous and provided
by the modeller according to empirical observations. The employment dynamics are
dependent on heterogeneous profiles (occupation and demography) and include the new
employment of unemployed agents.

The agent first decides how much to save and how much to consume, and secondly,
the agent allocates the saved amount among a liquid asset and non-liquid asset towards
pension savings, each with different return rates. In order to make this financial decision,
the agent’s profile, income, behavioural parameters, and peer information observed from
their own social network are given as an input to a deep policy network.

Deep reinforcement learning and parallel simulation of nearly 30,000 agents in 100 M
timesteps are used for training the deep policy network. The policy network learns an
optimal saving and investment strategy for pension savings, avoiding a consumption crisis
due to insufficient liquid savings during unemployment.

2.1. Optimisation Problem

In the literature, the optimal consumption and investment problem has been expressed
as a Bellman value function of consumption and assets optimised by dynamic program-
ming [11]. Each agent receives an income governed by the simulation’s state transition
dynamics, T , and makes a consumption and investment decision according a policy π that
results in a perceived reward for the agent that can be formulated as

ri,t = u(ci,t, η) + ∆x− ψχ(ci,t − xliquid
i,t )− ζχ(m− ci,t)(m− ci,t) (1)

u(ci,t, η) denotes the the utility from consumption and ∆x denotes the change of wealth at
current time step t, with respect to t− 1. A penalty of ψ for not being able to finance current
consumption ci,t with liquid savings xliquid

i,t is applied by unit step function χ, which can
also be related with the concept of borrowing constraint in the finance literature; in our
case such a constraint would be applied as a Lagrangian relaxation.

The agent is penalised by ζ for not being able to consume the minimum consumption
amount m; the penalty is proportional to consumption deficit, where constant relative risk
aversion function(CRRA) defines the utility from consumption [18] with η as degree of
non-linearity:

u(ci,t, η) = crra(l, η) =

{
l1−η−1

1−η η ≥ 0, η 6= 1

ln(l) η = 1
(2)

Reinforcement learning is reliant on feedback from the environment, and strict rules
need to be communicated mostly via the reward signal, which makes penalisation nec-
essary in some cases. If the agent is unemployed or allocated insufficient funds to fulfil
minimum consumption required by the modeller, then the liquid funds are used to finance
consumption. If the funds are insufficient, a consumption crisis occurs, which impacts
rewards negatively with a consumption crisis penalty. If the agent consumes a lesser
percentage then it is required to finance at least minimum consumption amount, then there
is an invalid action penalty.

We can further augment the rewards with agent specific parameters to augment the
effects of negative changes. The negative utility difference is augmented with an agent’s
shock perception modifier in order to amplify the negative shocks according to the agent’s
behavioural parameter κ.

f (∆, κ) =

{
1 if ∆ ≥ 0
eκ if ∆ < 0

(3)
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which can be used as a function of the reward excluding penalties. The updated reward
can be defined as

rshaped1
i,t = f (u(ci,t, η) + ∆x, κ)− ψχ(ci,t − xliquid

i,t )− ζχ(m− ci,t)(m− ci,t) (4)

We can shape the reward to incorporate additional relaxed constraints to improve
training stability of the neural networks, and one such modification can be applied to
the penalty of the consumption decision leading to consumption insufficiency; we should
penalise the agent only if the current income is exceeding the minimum consumption
amount, which means we do not penalise the policy network π for something that it is not
in control of because the simulation T is in control of the income. The updated formula
can be defined as

rshaped2
i,t = u(ci,t, η) + ∆x− ψχ(ci,t − xliquid

i,t )− ζχ(m− ci,t)(m− ci,t)(Ei,t −m) (5)

Agents try to maximise the discounted rewards that they receive during the simulation:

max
θ

Eai∼πθ ,s′∼T

[
T

∑
t=0

γtri,t

]
(6)

The goal is to maximise the expectation of the γ discounted reward ri,t over the
entire epoch of T periods, which denotes the entire epoch of T months. These rewards
are determined according to the income that they obtain, which is determined by the
simulation T and their decisions ai,t following the policy π . The state of the environment
is updated according to T (st+1|st, at). Agents maximise their γ discounted expected return
for time periods 0 to T, which denotes each month, depending on the agent state si,t and the
policy parameter θi.

ai ∼ πθ : π(ai,t|si,t, θ) (7)

Our policy function π is a deep neural network with weight parameters θ, which
obtains the agent specific state si,t as input.

We are looking to find an optimal parameter θ∗ for our policy function π that max-
imises the expected return of discounted rewards.

θ∗ = argmax
θ

Eai∼πθ ,s′∼T

[
T

∑
t=0

γtri,t

]
(8)

We calibrated the simulation with census data and trained a deep recurrent neural
network for policy estimation.

2.2. Training the Model with RL

Rewards from the environment are used to make the probabilities outputted by the
π(ai,t |θ) policy function more accurately, and we accomplish this by back-propagating the
gradients of the objective function to optimise the θ parameters. Reinforcement learning
uses feedback from environment to optimise the weights of the model towards more
accurate estimation; it is achieved by defining an objective function to maximise or a
loss function to minimise. In this paper, we use a policy optimisation technique. In our
case, there are two networks; one is a policy network, and the other is a value network.
The value network is used during training of the policy network, and such an architecture
is called actor critic models [19]. The policy network is responsible for selecting actions by
generating action probabilities, and the value network is used during training to evaluate
the goodness of each selected action.

The agents select an action ai,t according to the policy π(ai,t|si,t, θ) at a given state st;
these actions are saving and portfolio allocation decisions, and these decisions can result
changes in the agents wealth and current consumption. The environment calculates a
reward ri,t according to chosen reward functions described in Section 2.1. The rewards
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ri,t at the end of each time-step are used to calculate the estimated advantages Ât during
an entire epoch; these advantages are used to optimise the policy network and the value
network Vθ . The model is trained with the proximal policy optimisation method during the
value function, and it is clipped and advantages are normalised, and a standard stable
baselines implementation of the [20] PPO2 algorithm is used, which is based on OpenAI
PPO2 Algorithm [21]:

LCLIP(θ) = Êt
[
min(pt(θ)Ât, clip(pt(θ), 1− ε, 1 + ε)Ât

]
(9)

where the θ is the policy parameter, Êt denotes the empirical expectation, ε is a hyperpa-
rameter of the clipped surrogate objective of the actor, and pt is the probability ratio under
the new and old actor policies:

pt(θ) =
πθ(at|st)

πθold(at|st)
(10)

Advantage estimations Ât are calculated with truncated version of generalised ad-
vantage estimation (GAE) [22] for T timesteps, where V(st) is value function of the critic,
and rt denotes reward at time-step t, and γ denotes the discount factor:

Ât = δt + (γλ)δt+1 + ... + (γλ)T−t+1δT−1 (11)

δt = rt + γVθt(st+1)−Vθt(st) (12)

where for bootstrapping
Vθt(st=0) = 0 (13)

Value function of the critic is clipped with same ε hyperparameter of the actor to con-
stitute loss function that is minimised [23] where Vtarget is the sum of advantage and value:

LV(θ) = max
[
(Vθt −Vtargett)

2, (clip(Vθt , Vθt−1 − ε, Vθt−1 + ε)−Vtargett)
2
]

(14)

as
Vtargett = Ât + Vθt(St) (15)

The composite objective function constitutes the actors clipped surrogate objective
function, the clipped squared error loss of the critic’s value function, and S an entropy
bonus as described in [21]:

LCLIP+V+S(θ) = Êt

[
LCLIP

t (θ)− c1LV
t (θ) + c2S[πθ ](st)

]
(16)

where entropy [24] is defined over action probabilities for n actions given a state as

S[π](s) = −
n

∑
i=1

π(ai)logeπ(ai|s) (17)

Each epoch is simulated, and the advantage estimations are calculated the model is
trained with the composite objective function and stochastic gradient updates with Adam
optimiser [25].

2.3. Agent and Environment Cycle

In order for the simulation to be integrated with existing frameworks, the AEC (agent
environment cycle) [26] is followed to also provide a standardised GYM-Like API. The
simulations are vectorised and run in parallel. For the purpose of this research, the sim-
ulations are conducted in parallel utilising 32 processors, where each processor runs a
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cohort of more than a thousand agents. For each time step, all of the agents observe and
act simultaneously.

Agents observe the environment; these observations include information regarding
the market, graph, and agent’s own state, including occupation, age, income, and wealth.

The agent action ai,t is shaped by policy πi during learning of the reward ri,t for the
agent and is the sum of total discounted utility and penalty for consumption crisis, which
denotes the situation where the agent cannot finance its consumption ci,t governed by
consumption dynamic C.

The actions are percentage choices between consumption and savings and investment
choices between pension orientated non-liquid funds and liquid funds that can be used at
any time to finance consumption; these funds have a vital function especially during the
times of unemployment.

Agent behaviour is shaped by influences from peers, individuality factors, consump-
tion utility, and shock response characteristics.

The agent policies are modelled with a deep neural network, which takes as input
agent-specific observations and a hidden-state:

ai,t ∼ πθ : π(ai,t|si,t = (onetwork
i,t , oagent

i,t , omarket
i,t ), hi,t, θ) (18)

The parameter variable θ is not agent specific but common for all contributor agents,
and the hidden state is updated during action inference of policy network, where the state
si,t constitutes observations of the agent:

• onetwork
i,t : Observation of the network.

• oagent
i,t : Observation of own behavioural factors, income, and resources.

• omarket
i,t : Observation of the market.

• hi,t: Hidden state. The updating of hidden state can be interpreted as agents updating
their risk profile given observations and previous state, and in the future, the hidden-
state can be used as risk profile embedding.

The action space is as follows:

• asave
i,t : Decides to save x% (and consuming (100− x)%).

• aliquid
i,t : Decide to allocate y% to liquid asset x% (and allocating the non-liquid asset
(100− x)%).

• Saving and liquidity percentages are discretised into bins such as [0, 0.25, 0.5, 0.75, 1]
in the model.

The full list of variables can be found in the Appendix A.

2.4. Deep Policy Network for Optimal Saving, Investment, and Liquidity

Agent observations are expressed as a single vector that comprises the concatenation of
agent, market, and graph vectors. The observation vector is passed through the deep neural
network towards the LSTM [27], which updates the agent’s hidden state and outputs
a vector for next layer, which is softmaxed to output a vector representing the action
probabilities. A single policy network is trained for all the actions, and the action can be as
follows: “(’C25’, ’L75’)”, where “C25” means consume 25% and save 75%; “L75” means
allocate 75% of your savings to liquid assets and 25% of your saving to non-liquid assets.

The hidden states from the model can be thought of as risk profile embedding, which
is updated by observations and processing the agent profile with the observed environment
and shocks via a deep neural architecture that can be found on Figure 2. Reinforcement
Learning is used for adjusting the allocation profile according to the risk profile embedding
also expressed as a hidden state. At each time step, the agent decides to allocate the income
among consumption, savings, and investment classes. This is accomplished by a deep
neural network constituted of several layers of a feedforward neural network and an LSTM,
which is responsible for acting as the memory of the agents.
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Figure 2. Policy Model.

The details of the neural architecture can be found in the Appendix B.
There is a single action space unifying the choices of consumption and liquidity

preference, which means that there are not two different networks for different decisions
but one unified network which represents the collection of actions such as “(’C25’, ’L75’)”.
Setting the reward function for the agents is arguably the trickiest part of the training
process; different reward function structures can give spurious and unintended conclusions,
which makes the hyper-parameter tuning for the penalties paramount. Failing to tune the
penalties results in unintended shortcuts that obstruct the main goal of optimising agent
behaviour in an understandable and meaningful way.

After retirement, agents do not act according to their policy networks but according to
the desired retirement pension target such as 80% of labour income being pension income
or receiving a constant pension amount. These time-steps are still used for advantage
estimation calculation that spans all of the epoch and for training the hidden-state evolution
weights of the LSTM, which means after training, although we do not use the policy output
of the LSTM, we do train the hidden state update weights.

2.5. Behavioural Parameters of Agents

For modelling behaviour, we base our parameterisation on the approach in [28], where
the authors investigated the applicability of the theoretical domains framework outside
clinical uses for cross-disciplinary implementation and other research on behaviour change
and provided a simplified version containing 14 domains and 84 component constructs. The
theoretical domains framework includes many factors and reports on pension behaviour
tend to focus on few factors; for the scope of our research, we chose three factors:

• Consumption Utility: How do they value current consumption? An agent-specific
consumption utility multiplier factor

• Shock Response Characteristics: How do they respond to the shock? A factor reflecting
how sharp do agents react to the shock and how drastic are they decreasing their
consumption.

• Individuality Factors: How are they being affected by each others beliefs and decisions.

In our simulations, each agent has constant risk-aversion parameter ηi that is randomly
assigned at the beginning, but our model allows the risk-aversion to vary during simulation
and being fed as input to decision module. Variations of the risk-aversion parameter
could be used to capture external effects to risk aversion, which are not captured by
simulation captured profile properties such as age, profession, wealth, etc. Some agents are
optimistic and underestimate the severity of the shocks, and some agents are pessimists
and overestimate the effect of the shocks. The shock sensitivity factor κi,t is a multiplier
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of the perceived shock effect, which is normalised for agents of the same occupation. It
can be assigned from a normal distribution, can be controlled for experimentation, or fed
from empirical report. The agents are affected by the peers and the shocks experienced (if
zi,t−1 = 0). The observations are informative for the closer agents on the graph and becomes
less informative for other agents with weaker connection on the graph. The shocks that
affect agents are also weighted with the shock-sensitivity parameter. In our simulations
peer effects are limited to observation of a shock propagating through peer network, which
provides a signal to adjust their own behaviour well before the shock potentially effects
the agent; in the presented simulations, only the peer effects of income groups of low, mid,
and high are captured. In this paper, the shocks are not in focus, so the graph structure
is simplistic and changes in the income are only governed by age and profession. In
more complex simulations, we can use the peer observation to adjust the agent’s own
behaviour well before a shock, such as disease, automation, or supply chain shocks (whose
propagation can be represented on a graph) potentially reaches the agent. The behaviour
parameters that are introduced in this section are kept fixed during the entire simulation.

3. The Environment

At each time step, the environment operations are executed first. Agent environment
operations are executed as follows: first, the market dynamics is executed, which ensures
that assets are gaining value according to the calculated interest rates determined by the
modeller. Secondly, essential population dynamics are executed such as ageing of agents,
and agents are removed from the system according to the age-specific death probability.
The retirement process checks if any new agents are required to retire due to age. If an agent
retires, their retirement pension is calculated as a rate of their previous consumption during
employment according to the recommended guidelines of the OECD, which refers to ideal
pension income being 80% of labour income, which is used as initial pension income.
An alternative that is investigated is having a constant pension income such as minimum
consumption amount. If an agent is retired, then the agent collects pension from a non-
liquid pension fund that they contributed to during employment life. The agents that are
not retired are processed to determine stochastically if they will lose their employment and,
if so, for how long they will stay unemployed according to the unemployment duration
distribution dependent on the occupation and age. Unemployed agents are assigned new
incomes at their new jobs according to the income distribution depending on occupation
and age. These distributions are fed as quantiled distribution tables to simulation. The
employed agents receive their salary each month according to their predetermined income.

The agents decide how to allocate their income between consuming and saving and de-
cide to allocate the saved amount in liquid and riskless assets or non-liquid and low-risk
assets. The decision is shaped by learnt policy, observations which include the market
dynamics, information regarding actions, and information from peers, and considering
the agent’s own profile. We aim to demonstrate the capability of the model to capture
long-horizon decisions such as investing in illiquid pension funds. Our model is flexible to
broaden the asset classes to include risky but high-return assets such as stocks, but for our
demonstration, we wanted to focus on the decision of individuals to allocate the income
to pension savings that is unreachable by individuals until retirement but known to have
robust returns due to professional and diversified management. The other asset that is
captured is liquidity, where it is known to have only minor return but is necessary to
finance immediate needs such as periods of unemployment. The focus in not optimal asset
allocation of a fund among assets but the investment decision of a person into pension
funds or liquidity.

For simulations we made a narrow assumption based on a very small return rate to
liquid assets and a small but larger return rate to non-liquid assets which can be assumed as
pension fund investments. The model allows agents to be trained for different asset return
rates, but the focus is on profile heterogeneity and not asset return rates, so the training
assumed asset return rates fixed with the parameters are reflected on the model card.
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3.1. The Graph and Synthetic Population

A synthetic representative population is used for the initialising agent population,
and information such as age, income, profession, education level, and other relevant
background information are included.

We assume the employee network consists of three communities divided by income
level as low, medium, high, and the three communities have significant intracommunity
interaction but limited intercommunity interaction. The graph choice is based on the
idea that geographical and social networks are also characterised by the socioeconomic
clusters, and the choice of three communities with income levels is the simplification of the
socioeconomic network. The synthetic database is generated according to the basic insights
from the surveys. Later investigation could incorporate survey data to bootstrap the
population and investigate geographical graph, potential social network data, and known
network structures to model connections between agents.

Observation of graphs can be done in several ways; a simplistic way is modelling
information transmission between each agent and its vicinity, i.e., the first and second
neighbours, including transmission of employment information. A more advanced graph
observation might be modelled as transmission of not just employment information but also
incorporating additional information such as occupation and the income or consumption
data; moreover, the near-neighbour graph can be represented with state-of-the-art graph
embedding methodology. Aa,b is 1 if there is an edge a-> b and 0 if there is no edge between
two agents of indices a and b, and δ(x, y) is the Kronecker delta Ei,t, which denotes the
current earnings, ι individuality factor. We can formulate a simple information transmission
from the immediate vicinity of neighbours and their neighbours as

onetwork
a,t = ∑

b

[
∑

c
Ab,cδ(Ec,t, 0)

]
+ ∑

b
Aa,bδ(Eb,t, 0) (19)

Observations from network are augmented with the agent specific individuality factor,
simplest case is using the individuality factor as a multiplier to the observation:

onetwork_perceived
a,t = onetwork

a,t ∗ ιa (20)

For the purpose of experimentation and investigation of the model, a synthetic but
representative population can provide both fidelity and flexibility in a controlled environ-
ment. As a design choice for the synthetic population network, we include three clusters,
which can be thought of as three neighbourhoods; these neighbourhoods possess nodes
with three different income groups: high, medium, and low income. Each node is con-
nected to its own neighbourhood node, and the neighbourhoods are connected to each
other with specified weights. Agents are bootstrapped with one of the general occupation
groups, occupation-specific incomes, employment status, and ages derived from US Census
Data [29]. Census data are used to generate the synthetic agent population.

3.2. Simulation Processes

The simulation is initialised by bootstrapping the agent population and processes.
During each time step, the simulation dynamics such as obtaining income and getting
employed if unemployed are applied first, and then the agent decides to allocate income
for the consumption or saving and decides to save by investing in liquid assets, which
can be liquidised easily during unemployment, or non-liquid assets, which are towards a
future retirement but usually have better return. Agents are bound by constraints such as
the need to consume a minimum amount determined in light of government statistics [30]
that determine a minimum consumption per individual.

The occupation-specific income for new employment is determined according to the
summary tables from US Census Data. The tables reflect the quantile breakdown, and the
agents are probabilistically assigned to one of the income quantiles.
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The unemployment events and employment processes are explicitly modelled and
calibrated with the US Census Data [29]. The probability of unemployment and the duration
of unemployment are determined according to the summary tables of the US Census.

Retirement age and retirement income can be accounted for in the system. For the sake
of simplicity, initial simulations neglect the retirement period, by only focusing contribution
period, but the system is later extended to cover the retirement period. Retirement income
is defined as a fraction of the last income; fractional retirement income is recommended by
international institutions, and this methodology is often also used in the literature [10].

The agent death probabilities are modelled using the Actuarial Life Table [31] in order
to make the model comparable with existing models in the literature.

3.3. Scaling

The agent observations are continuously scaled and standardised, with an online
methodology. This is due to the fact that the training dataset is generated continuously dur-
ing simulation and the distribution of the observed dataset is not known in advance at the
start of the simulation, but it can be learnt to an extent after several epochs, and these learnt
scales can be utilised in the following training and inference as well. The relevant agent vari-
ables(“OCC_CODE”, “income”, “consumption_utility_factor”, “shock_sensitivity_factor”,
“individuality_factor”, “non_liquid_asset”, and “liquid_asset”) are transformed to a vector
by concatenating categorical hot vectors with the values of the continuous variables; here,
the standardisation of these categorical variables is challenging due to the variability of
quantities such as accumulated liquid assets. Huge differences in value may introduce
instability during the training of the machine learning models. The market state captures
important variables such as interest rates given to different asset classes as a dictionary,
and the market dictionary is transformed to a vector as well.

4. Results

In this study, we adopted a robust approach to gauge the quality of the model fit within
the RL paradigm. During training, the accumulated rewards served as an intrinsic metric
to track the agent’s progress. Specifically, a steady uptick in rewards over iterations is a pos-
itive indication of the agent mastering its interactions with the environment. Post-training,
our evaluation focused on contrasting stylised facts derived from the simulated data with
empirical evidence and established literature. Stylised facts refer to characteristic patterns
and properties that align with real-world observations. Figures 3 and 4 are particularly
noteworthy, where trajectories depicting wealth, consumption, and labour income with
respect to age, as well as the non-liquid asset share concerning total asset amount and
age, show a striking resemblance to the findings of [10]. Additionally, aggregate statistics
presented in Table 1, such as occupation and age versus the share of non-liquid investments
for wealth quartiles, were compared with results from [11] with high transaction costs (TC).
These comparisons are critical in determining the model’s capability to accurately replicate
the inherent dynamics of the real-world system.

We look at longitudinal trajectory plots and strategy breakdown per total asset size,
which provide granular information regarding the differences between occupations. These
plots can capture various scenarios such as differences between early career and mid-career
saving rate strategies among various occupations, which provides more tailored strategies
for short-term consumption security and healthy long-term pension finances. Twenty-two
initially identical parallel cohorts are simulated for 1000 weeks of agent-time in order to
generate the resulting tables and plots, which results in 40 M agent time-step samples.
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Table 1. Occupation and Age vs. share of non-liquid investments for wealth quartiles. The results
from Campanale et al. with high transaction costs(TC) are used for comparison. In our model, there
are no transfers between non-liquid and liquid assets before retirement, so high transaction cost
results are relatively compatible with our model.

Occupation Quart 1. Quart 2. Quart 3. Quart 4.

Arts–Design–Entertainment–Sports–Media
20–30 0.681 0.701 0.705 0.754
30–40 0.702 0.769 0.803 0.849
40–50 0.696 0.745 0.805 0.863
50–60 0.721 0.771 0.828 0.871
60–70 0.539 0.752 0.833 0.863

Business and Financial Operations
20–30 0.626 0.648 0.615 0.632
30–40 0.653 0.671 0.712 0.774
40–50 0.659 0.700 0.793 0.848
50–60 0.658 0.692 0.775 0.848
60–70 0.547 0.695 0.759 0.841

Farming–Fishing–Forestry
20–30 0.774 0.810 0.856 0.901
30–40 0.772 0.893 0.946 0.965
40–50 0.758 0.854 0.938 0.965
50–60 0.751 0.843 0.922 0.963
60–70 0.547 0.799 0.907 0.959

Healthcare Practitioners and Technical
20–30 0.644 0.655 0.653 0.680
30–40 0.674 0.674 0.714 0.793
40–50 0.674 0.716 0.774 0.832
50–60 0.692 0.738 0.793 0.851
60–70 0.663 0.746 0.797 0.857

Legal
20–30 0.644 0.614 0.607 0.632
30–40 0.659 0.649 0.717 0.802
40–50 0.664 0.709 0.760 0.827
50–60 0.670 0.675 0.730 0.828
60–70 0.630 0.699 0.791 0.859

Production
20–30 0.667 0.704 0.751 0.826
30–40 0.682 0.770 0.843 0.900
40–50 0.694 0.779 0.849 0.909
50–60 0.684 0.771 0.858 0.912
60–70 0.589 0.757 0.839 0.904

All Occupations
20–30 0.680 0.723 0.743 0.735
30–40 0.707 0.769 0.806 0.830
40–50 0.708 0.774 0.819 0.847
50–60 0.703 0.774 0.817 0.856
60–70 0.610 0.755 0.815 0.860
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Table 1. Cont.

Occupation Quart 1. Quart 2. Quart 3. Quart 4.

Campanale et al. TC high
20–30 0.077 0.471 0.467 0.577
30–40 0.575 0.591 0.547 0.739
40–50 0.539 0.621 0.757 0.704
50–60 0.70 0.765 0.791 0.698
60–70 0.735 0.767 0.751 0.706
70–80 0.562 0.701 0.756 0.667

(a) Initial Retirement Income according to OECD as 80% of Labour Income

(b) Retirement income as constant minimum consumption

Figure 3. Wealth, consumption and labour income vs. age plot.

4.1. Labour, Income, Consumption, and Wealth

Figure 3 reflects a similar shape of average simulated income, consumption, and wealth
accumulation and decrease over the life cycle compared to [10]. The simulated income
trajectory is a reflection of the observed data, which is used for calibration of the environ-
ment, and the shape of decrease by retirement age is due to the retirement income being
defined as a fraction of last income, which then gradually decreases. The consumption
trajectory during the work-life reflects saving choices of the population. The agent saves
during work-life for financing potential unemployment periods and for retirement finances.
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The pension income and consumption at retirement age of 65 converges to the determined
retirement income percentage of 80% of latest salary. The data becomes noisy for older ages
of 80, which might be due to significantly smaller sample size.

(a) Total Asset Amount

(b) Age
Figure 4. Non-liquid asset share vs. total asset amount and age.

The rewards of agents during the simulation can be decomposed to two periods;
the first period is the labour participation part, where agent works and gets an income
according to income dynamics. In this period, the policy inference module πθ will make
decisions of consumption and portfolio allocation and obtain a reward as a result of the
current and previous actions; these rewards are used for determining the advantages for
training the model. The second period is the retirement period, where the agents make
decisions by the pre-determined conditions of the modeller, and these pre-determined
conditions can have a constant pension or a pension denoting a certain percentage of
labour income. The consumption decision is pre-determined, and there is no portfolio
allocation decision during retirement; the retirement income and retirement consumption
are in other terms hyperparameters or constraints that are given to our model, but during
the second period, agents still obtain a reward, which is used for advantage estimation and
also for training the recurrent neural network, where the embedding is still updated and
the rewards are used to train the RNN.

T

∑
t=0

γtri,t =
T_retire

∑
t=0

γtri,t +
T

∑
t=T_retire

γtri,t (21)

During retirement, the pension income is supposed to come from pension savings
that have been non-liquid during work-life, but if the pension savings are depleted, any
liquid savings can be used to finance the retirement income on Figure 5. An interesting
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outcome of mandating pension income at retirement to be 80% of employment income
is comparatively lower consumption during employment, which might not be desirable,
but our optimisers were forced into high saving rates due to the 80% mandate, which is
stipulated by the literature, and detailed information can be found in previous sections
focusing on the literature. One alternative that is investigated is the constant pension
income at retirement, where the pensioner obtains a minimum consumption amount as a
pension during retirement, which results in much smoother pension savings withdrawal
as reflected in Figure 3b. The results indicate that OECD targets are difficult to reach for a
significant part of the population.

(a) Liquid Asset

(b) Non-Liquid Asset
Figure 5. Liquid and asset amounts by occupation at age, where only a selection of occupations are
depicted on plot for clear visibility. The different characteristics of occupation groups are reflected by plots.

In Figure 3, we present two contrasting scenarios that depict the consumption patterns
of individuals before and after retirement. In Figure 3a, the model is trained with an initial
retirement consumption target set at 80% of the final income earned during employment,
following the OECD guidelines. This represents a relatively high consumption aspiration
upon retirement. The model simulates conservative consumption behaviour throughout
the working years, emphasizing saving and investing, in order to meet this substantial
retirement target. This is evident from the sharp increase in consumption at the age of
65, which is the transition point from employment to retirement. Conversely, Figure 3b
illustrates a scenario where a more lenient retirement consumption target is set. Here,
the target is a constant consumption level slightly above the minimum necessary con-
sumption amount. This lower retirement target leads the model to learn a policy wherein
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consumption during the employment years is markedly higher since a smaller budget is
required to meet the retirement consumption goal. There might be various solutions to
this problem that are out of the scope of this paper, such as easing pension level mandate,
or government contributions, or higher returns of investment. The presented results on
profile heterogeneity are based on the simulation conducted in parallel to OECD target of
labour income’s 80% as pension income.

4.2. Saving Profiles

The evolution of occupational income in a time frame of nearly 20 years in Figure 6
reflects different characteristics for each occupational group, i.e., occupations such as
“Sales and Related” and “Transportation and Material Moving” reflect significantly lower
mean incomes with lower variance characteristics. On the contrary, occupations such as
“Legal” and “Management” reflect the highest mean incomes and high variance of income
for each occupation group. This plot reflects even at the simplest level that the income
characteristics of each occupation can differ greatly. The unemployment characteristics
reflect great diversity, where occupations such as “Farming, Fishing, and Forestry” possess
greater and fluctuating risk profiles, which might be partially due to the characteristics
of seasonality in these specific occupations. No obvious dependence of saving rate or
non-liquid investment rate on age or income level can be found in the analysis, showing
the complexity of the decision making happening in the system.

(a) Mean income

(b) Unemployment
Figure 6. Mean of income and unemployment by occupation at week ts; the values are smoothed by
30-week moving average, and only a selection of occupations are depicted on plot for clear visibility.
The different characteristics of occupation groups are reflected by plots.
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The savings profiles in Figure 7 reflect heterogeneous characteristics, where at the
same total wealth, the saving rate differs greatly, which can be due to different income
levels and unemployment risks of occupations. The saving rate plot shows increasing
noise at higher wealth levels near 10M and a much clearer trajectory at lower wealth.
An interesting insight is that at the lowest wealth levels, all occupations display similar
saving rates. The minimum consumption requirement has a direct consequence of lower
saving rates by occupations with low incomes such as “Farming, Fishing, and Forestry”,
“Building and Grounds Cleaning and Maintenance”, “Personal Care and Services”, and
“Food Preparation and Serving Related”, which have very low saving rates due to their
difficulties to finance minimum consumption. Some general patterns can be identified, such
as lower income occupations tend to have lower saving rates, but it does not imply that
income itself can explain saving decisions; as we can observe, varying saving rates among
“Healthcare Practitioners”, “Legal Professionals”, and “Business and Financial Operations”.

(a) Week

(b) Total Asset Amount
Figure 7. Saving rate by occupation at week ts and saving rate by occupation at amount capped at
10M, the values are smoothed by 30-data-point moving average, and only a selection of occupations
are depicted on plot for clear visibility.

4.3. Portfolio Allocation

The results of our model are in line with the existing literature on the relationship
between the share of non-liquid assets and age distribution. As shown in Figure 4, our
model exhibits similar patterns and rates as those found in other studies.
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In particular, our model’s results are comparable to those of [11], who also differ-
entiate non-liquid and liquid assets with transaction costs for switching between them.
Furthermore, the similarity is particularly strong when the transaction costs are high.

Additionally, our model’s results on the share of non-liquid asset according to total
current wealth also reflect a similar shape of an initial increase followed by a plateau. This
concurs with the findings of [11].

The relationship between the share of non-liquid assets and age as inferred from
our model is consistent with the existing literature as well as the empirical data presented
by [11]. Furthermore, the representation of this relationship in our model is further nuanced,
as demonstrated in Figure 8, which reflects a more heterogeneous relationship with a greater
level of granularity compared to the previous literature.

The results of this study suggest that consumption and non-liquid investment deci-
sions should not be based solely on total assets at a specific point in time, as is commonly
studied in the literature. Instead, our analysis suggests that these decisions should also
take into account the unique income trajectories of individuals as determined by their
occupation and age. This highlights the importance of incorporating the heterogeneity
of individuals and their specific economic conditions into the analysis of consumption
and investment decisions. This is reflected in the findings presented in Tables A2 and A4
and the 3D plot in Figure A9 that is in the Appendix.

Our model provides a comprehensive representation of income, consumption, and wealth
dynamics, as well as portfolio allocation strategies that are suitable for a wide range of
heterogeneity and income processes. Furthermore, the level of granularity our model
provides is higher than most models in the literature, allowing for a more precise under-
standing of the investment and consumption decisions made by individuals across different
demographic groups.

In summary, the results of our model are in line with the existing literature regarding
the relationship between the share of non-liquid assets and age. However, our model goes
further by providing a more detailed representation of this relationship, which is suitable
for a wide range of heterogeneity and income processes. The granularity of our model
also allows for a more precise understanding of the investment and consumption decisions
made by individuals across different demographic groups.

A limitation of the model is the presence of a high level of noise in the portfolio
allocation 3D surface depicted in Figure 8, which may be a result of the increased complexity
of the model. The empty areas on the plot indicate that individuals with higher total wealth
tend to have a higher share of non-liquid assets in their portfolios, which is likely due to the
higher potential returns associated with these assets and the fact that wealthy individuals
have a greater amount of cash buffers as liquidity to finance their consumption during
periods of unemployment. It is worth noting that a different model that stipulates higher
minimum consumption levels for individuals with higher wealth might lead to some
changes in the plot, but the plot is consistent with empirical data and the characteristics of
the model.

Contrasting the general saving rate and the non-liquid investment rate characteristics
of occupations with respect to total assets results in interesting findings. The non-liquid
investment rate by total asset among occupations diverges less than the saving rate by
total asset, but still the characteristically differentiating investment strategies are evident
in Figure 9. We also observe a noteworthy increase in non-liquid investment rates among
production occupations and a stark decrease in farming, fishing, and forestry occupations
in relation to total wealth. We believe that these conspicuous shifts, particularly in marginal
cases, are likely influenced by outliers present in our dataset. It is conceivable that within
lower-income professions such as farming, fishing, and forestry, there exists a small fraction
of individuals who have accrued a significant wealth, standing as outliers within their
occupational groups. The model’s interpretation of these outliers can be twofold. First,
due to the scarcity of training samples representing high wealth within these occupations,
the model may extrapolate and learn policies that seem unexpected or non-intuitive,
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culminating in the steep decline depicted in Figure 9. Alternatively, the model could be
capturing genuine characteristics of these outliers, but the limitations in our dataset render
us unable to provide a conclusive explanation.

Figure 8. 3D surface plot of share of non-liquid assets in x-axis with respect to total asset wealth
in y-axis and corresponding decision of non-liquid asset investment rate in z-axis; the values are
smoothed with 9-week moving average for clearer visibility.

Saving rate by total asset generally increases for all occupations with more assets,
with exponential-like increase; then, it plateaus and slightly varies with noise. Saving rates
by highest total asset amounts fluctuate greatly, which might be due to different dynamics
governing their decisions such as capital income or behavioural parameters weighing more
themselves rather than income being the determinant of the decisions.

Our analysis reveals that the proportion of non-liquid investments in relation to total
assets is notably higher for individuals in low-income occupations, with the exception being
for those with very high levels of total assets where high-income occupations may surpass
low-income occupations in terms of non-liquid investment rate. This disparity can be
attributed to the fact that low-income individuals have a greater need for liquidity in order
to meet short-term consumption needs during periods of unemployment. This finding can
be taken into account by policy makers in formulating policies aimed at mitigating risks
faced by low-income workers, such as providing unemployment benefits or increasing
early-career pension contributions from the government.
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(a) Week

(b) Total Asset Amount
Figure 9. Non-liquid investment rate by occupation at amount capped at 10 M; the values are
smoothed by 30-data-point moving average, and only a selection of occupations are depicted on plot
for clear visibility.

Our research makes a significant advance by focusing on the distinction between risky
non-liquid savings, such as endowments to defined contribution pension funds, and riskless
liquid savings, which can be used to finance immediate consumption. This approach
departs from the previous literature in finance, which only focuses on the dichotomy
between risky or riskless assets without liquidity constraints.

The distinction between liquid and non-liquid savings offers a more nuanced un-
derstanding of consumption and saving decisions made by individuals. It also allows
for a detailed examination of how factors such as income and occupation influence these
decisions and how they might inform policy design aimed at promoting financial stability
for all individuals.

In addition, the focus on the difference between liquid and non-liquid savings offers
new insights into how investors evaluate the risk-return trade-off. It takes into account
that the risks associated with non-liquid assets may be different from those of liquid assets,
which is a crucial departure from standard portfolio optimisation.

Furthermore, this research also aligns with the principle of utility maximisation,
where individuals make choices that maximise their satisfaction or happiness. The research
highlights how individuals from different occupation groups, income level, and age differ in
their choice of investments and the proportion of liquid vs. non-liquid savings. This aligns
with the principle that individuals will make choices based on their specific circumstances.
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Additionally, in order to account for the potential negative consequences of not being
able to finance immediate consumption, our model incorporates penalties for such failures
in its analysis. These penalties help to accurately reflect the real-world consequences of not
having sufficient liquidity and are an important aspect of the model’s overall representation
of the consumption and saving decisions made by individuals. Additionally, we also
include the parameterisation of negative income shocks and their effect on the consumption
and investment behaviour. This allows us to account for the impact of unexpected events
such as job loss or economic downturns on individual financial situations and behaviours.

A comparison of our model’s results with those of Campanale et al. is presented in
Table 1 under the assumption of high transaction costs illustrates that our model generally
results in a higher proportion of non-liquid investments in total asset portfolios, with some
exceptions where Campanale et al. identify a similarly high non-liquid asset share. Further-
more, our analysis highlights the substantial variations in non-liquid asset shares in relation
to income quartile and age group, which vary significantly across occupation groups.

The use of a deep reinforcement learning model allows for a more flexible and person-
alised approach to estimating lifetime consumption and investment choices. Additionally,
the focus on heterogeneous income trajectories allows the model to better reflect the di-
versity of economic conditions experienced by individuals in different occupation groups
and at different stages of their lives. The proposed model generates consumption and
retirement saving strategies that account for heterogeneous income dynamics specific to an
individual’s occupation and age.

5. Conclusions

We modelled a pension ecosystem, where heterogeneous contributors make con-
sumption and investment decisions with Deep RL, which advances available models by
providing better granularity and accounting for profile heterogeneity.

We provide a novel methodology to optimise agent behaviour for consumption and
investment between pension savings and liquid cash buffer, which is flexible and can be
calibrated to work in various scenarios and capture agent heterogeneity. Our model does
not need an explicit formulation of the income process and can work with empirical data.

Our research represents a first example of end-to-end modelling of pension ecosystems,
and it provides a general model to optimise the behaviour for heterogeneous contributors
in a dynamic environment. We introduce a single-actor RL model of pension environ-
ment, which constitutes a significant step towards multi-actor RL modelling of the pension
ecosystem. We successfully devised optimal contributor portfolio allocation strategies
between non-liquid pension savings and liquid cash buffers as well as optimal consump-
tion decisions, which can be calibrated with the behavioural parameters of agents. We
accomplish this by minimising the consumption crisis periods of agents and maximising
the retirement savings.

One of the main limitations of previous work is that it has often relied on simplifying
assumptions, such as the assumption of a constant risk-free rate of return or the assumption
of a constant level of volatility for all individuals. Another limitation is that previous work
has often focused on average or typical income trajectories, rather than accounting for
the diversity and complexity of individual income profiles. Finally, previous work has
often relied on static optimisation techniques which do not account for the dynamic nature
of retirement planning and the potential for changes in income and investment options
over time.

One of the key benefits of our deep reinforcement learning model is its ability to
simulate different economic scenarios and evaluate the effects on individuals’ saving and
investment strategies. This can be useful for policy makers and financial advisers who
want to understand how different economic conditions, such as market fluctuations or
changes in income levels, can impact individuals’ retirement savings. By simulating these
scenarios, our model can provide insights into the potential risks and opportunities that
individuals may face, and help them make more informed decisions about how to manage
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their retirement savings. In addition, our model can be easily adapted to incorporate new
data and changes in economic conditions, making it a valuable tool for ongoing analysis
and decision making in the field of retirement finance.

The development of models adaptable to diverse policy scenarios, such as varying
retirement age regulations and incentive schemes, can require substantial computational
resources. The extension of these models to address different sets of government policies is
a topic left for future research.

Overall, our simulations showed that the deep reinforcement learning model was able
to capture the effects of occupation and age on income dynamics and that it was able to learn
optimal saving and investment strategies for the different occupation groups. The agents
were able to maximise their long-term wealth while taking into account the income volatility
and the trade-off between immediate consumption and future savings. These results
demonstrate the value of our model for providing personalised recommendations for
individual saving and investment decisions, taking into account the unique income profiles
of different occupation groups.

In conclusion, the proposed deep reinforcement learning model is a novel and effective
approach for addressing the challenges of retirement planning. By incorporating individual
behavioural parameters and using a dynamic optimisation approach, the model is able to
capture the unique income profiles and decision-making styles of individuals, providing
more personalised and realistic recommendations for saving and investment decisions.
The extensive simulations conducted using synthetic data demonstrated that the model
was able to capture the effects of occupation and age on income dynamics and to learn
optimal saving and investment strategies for different occupation groups. These results
provide strong evidence that the proposed model is able to provide accurate and effective
recommendations for individual saving and investment decisions. Overall, the proposed
model represents an important contribution to the field of retirement planning and has
the potential to provide valuable insights and guidance for individuals looking to plan for
their retirement.
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Appendix A. Model Card

Table A1. Parameters.

Simulation Parameters

Parallel Environment Count 32

Income Calibration Data USA CPS 2019 Median weekly earnings

Unemployment Duration Data USA CPS 2019 Unemployment duration table

use_min_max_scaler 1

time steps 1000

consumption_crisis_penalty 100,000

invalid_action_penalty_modifier 1000

retirement_age 65

retirement_salary_multiplier 0.8

death_rate USA SSA Actuarial Life Table

Agent States

”OCC_CODE” , “age”, “income”,
“consumption_utility_factor”,
“shock_sensitivity_factor”,“individuality_factor”,
“non_liquid_asset”, “liquid_asset”]

Market Parameters

monthly_market_interest_rate 0

CPI 0

monthly_non_liquid_asset_return_rate 0.0125

monthly_liquid_asset_return_rate 0.0025

monthly_minimum_consumption 1073 (2021 USA Poverty Guidelines)

monthly_minimum_wage 1160

ML Parameters

batch_size 14,656

c1 0.5

c2 0.01

e 1 × 10−5

γ 0.99

λ 0.95

n_lstm 128

n_steps 1
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Appendix B. Neural Architecture

Figure A1. Neural Architecture.

Appendix C. Graph Plot

Figure A2. Graph plot where occupations are reflected with colours and income is reflected with the
size of nodes. The graph consists of three sub-groups representing three neighbourhoods with three
differing income levels as high, middle, and low income, and central nodes of each group represent
the neighbourhoods.
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Appendix D. Discussion Regarding the Previous Work and Limitations of the Model

The key contributions of previous work in the field of dynamic optimisation for re-
tirement planning include the development of life-cycle models of income, consumption,
and portfolio allocation, as well as the incorporation of behavioural parameters and the
consideration of individual differences in decision-making. Previous work has also high-
lighted the importance of incorporating age-dependent income dynamics and the potential
for income shocks in order to capture the complexities of real-world income trajectories.

Overall, while previous work has made important contributions to the field of retire-
ment planning, there is still a need for more realistic and flexible models that can capture
the unique income profiles and decision-making styles of individual individuals. The pro-
posed deep reinforcement learning model addresses some of these limitations by allowing
for the incorporation of individual behavioural parameters and by providing a dynamic
optimisation approach that can adapt to changes in income and investment options over
time. The key assumptions of the proposed deep reinforcement learning model include the
assumptions that agents have access to a range of different investment options and that
they are able to switch between these options depending on their current income and the
expected future income. The model also assumes that agents have access to accurate and
up-to-date information about their current income and the expected future income as well
as information about the different investment options and their potential returns.

One of the main limitations of the proposed model is that it relies on the availability of
accurate and comprehensive data about individual income profiles and investment options.
Without access to high-quality data, the model may not be able to accurately capture the
unique income profiles and decision-making styles of individual individuals. Another
limitation of the model is that it assumes that agents are able to make rational and optimal
decisions about their saving and investment strategies, which may not always be the case
in the real world.

Appendix E. Cross-Sectional Analysis

(a) Liquid Investment Rate (b) Non-Liquid Investment Rate

Figure A3. Liquid and non-liquid investment rate by occupation at week ts.

The Figure A4 reflects the relationship between liquid investment rate and wealth
for amounts less than USD 5M, and three distinctive behaviours are observable; one is
Computer and Mathematical Occupations, which starts at the lowest liquid investment
rate, and the other group represents the majority of the occupations representing most of
low- and mid-income occupations, which start at nearly 35% but then lower their liquid
investment rates when the total wealth increases. The third group consist mostly of the
high income occupations, such as Management Occupations, which increase their liquid
investment rate with total asset increase until nearly USD 500K, and at that point they start
to decrease their liquid investment rate.
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(a) Liquid Investment Rate (b) Non-Liquid Investment Rate

Figure A4. Liquid and non-liquid investment rate by OCC at amount.

Figure A5 shows that the increase in liquid assets slows with increasing total wealth,
which reflects the fact that the need for security buffer savings decreases and the reward
of non-liquid assets is higher. On the contrary, the increase in non-liquid assets with
respect to the total wealth increase speeds up at higher amounts and converges to a stable
linear trajectory.

(a) Liquid Asset (b) Non-Liquid Asset

Figure A5. Liquid and non-liquid assets by occupation in total amount.

The distribution of assets with respect to age in Figure 5 highly differentiates according
to the occupation. For example, Management and Legal Occupations have the highest
value of assets while Farming, Fisheries, and Food Preparation Occupations have the
lowest level of assets. Asset differentiation with respect to age depends heavily on the
occupation type, some occupations show great variations for the income asset values while
other occupations provide minimal savings opportunity due to the income being merely
sufficing to finance consumption.
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(a) Liquid Asset (b) Non-Liquid Asset

Figure A6. Liquid and non-liquid assets by occupation at age.

Appendix F. Effects of Behavioural Parameters

In order to further refine the behavioural parameterisation of agents in the proposed
deep reinforcement learning model, we introduced three additional factors: consumption
utility, individuality, and shock sensitivity. These factors capture additional aspects of
individual decision-making styles and allow for even more personalised and realistic
recommendations for saving and investment decisions.

The consumption utility factor captures an individual’s preference for immediate
consumption versus future savings. This factor is similar to time preference, but it takes
into account not only the individual’s focus on the present or the future but also their
overall utility or enjoyment from consuming goods and services. Individuals with a high
consumption utility value are more focused on enjoying the present and tend to prioritise
immediate consumption over long-term savings, while individuals with a low consumption
utility value are more focused on the future and tend to prioritise long-term savings over
immediate consumption.

The individuality factor captures an individual’s willingness to deviate from the
average or typical behaviour of their peers. Individuals with a high individuality value
are more likely to make unique or unconventional decisions, while individuals with a low
individuality value are more likely to conform to the average or typical behaviour of their
peers. This factor allows the model to capture the diversity of individual decision-making
styles and to account for individuals who may be more likely to take risks or to make
unconventional investment decisions.

The shock sensitivity factor captures an individual’s sensitivity to sudden negative
changes or shocks to their income. Individuals with a high shock sensitivity value are more
likely to be affected by income shocks and may be more conservative in their investment
decisions as a result, while individuals with a low shock sensitivity value are less likely to
be affected by income shocks and may be more willing to take on risky investments. This
factor allows the model to capture the effects of income volatility on individual decision-
making and to provide more personalised recommendations for saving and investment
decisions in the face of income shocks.

Incorporating these three additional factors into the behavioural parameterisation of
agents allows the proposed deep reinforcement learning model to capture a wider range
of individual decision-making styles and to provide even more personalised and realistic
recommendations for saving and investment decisions. This allows the model to better
reflect the diversity and complexity of individual preferences and to provide more tailored
and effective recommendations for retirement planning.

These factors capture the behaviour of agents, and they impact how agents perceive,
understand, and act in their environment. The consumption utility factor is necessary for
quantifying how agents value immediate consumption, which can be interpreted as level
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of consumerism, or temporal preference and eagerness. The shock sensitivity factor is a
parameter helpful for capturing the agent’s perception of the consumption change, which
can amplify the effects of the changes and force agents to avoid abrupt changes, and an
alternative interpretation can be as risk aversion modifier that augments the utility. The
individuality factor models the level of influence an agent’s social network exerts on the
agent. This is achieved by factoring in the information transmitted from the neighbourhood.
The increase in the liquid assets reflect a linear increase; on the contrary, the increase in
non-liquid assets is exponential due to interest income of the assets. The distribution of
outcomes reflect heterogeneous characteristics according to behavioural parameters and
the relationship between parameters and outcomes are non-linear.

(a) Liquid Asset

(b) Non-Liquid Asset

(c) Total Asset

Figure A7. Total asset, non-liquid asset, liquid asset at week ts by consumption utility factor.
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Figure A8. 3D scatter plot of each indicator relative to the behavioural parameters of the agents,
where dark blue indicates lower values and light yellow indicates higher values, which reflects how
the parameters are affecting the values such as accumulated assets, investment ratess or share of
non-liquid assets. The income vs. parameters plot is provided for convenience, and the income itself
is not affected by the behavioural parameters.
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(a) Management (b) Healthcare Practitioners and Technical

(c) Farming, Fishing, and Forestry (d) Life, Physical, and Social Sciences

(e) All Occupations

Figure A9. Occupation-specific 3D surface plots of share of non-liquid assets in x-axis with respect to
total asset wealth in y-axis and corresponding decision of non-liquid asset investment rate in z-axis;
the values are smoothed with 9-week moving average for clearer visibility.
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Appendix G. Tables

Table A2. Occupation vs. rates: the saving rate denotes to the average monthly saving rate of
the members of each occupation, and the non-liquid investment rate denotes the average of the
decided rate of allocating monthly savings to non-liquid investments for each occupation, the share
of non-liquid investments denotes the share of non-liquid assets with respect to all of the investments
averaged for each occupation.

Occupation Title Saving Rate Non Liquid
Investment Rate

Share of Non
Liquid Investments

Architecture and Engineering 0.578 0.607 0.730
Arts, Design, Entertainment, Sports, and Media 0.422 0.587 0.756
Building and Grounds Cleaning and Maintenance 0.207 0.576 0.777
Business and Financial Operations 0.512 0.557 0.714
Community and Social Service 0.363 0.623 0.773
Computer and Mathematical 0.596 0.643 0.769
Construction and Extraction 0.374 0.649 0.787
Education, Training, and Library 0.404 0.574 0.743
Farming, Fishing, and Forestry 0.160 0.569 0.845
Food Preparation and Serving Related 0.218 0.574 0.790
Healthcare Practitioners and Technical 0.533 0.576 0.737
Healthcare Support 0.210 0.576 0.777
Installation, Maintenance, and Repair 0.381 0.635 0.786
Legal 0.519 0.550 0.703
Life, Physical, and Social Sciences 0.471 0.603 0.732
Management 0.590 0.584 0.722
Office and Administrative Support 0.274 0.608 0.778
Personal Care and Service 0.208 0.573 0.778
Production 0.267 0.608 0.782
Protective Service 0.396 0.622 0.777
Sales and Related 0.282 0.578 0.767
Transportation and Material Moving 0.269 0.613 0.789

Table A3. Age vs. rates: Consumption rates are defined as consumption amount divided by income.
Consumption rates are compared to the literature by extracting values from plots of [10]; their
research differs by our work such that the income values exclude contributions toward pension
income, and savings are used as a mean to finance consumption deficit, especially during retirement.
So, during retirement, there are positive consumption rates, which means that the pension deficit is
financed by spending savings. This definition difference causes consumption rates to be much higher.

Age Non-Liquid Investment Rate Share of Non-Liquid Investments Consumption Rate Cocco et al. Consumption Rate

21 0.551 0.677 0.648 0.884
22 0.546 0.684 0.634 0.915
23 0.553 0.690 0.629 0.948
24 0.554 0.701 0.628 0.976
25 0.556 0.710 0.623 0.996
26 0.558 0.717 0.611 0.998
27 0.562 0.728 0.608 0.999
28 0.567 0.736 0.607 0.999
29 0.571 0.743 0.609 0.998
30 0.572 0.750 0.606 0.996
31 0.579 0.756 0.598 0.987
32 0.584 0.764 0.595 0.979
33 0.587 0.771 0.596 0.972
34 0.590 0.777 0.591 0.966
35 0.592 0.781 0.591 0.962
36 0.594 0.782 0.588 0.960
37 0.596 0.783 0.583 0.959
38 0.597 0.786 0.578 0.959
39 0.597 0.786 0.575 0.960
40 0.600 0.789 0.571 0.962
41 0.597 0.787 0.563 0.963
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Table A3. Cont.

Age Non-Liquid Investment Rate Share of Non-Liquid Investments Consumption Rate Cocco et al. Consumption Rate

42 0.601 0.785 0.562 0.965
43 0.603 0.785 0.561 0.966
44 0.603 0.787 0.562 0.966
45 0.604 0.786 0.559 0.966
46 0.605 0.788 0.561 0.966
47 0.604 0.787 0.559 0.965
48 0.605 0.789 0.557 0.964
49 0.603 0.788 0.555 0.963
50 0.605 0.788 0.555 0.963
51 0.609 0.789 0.557 0.964
52 0.607 0.787 0.558 0.966
53 0.607 0.785 0.564 0.970
54 0.605 0.785 0.563 0.976
55 0.606 0.786 0.568 0.985
56 0.604 0.787 0.569 0.996
57 0.604 0.787 0.569 1.011
58 0.604 0.790 0.573 1.029
59 0.606 0.790 0.572 1.051
60 0.606 0.789 0.578 1.077
61 0.609 0.788 0.578 1.107
62 0.606 0.788 0.572 1.142
63 0.607 0.784 0.572 1.180
64 0.606 0.785 0.570 1.223

Table A4. Saving Rate by Occupation and Age.

Occupation 20–30 30–40 40–50 50–60

Architecture and Engineering 0.669 0.68 0.658 0.668
Arts, Design, Entertainment, Sports, and Media 0.465 0.448 0.445 0.484
Building and Grounds Cleaning and Maintenance 0.237 0.237 0.236 0.235
Business and Financial Operations 0.556 0.602 0.594 0.599
Community and Social Service 0.447 0.422 0.433 0.41
Computer and Mathematical 0.639 0.672 0.671 0.674
Construction and Extraction 0.419 0.435 0.432 0.42
Education, Training, and Library 0.456 0.471 0.472 0.436
Farming, Fishing, and Forestry 0.181 0.18 0.176 0.184
Food Preparation and Serving Related 0.236 0.235 0.235 0.236
Healthcare Practitioners and Technical 0.598 0.615 0.591 0.578
Healthcare Support 0.236 0.235 0.234 0.234
Installation, Maintenance, and Repair 0.446 0.427 0.434 0.412
Legal 0.603 0.584 0.592 0.573
Life, Physical, and Social Sciences 0.56 0.549 0.556 0.535
Management 0.683 0.692 0.692 0.68
Office and Administrative Support 0.31 0.315 0.317 0.311
Personal Care and Service 0.238 0.236 0.237 0.236
Production 0.309 0.305 0.31 0.303
Protective Service 0.429 0.437 0.445 0.426
Sales and Related 0.334 0.313 0.323 0.312
Transportation and Material Moving 0.307 0.302 0.315 0.298
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Appendix H. Raw Plots

(a) Mean Income (b) Unemployment
Figure A10. Mean Income and unemployment by occupation at week ts.

(a) Week (b) Total Asset Amount
Figure A11. Saving rate by occupation at week ts and saving rate by occupation at amount capped
at 10 M.

Figure A12. 3D surface plot of share of non-liquid assets in x-axis with respect to total asset wealth in
y-axis and corresponding decision of non-liquid asset investment rate in z-axis.
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