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Abstract: Accurate estimations of the concentrations of soluble compounds are crucial for optimizing
bioprocesses involving Escherichia coli (E. coli). This study proposes a hybrid model structure that
leverages off-gas analysis data and physiological parameters, including the average biomass age
and specific growth rate, to estimate soluble compounds such as acetate and glutamate in fed-batch
cultivations We used a hybrid recurrent neural network to establish the relationships between these
parameters. To enhance the precision of the estimates, the model incorporates ensemble averaging
and information gain. Ensemble averaging combines varying model inputs, leading to more robust
representations of the underlying dynamics in E. coli bioprocesses. Our hybrid model estimates
acetates with 1% and 8% system precision using data from the first site and the second site at GSK
plc, respectively. Using the data from the second site, the precision of the approach for other solutes
was as fallows: isoleucine −8%, lactate and glutamate −9%, and a 13% error for glutamine., These
results, demonstrate its practical potential.

Keywords: recurrent neural networks; soft sensor; ensemble averaging; in vitro; off-gas; E. coli; solutes

1. Introduction

In recent years, Escherichia coli has emerged as a prominent host organism for a wide
range of bioprocesses, including the production of biofuels [1], pharmaceuticals [2], and
other high-value products [3]. Optimizing these bioprocesses requires precise knowledge
of the concentrations of soluble compounds, which play crucial roles in shaping cellular
metabolism and growth. An accurate estimation of these compound concentrations is
essential for understanding and controlling the underlying dynamics of E. coli bioprocesses.
Conventionally, chemical analysis and laboratory techniques have been used to determine
soluble compound concentrations. However, these methods are often time-consuming and
labor-intensive and may disrupt continuous bioprocess monitoring. Consequently, there is
a growing need for alternative approaches which provide real-time estimations without
sacrificing precision [4,5].In response to this demand, this paper presents a hybrid model
structure that leverages off-gas data and physiological variables to estimate concentrations
of diverse soluble compounds in E. coli bioprocesses. The proposed hybrid model utilizes
recurrent neural networks, which are particularly suitable for modeling dynamic and
time-dependent processes.

To improve the precision of estimations, the proposed hybrid model employs ensemble
averaging combined with an entropic information gain. By incorporating varying neural
network inputs, the model aims to comprehensively represent the underlying dynamics in
E. coli fed-batch cultivations. Ensemble averaging provides additional information, leading
to more robust and reliable estimations.

In this paper, Section 1 discusses the reasons for using noninvasive means for biopro-
cess monitoring; Section 2 reviews the literature related to the study; Section 3 describes the
cultivation conditions, dataset collection, and physiological parameters; Section 4 outlines
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the structure of the hybrid model; Section 5 presents an experimental investigation of
the hybrid model, including evaluation of model performance, determination of optimal
committee size, and the precision of the model for estimating levels of acetate and other
soluble compounds; Section 6 summarizes the results and outlines future uses of the model;
and the Section 7 discusses the conclusions of this study.

2. Related Works
2.1. Digital Twin and Open-Loop Estimation

Early estimations in the field relied on open-loop estimation techniques. Open-loop
estimators do not incorporate feedback from the system being estimated, which means
that the estimates based on data measured during the estimation process. Instead, these
methods rely on predetermined models or equations to predict the behavior of the system.
Early examples included, flux balance analyses [6], balances of biomass concentrations and
specific growth and substrate uptake rates [7–10]. To estimate various soluble compounds,
these models relied on data such as the liquid volume, biomass, and glucose concentrations.
In addition, all variables for the estimates were derived via differential equations, using
primarily substrate feeding profiles.

As research advanced, more sophisticated approaches were explored. For example, a
kinetic model [11] was developed. The extended Kalman filter (EKF) was another popular
method for estimating solutes. In 2005, a digital twin was constructed using the EKF
method together with an asymptotic observer [12]. Additionally, advanced methods,
such as pulse-based systems [13], event-driven models [14], and adaptive Luenberger
observers [15], also contributed to improving the estimates of soluble compounds.

In later years, empirical models became increasingly popular for forecasting soluble
compounds. Of the various data-driven approaches, recurrent neural networks (RNN)
and long short-term memory (LSTM) networks were extensively exploited for lactate
estimation [16]. A notable research paper published in 2023 compared the performance of
multilayer perceptron (MLP), RNN, LSTM, and gated recurrent unit (GRU) neural network
models for the estimation of lactate [17]. The comparison aimed to assess the strengths and
weaknesses of the architecture of each neural network architecture in order to obtain the
most accurate and reliable predictions of lactate levels.

2.2. Closed-Loop Estimation

In the realm of closed-loop estimation, various approaches have been adopted to
improve the accuracy and reliability of solute estimations. In the early years, indirect meth-
ods were commonly used to identify acetates, involving specific production rates, volume
ratios [18], or dissolved oxygen probes [19]. High-performance liquid chromatography
(HPLC) was also used to aid the estimation process [20].

As studies evolved, researchers began implementing the extended Kalman filter
method to estimate solutes. It was applied as either a standalone estimator [21] or together
with asymptotic observers [22]. By incorporating feedback from real-time data, EKF-based
approaches allowed for dynamic adjustments of estimates, leading to improved predictions
of solutes’ concentrations.

Empirical models emerged in 1992 with the adoption of feed-forward and recurrent
neural networks to estimate ethanol [23]. However, they gained greater popularity in later
years [24]. Subsequent studies employed various neural network architectures for ethanol
concentration, such as the radial basis neural network (RBNN) [25]. These empirical models
provided valuable insights into the relationship between input data and the estimation of
soluble compounds.

Hybrid approaches combining mechanistic and data-driven metabolite estimation
techniques were also explored [26]. Together with a data reconciliation algorithm [27], a
model proposed by M. Dabros et al. incorporated mass balances of off-gas information,
primarily oxygen and carbon dioxide concentrations. Our previous work also suggested a
hybrid approach for acetate estimation using a decision tree model [28]. It incorporated
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off-gas information and information related to cell age and physiological variables such as
the specific growth rate.

An overview of soluble compound estimation methods can be seen in Table 1.

Table 1. Overview of soluble compounds estimation methods.

Model Type Model Structure Year Soluble Compounds Ref.

Mechanistic (model-driven)

Flux balance analysis 1994

Acetate

[6]

Balance of biomass concentration, specific
growth, and substrate uptake rate

1999

[7]

Balances of biomass, glucose, lactose, acetate, and
product concentrations [8]

Balance of liquid volume, biomass, glucose,
acetate, and the dissolved oxygen concentrations 2001 [9]

Balance equations 2010 [10]

Kinetic model 2003 [11]

Extended Calman Filter and Asymptotic Observers 2005 Lactate [12]

Pulse-based system 2018 Acetate [13]

Model parameters are changed depending
on the event 2022 Ethanol [14]

Adaptive extended Luenberger observer 2015 Acetate [15]

Specific production rates and volume ratios 1999 Acetate, Lactate,
Formate [18]

Indirect estimation using dissolved oxygen probe 2001

Acetate

[19]

Data from high-performance liquid
chromatography (HPLC) 2010 [20]

EKF using information from biomass
concentration, dissolved substrate, oxygen, and

oxygen transfer rate
2012 [21]

An asymptotic observer and an extended
Kalman filter 2020 Ethanol [22]

Empirical (data-driven)

RNN and LSTM 2021 Lactate [16]

Multilayer perceptron (MLP), Recurrent neural
network (RNN), Long short-term memory

(LSTM), Gated recurrent unit (GRU)
2023 Lactate [17]

Feed-forward and recurrent neural network 1992 Ethanol [23]

ANN and PLSR 2002 Gibberellic acid [24]

Radial basis neural network 2006 Ethanol [25]

Hybrid

Mass Balances of O2 and CO2 and data
reconciliation algorithm 2009 Ethanol, acetate,

glycerol, ammonium [27]

Specific growth rate and age-related information
with a decision tree model 2022 Acetate [28]

3. Materials and Methods
3.1. Cultivation Conditions

Data for this study were gathered from two separate sites during a fed-batch process.
The data acquisition process involved monitoring various parameters and measurements.
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3.1.1. Site 1: Recombinant E. coli BL21 (DE3) pET21-IFN-alfa-5 Cells

A total of 287 samples provided data from 17 different cultivation processes [29].
Of these experiments, growth-limiting feeding was used in 8 instances, with negligible
glucose concentrations. The duration of each cultivation did not exceed 20 h. Real-time
monitoring of the bioreactor off-gas was conducted utilizing a BlueSens gas analyzer
(BCpreFerm, BlueSens) equipped with sensors for O2, CO2, and pressure measurements.
The utilization of airflow data derived from the Applikon BioBundle bioreactor facilitated
the comprehensive investigation of the oxygen uptake and carbon dioxide production rate.
The experimental conditions at Site 1 are depicted at Table 2:

Table 2. Experimental conditions at Site 1.

Condition State Condition State

Bioreactor volume 7.0 L Broth volume 3.7 L
Temperature 37.0 ◦C pH 6.8

pO2 20.0% Feeding start at 5–7 h

3.1.2. Site 2: BL3 (DE3) E. coli Strain from GSK

In addition to the previous experiments, data from four further experiments were
obtained from the project “Multi-Omic Characterization of E. coli Cultures for Antigen
Protein Production (MOCECAP)” conducted by GSK [30]. These additional experiments
involved taking a total of 72 samples. A “Cedex Bio” analyzer was utilized to measure
soluble compounds other than acetates, which were measured using enzymatic assay kit.
Two of the four experiments produced insoluble WT1-A10 (Wilms’ tumor protein), whereas
the remaining two experiments primarily produced the soluble recombinant fusion protein
F4co. The duration of the cultivation processes for all the experiments conducted at this
site was 66 h. The experimental conditions at Site 2 are depicted at Table 3:

Table 3. Experimental conditions at Site 2.

Condition State Condition State

Bioreactor volume 20.0 L Broth volume 9.0 L
Temperature 28.0 ◦C, 37.0 ◦C pH 7.0

Airflow 20.0 NL/min Feeding start at 21 h

3.2. Dataset Collection

The dataset comprises a range of vital parameters that contribute to a comprehensive
understanding of the cultivation process. These parameters encompass the temporal
aspect, reflecting the duration of the cultivation process. Additionally, the initial biomass
concentration provides information on the start of the cultivation process, including the
onset of cell growth and metabolic activity. The oxygen uptake rate (OUR) quantifies
cellular respiration, illustrating the rate at which cells consume oxygen and indicating their
metabolic vitality and energy requirements. The weight of the microbial broth serves as an
indicator of its overall volume.

Furthermore, the dataset incorporates information regarding the glucose substrate
employed for feeding during experiments. Glucose is a primary energy source and a pivotal
precursor for cellular processes. The initial concentration of glucose at the beginning of
biosynthesis provides information on the primary energy source available to the cells
before the start of the feeding process, including its accessibility and subsequent utilization.
Site 2 was supplemented with an additional carbohydrate source, L-Isoleucine, which was
exploited accordingly.

Similarly, the carbon dioxide production rate (CPR) is significant because it measures
cells’ the metabolic activity of cells and their efficiency in converting substrates into desired
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products. The overall metabolic flux and productivity of the system can be assessed by
quantifying the rate at which carbon dioxide is produced.

Finally, including the time of induction (ITPG) information in the dataset enables us to
explore the temporal dynamics of the bioprocess metabolism and its correlation with the
initiation of the synthesis process of target product.

The comprehensive fusion of these diverse observations contributes to the characteri-
zation of the bioprocess. This, in turn facilitates analysis of the multifaceted factors which
influence biomass growth, substrate consumption, metabolic dynamics, and production of
the target product.

3.3. Latent Parameters

For this study, we incorporate a set of nuisance parameters (α and β) to derive the
latent variables [31], including biomass concentration. The biomass concentration is a
variable physiological state in bioprocesses, providing crucial information on microbial
growth and productivity. To accurately estimate the biomass concentration, we employed
the dynamic biomass concentration assessment suggested in research by Survyla et al. [32].
The assessment considers the oxygen uptake rate (OUR) and nuisance parameters α and β,
which characterize the specific cell strain [33].

The following formula determines the latent biomass concentration:

x(ti) = x0 +
i

∑
j=1

OUR(tj)
α(tj)

∆tj; if
i−1
∑

j=1
X
(
tj
)
∆tj ≤ kcX

x(ti) =
x0+∑i

j=1
OUR(tj)+β(tj)·XcX

α(tj)
e

∑
j
k=1

β(tk)
α(tk)

∆tk ∆tj ;

e
∑i

j=1
β(tj)
α(tj)

∆tj

, otherwise,

(1)

where the latent biomass concentration is represented by x, OUR indicates the oxygen
uptake rate, and the biomass concentration at the moment of inoculation is indicated by
x0. The parameter which describes the time at which the maintenance term β becomes
involved in the growth model is represented by kcX.

The latent specific growth rate (µ) is a crucial parameter for capturing the kinetics of
cell growth in bioprocesses:

µi =
dXi

dt·Xi
, (2)

The specific growth rate is a characteristic of the physiological state of the cell culture and
serves as an indicator of the overall quality of the cultivation process [34–36]. Quantification
of the growth rate provides valuable insights into the metabolic activity and efficiency of
the cells within the bioprocess.

Furthermore, some researchers have proposed that the kinetic parameters in biopro-
cesses depend on the average age of the cell population. Such an assumption suggests that
these parameters are influenced not only by the immediate state of the cells but also the
average age of the individual cells which are present. The latent average age points to the
active biomass concentration within the population [37,38]:

Agei =
∑i

j=0
(
ti − tj

)
∆X
(
tj
)

Xi
, (3)

In our study, we expanded upon this concept by incorporating the latent cumulative cell
age as an additional parameter:

cAgei = ∑i
j=0

(
ti − tj

)
∆X
(
tj
)
, (4)
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The cumulative cell age represents the current biomass-concentration-hours state variable.
The following diagram in Figure 1, demonstrates the interconnection between the observed
and derived physiological parameters.
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Figure 1. Relationships tree between the measured and derived model variables.

Figure 1 presents the measured variables (indicated by the dashed blue square) and
their relationships in the derivation of further variables. Feeding information (indicated
by dashed red square) is dependent on the specific site conditions; although Site 1 solely
employed glucose for feeding, Site 2 introduced isoleucine as a supplementary nutritional
factor. Within the framework of the black box model, the inputs encompass not only the
deduced parameters but also the initially gauged variables.

4. Recurrent Neural Network Development for the Hybrid Model

In this study, we used the long short-term memory (LSTM) modeling technique to
explore the modeling of the acetate concentrations in E. coli cultivation using the Long-
Short-Term Memory (LSTM) modeling technique. LSTM, a specialized recurrent neural
network (RNN) architecture, has shown remarkable effectiveness in the modeling and
prediction of time series data [39,40]. It was specifically designed to address the problem
of vanishing gradients encountered by traditional RNNs, which restricted their ability
to capture long-term dependencies in sequential data. By maintaining a constant error
gradient, the memory cells within LSTMs enable the network to learn and propagate
information over extended sequences. This characteristic makes LSTM particularly suitable
for estimating concentrations of soluble compounds in E. coli bioprocesses [36].

4.1. Network Structure

In our study, we utilized the Keras (version 2.12.0) and TensorFlow (version 2.12.0)
libraries in Python (version 3.9.7) to construct the LSTM model. The architecture consisted
of an LSTM layer with 23 units and a rectified linear unit (ReLU) activation function. To
mitigate overfitting, dropout layers with a rate of 0.2 were incorporated. Following the
LSTM layer, dense layers consisting of 10 units and a ReLU activation function were added.
An additional dropout layer with a rate of 0.2 was introduced before the final dense layer,
which consisted of a single unit. To ensure the non-negativity of the output, we enforced
non-negativity constraints on the kernel and bias of the last dense layer.
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To measure the training process, we employed a modified mean square error (MMSE):

MMSE =
∑n

i=1(|A∗i − Ai|+ 1)2

n
, (5)

where A∗i is the i-th observation of the compound, Ai is the hybrid model estimate, and n is
the number of values. Mean absolute error modification ensured that errors below one unit
were given appropriate importance, leading to a more balanced (unbiased) assessment of
the performance of the model. We used the Adam optimizer with a learning rate of 0.001
for model training. We implemented early stopping based on the validation loss to prevent
overfitting, enabling us to achieve optimal model performance. The maximum number of
epochs for training was set to 1000.

During the training phase, the model’s weights were updated using approximately
80% of the site data, and the remaining 20% were used to assess the performance of the
model. The input sequence data for LSTM training were prepared by utilizing a sliding
window approach. The dataset was composed of sequences with a fixed number of time
steps, set at 23 steps. To ensure comparability across features, the dataset underwent
normalization via the application of min–max scaling. The input sequences were then
structured by concatenating historical data points and the features of the current time step,
so that the LSTM model had access to comprehensive historical context. This approach
ensured that each estimation was built upon prior context. A batch size of 16 was a
rational trade-off to balance computational efficiency and training stability. This choice
facilitated efficient parameter updates while maintaining training stability. Because the
central objective of this study was to propose an innovative methodology for the estimation
of solutes, the training procedures in our model were different for each site. Site 1 served
predominantly as a foundation to establish the computational framework, whereas Site 2
allowed the purpose of assessing the efficacy and applicability of the introduced technique
to be assessed.

4.2. Input Selection

A total of 5016 distinct groups were meticulously created, encompassing a diverse
range of input variables, ranging from 3 to 11, using measured and derived variables. The
primary focus of this study was to maximize the likelihood while utilizing specific nuisance
parameter sets (α and β) for different subsets of latent variables. As such, the penalty for
the total number of parameters was not considered [41]; instead, emphasis was placed
on enhancing the likelihood through the manipulation of latent variable subsets using
ensemble averaging.

To ensure the reliability of our results, each group underwent a rigorous training and
evaluation process. The neural network models were retrained and retested in 20 trials.
This extensive exploration enabled a thorough examination of the impact of various input
configurations on the performances of neural network models. The inclusion of multiple
groups and repeated tests contributes to a comprehensive understanding of the intri-
cate relationship between the input variables and the results obtained from the neural
network models.

4.3. Model Evaluation

To evaluate the models, the mean absolute error (MAE), residual sum of squares (RSS),
and coefficient of determination (R2) were used:

MAE =
∑n

i=1
∣∣A∗i − Ai

∣∣
n

, (6)

RSS = ∑n
i=1(A∗i − Ai)

2, (7)
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R2 = 1− RSS
TSS

, (8)

where TSS is the total sum of squares. Additionally, the root mean square error (RMSE)
was calculated from the RSS for later use.

RMSE =

√
RSS

n
, (9)

4.4. Use of Ensemble Averaging

In most cases, it is usual to select the best empirical model However, we propose
the use of ensemble averaging as an alternative method to further enhance the precision
of the prediction method. Ensemble operation, a widely applied technique to improve
prediction accuracy, combines the output of multiple neural models [42]. Conventionally,
ensembles encompass models constructed with varying neuron or layer configurations.
However, our approach diverges by maintaining uniformity in the model architecture
while embracing diverse input combinations across individual committees. In this study,
we focus specifically on weighted averaging.

Weighted averaging assigns weights to each model based on performance instead of
using uniform weights. Such an approach allows for a more flexible combination of model
outputs, giving more weight to models demonstrating superior predictive capabilities. The
predictions of each model are multiplied by their respective weights and then averaged
to obtain the final prediction. For weight selection, we used the method proposed by
A. Survyla et al. [33]:

wi =
∑n

j=1 RMSEj − RMSEi

∑n
j=1 RMSEj·(n− 1)

, (10)

where the number of ensemble members is n.

5. Experimental Investigation

After training and validation using distinct groups from Site 1, the resulting models
exhibited a range of mean absolute errors (MAE) of 0.2567 to 1.8496 g/L. The MAE values
were obtained by averaging the results from 20 repeated tests, ensuring reliable assessments
of the model performance. For the subsequent research, input groups with an MAE greater
than 0.5 g/L were excluded. As a result, approximately 25% of the input groups remained
for further analysis. The remaining groups were subjected to additional filtering; a group
with a higher evaluation value was dropped if it had a subset identical to a group with
a lower value. This stringent filtering process resulted in only 28 groups remaining,
approximately 0.5% of the original input.

The retained groups were then utilized to retrain the models, and the best models
after 20 iterations were retained. The resulting models exhibited MAE values ranging
from 0.1367 to 0.3375 g/L. The most accurate model predictions which had a coefficient of
determination of −0.98 and an MAE of = 0.1367 or an error of 1.36% are shown in Figure 2.

The disparities observed between the estimated and experimental data evident in
the concluding segments of Figure 2a,b can be attributed to a discernible shift in the CPR
measurements. In the scenario depicted in Figure 2a, a precipitous decline in the CPR value
is evident, whereas, in Figure 2b, a corresponding abrupt escalation is observed. It is likely
that these abrupt variations in the CPR are attributable to factors such as the accumulation
of carbon dioxide (CO2) or other metabolic activities. Subsequently, an algorithm was
employed to identify the optimal committee. Through weighted ensemble averaging
between predictions, 14 committees with varying numbers of members were generated.
The use of weighted ensemble averaging to predict acetate concentrations improved the
precision of the approach, leveraging the collective knowledge. Furthermore, an analysis
of the MAE dependency on the number of committee members revealed that increasing
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the number of the committee members improved the predictions. This indirect effect can
be seen in Figure 3.
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The graph demonstrates that the initial inclusion of ensemble members leads to
substantial improvements in prediction accuracy. However, as more members are added,
the gains in system precision become progressively smaller. Such a phenomenon suggests
that the collective knowledge and diversity of the committee members reach a point of
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diminishing returns, after which further additions do not yield significant improvements
in the prediction performance.

5.1. Information Gain Maximization

We used Shannon entropy, a measure of uncertainty or information content, to de-
termine the optimal size of the committee [43]. The Shannon entropy equation is defined
as follows:

H(X) = −∑x∈X p(x)log2 p(x), (11)

where entropy is H, the input parameter is set as X, and the probability p(x) of an input
parameter are present in the ensemble. We derived the probabilities of each input pa-
rameter by counting the occurrences of each input parameter within the committee and
dividing the count by the total number of members. We also applied the local interpretable
model-agnostic explanation (LIME)—method to calculate the probabilities for the second
instance of entropy [44]. The LIME technique was adapted to provide explanations for each
individual data point within our dataset, utilizing the models selected for the ensemble.
Because the LSTM method was used, these features encompassed multiple instances within
the input variables. For probability computation, we collected the first 20 features from
each data point and then evaluated the occurrences of specific input variables. The resulting
probabilities derived from Shannon entropy provided insights into the importance of each
input parameter and its contribution to the overall model explanation.

As depicted in Figure 4, the latent variables, such as age, specific growth rate, or
cumulative age, which exhibit higher probabilities indicate that these mathematical models
offer a more comprehensive understanding of the entire process. The latent variables carry
greater weight in explaining the dynamics and mechanisms of the modeled system, making
Shannon entropy a powerful tool for assessing their significance and contribution to the
overall model.
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By applying Shannon entropy and evaluating its relationship with the committee size,
meaningful committee members are identified, striking a balance between information
capture and computational efficiency.

Our analysis, as shown in Figure 5, demonstrates that including more than seven
members does not yield substantial additional information. On the other hand, use of the
probabilities calculated by LIME suggests that a committee size of three yields the greatest
information gain. Using ensemble size with maximum entropy improved the prediction by
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27% and R2 - 0.99. The MAE of the improved model reached 0.098, and the overall error
was 1% (Figure 6).
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5.2. Hybrid Model Structure Evaluation

We conducted GSK data investigations to assess the performance of the proposed
model structure. For data comparison, we employed the normalized mean absolute error
(nMAE) as a quantitative metric [45], which offered a reliable measure of the precision of
the model when applied to the data provided by GSK. The nMAE formula is defined as:

nMAE =
MAE

A∗max − A∗min
, (12)
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where the denominator values (A∗max and A∗min) correspond to the minimum and maximum
of the dataset. The nMAE provides a fair and consistent comparison across different
parameters and sites.

Figure 7 demonstrates the relationship between the nMAE and the committee size
used in the averaging of the ensemble, together with the errors in the estimates of the
concentration of lactates, glutamate, glutamine, and isoleucine. The nMAE values generally
decreased until they reached the maximum entropy; after which, they exhibited minimal
variation or a slight increase. These findings validate the use of maximum entropy as a
reliable criterion to determine the optimal number of committee members. Conversely,
the application of maximum entropy derived using LIME revealed a distinct behavior,
plateauing after the most significant error reduction and subsequently failing to manifest
any further decline in error magnitude. Using data from GSK, the model achieved a R2 of
0.91 and MAE of 0.002 g/L or an error of 8% (Figure 8).
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entropy on the committee size, whereas (b,c) the relationship between the normalized estimation
(nMAE) and committee size. The dotted purple lines indicate the committee with the highest entropy
using probabilities calculated from the input appearance in the committee ensemble, and the red
dotted line shows the entropy calculated using the LIME method.
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In addition, the inclusion of other metabolites helped to evaluate the performance of
the model across multiple variables, providing valuable insights into the precision and
versatility of the model.

The estimation results obtained using the hybrid model structure demonstrate its
ability to estimate soluble compounds other than acetate. Although the errors were slightly
more significant compared to the data from the first site (Table 4), this can be attributed to
the limited dataset available from Site 2. Furthermore, accurate measurements of the small
compound concentrations at site 2 were challenging because of the sensitivity limitations of
the measurement techniques. However, the hybrid model exhibits promising potential to
accurately estimate soluble compound concentrations in bioprocesses of E. coli. Additional
plots with identity lines for other soluble compounds are shown in Figure 9.

Table 4. Summary of the estimation errors for the additional soluble compounds.

Additional Soluble Compound MAE, g/L Error, % R2

Glutamate 0.016 9 0.82
Glutamine 0.027 13 0.79
Isoleucine 0.05 8 0.9

Lactate 0.001 9 0.52
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6. Results and Discussion

In this study, we proposed a hybrid model structure and conducted an experimen-
tal investigation by selecting 5016 distinct input and latent variable combinations from
Site 1. The initial models yielded MAE values ranging from 0.2567 to 1.8496 g/L. To refine
the selection, input groups with an MAE greater than 0.5 g/L were excluded, reducing
the set to 25% of its original size. Further rigorous filtering resulted in the retention of
just 0.5% of the original groups, ultimately leading to a final set of 28 groups for further
analysis. The MAE values of the final set of groups ranged from 0.1367 to 0.3375 g/L, with
the best-performing model achieving an MAE of 0.1367 g/L, representing an error of 1.36%.

To improve the results, we used ensemble averaging. To optimize the ensemble size,
we employed Shannon entropy method. Optimization revealed that an ensemble with
seven members substantially enhanced the model precision (by 27%), leading to an MAE of
0.098 g/L, equivalent to a systematic error of 1%. Our devised methodology enhanced the
flux method analysis by approximately 9% and in the extended Kalman filter by around
3% [6,21].

When evaluated using GSK data, our hybrid model displayed an acceptable level of
precision, with an MAE of 0.002 g/L (8% error) for the estimation of acetate. Furthermore,
the model exhibited promising capabilities for the estimation of other soluble compounds.

7. Conclusions

In conclusion, this research introduces a hybrid model structure for estimating con-
centrations of soluble compounds in Escherichia coli cultivation bioprocesses. The model
effectively captures the dynamic processes inherent in such bioprocesses by leveraging
off-gas data and essential physiological parameters through recurrent neural networks.

The incorporation of ensemble averaging, and information gain further enhances the
precision of the estimation methods. In particular, the proposed hybrid model exhibits
promising results, achieving estimations of the acetate levels with a low error rate of 1%.
Extensive evaluations conducted using a dataset from two distinct sites highlighted the
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potential of the model for estimation of a diverse array of soluble compounds, with errors
ranging from 8% to 13%.

The use of Shannon entropy identified that, the optimal committee size found for
ensemble averaging was seven members, leading to a 27% improvement in model precision.
The structure of the suggested model improved the results achieved in our previous work
by approximately 36% [27]. The introduced approach provides a noninvasive and real-time
method for monitoring bioprocesses involving E. coli.
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