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Abstract: Alarm systems are commonly deployed in complex industries to monitor the operation
status of the production process in real time. Actual alarm systems generally have alarm overloading
problems. One of the major factors leading to excessive alarms is the presence of many correlated or
redundant alarms. Analyzing alarm correlations will not only be beneficial to the detection of and
reduction in redundant alarm configurations, but also help to track the propagation of abnormalities
among alarm variables. As a special problem in correlated alarm detection, the research on first-out
alarm detection is very scarce. A first-out alarm is known as the first alarm that occurs in a series
of alarms. Detection of first-out alarms aims at identifying the first alarm occurrence from a large
number of alarms, thus ignoring the subsequent correlated alarms to effectively reduce the number
of alarms and prevent alarm overloading. Accordingly, this paper proposes a new first-out alarm
detection method based on association rule mining and correlation analysis. The contributions lie
in the following aspects: (1) An association rule mining approach is presented to extract alarm
association rules from historical sequences based on the FP-Growth algorithm and J-Measure; (2) a
first-out alarm determination strategy is proposed to determine the first-out alarms and subsequent
alarms through correlation analysis in the form of a hypothesis test on conditional probability; and
(3) first-out rule screening criteria are proposed to judge whether the rules are redundant or not and
then consolidated results of first-out rules are obtained. The effectiveness of the proposed method is
tested based on the alarm data generated by a public simulation platform.
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1. Introduction

Modern industrial systems are developing towards automation, integration, and
intelligence, and the scales of industrial processes are also expanding. At the same time,
this also imposes high requirements for the safety, stability, and efficiency of the operation
of production processes. Alarm systems are the core components of modern industrial
facilities, and are used for real-time monitoring of the operational status of all aspects of
production. They generate alarms to notify operators of abnormal situations and assist
operators to take timely measures to ensure safe operation. Actual alarm systems generally
have the alarm overloading problem. Massive alarm messages in real-time operation not
only increase the workload of operators, but also make them ignore key alarms, which can
easily lead to catastrophic accidents [1,2].

One of the major factors leading to excessive alarms is the presence of correlated
or redundant alarms. An actual industrial process generally contains a large number of
monitored variables; abnormalities generated in one place continuously propagate through
interconnected equipment, causing a series of correlated alarms to appear in a certain
order [2,3]. Analyzing alarm correlations will not only be beneficial to the detection of and
reduction in redundant alarm configurations, but also help to track the propagation of
abnormalities among alarm variables.
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In the literature, there exist a variety of correlation analysis methods to detect corre-
lated alarms and measure the correlation levels. References [4,5] studied and compared
quite a few similarity coefficients and correlation measurements for detection of correlated
alarms; in [5], Sorgenfrei and Jaccard coefficients were selected to measure the correla-
tions between binary-valued alarm signals. An event correlation analysis method was
designed in [6] to identify the correlated alarms, as well as to detect the relations between
alarms and actions. In view of the negative influences caused by random delays between
alarm occurrences, binary signals were transformed into continuous-valued pseudo signals
in [7,8], and reference [8] proposed a statistical test based on the random occurrence delays
to determine correlated alarms. References [9,10] divided a whole alarm sequence into
several blocks, and further measured the correlation of the whole sequence by detecting
the correlations of each block. A general weight-based multi-state sequential algorithm for
correlation analysis was proposed to measure the alarm correlation among different tags
in [11].

Correlations do not imply directions of influences between variables. Accordingly,
causality inference, association rule mining, and sequential pattern mining have been
exploited to find such directions when detecting correlated alarms. Among these ap-
proaches, causality inference detects the causal relations from historical data complemented
by process knowledge [12]; commonly used methods include Transfer Entropy [13–15],
Granger causality [16], and qualitative trend analysis [17]. In [14,15], transfer entropies
were exploited and modified to detect the causal relations between alarm signals. An active
dynamic transfer entropy was proposed in [18] and a K2-algorithm-based transfer entropy
approach was proposed in [19] to conduct alarm causality analysis. In addition, data
mining approaches are effective in extraction of interesting association rules and sequential
patterns, and have been applied to find temporal dependencies between alarms from his-
torical alarm and event data [20–24]. For instance, reference [23] detected association rules
of mode-dependent alarms by examining the relations between alarms and mode events;
in [24], a pattern extraction method was proposed to detect alarm sequential patterns from
historical alarm floods.

According to the above literature survey, existing alarm correlation analysis methods
identify correlated alarms and redundant alarms, which can help to rationally configure
alarms, and thus eliminate invalid alarms. The causality inference and data mining ap-
proaches find directed relations between alarms, and are helpful to track the propagation of
abnormalities. As a special problem in correlated alarm detection, the research on first-out
alarm detection is very scarce. A first-out alarm is known as the first alarm that occurs
in a series of alarms [25]. Detection of first-out alarms aims at identifying the first alarm
occurrence from a large number of alarms, thus ignoring the subsequent correlated alarms
to effectively reduce the number of alarms and prevent alarm overloading. How to identify
first-out alarms from the alarm sequences, eliminate subsequent redundant alarms, and
improve the decision support for the operators is an urgent problem. For the first time, a
previous study [26] proposed a first-out alarm detection method that detects the correlation
of different alarms and the temporal sequential relationship to find the first occurrence of
alarms. However, the method is based on paired binary signals and is computationally
intensive, and is concerned only with the long-term dependency, so would therefore miss
many rules of short-term relations.

Based on the above problem analysis, this paper proposes a new first-out alarm detec-
tion method based on association rule mining and correlation analysis, which discovers
first-out alarms in alarm sequences from historical alarm and event data using pattern
mining, first-out alarm determination, and first-out rule screening. The contributions lie
in the following aspects: (1) an association rule mining approach is presented to extract
alarm association rules from historical sequences based on the FP-Growth algorithm and
J-Measure; (2) a first-out alarm determination strategy is proposed to determine the first-out
alarms and subsequent alarms through correlation analysis in the form of a hypothesis test
on conditional probability; and (3) first-out rule screening criteria are proposed to judge
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whether the rules are redundant, and then consolidated results of first-out rules are finally
obtained. The effectiveness of the proposed method is tested based on the alarm data
generated by a public chemical simulation platform.

The rest of the paper is organized as follows: Section 2 introduces the industrial alarm
system and alarm data, and describes the first-out alarm detection problem. Section 3
proposes the systematic method for first-out alarm detection. Section 4 presents a case
study to illustrate the method, and the conclusions are drawn in the last section.

2. Problem Description

This section introduces the basics of industrial alarm systems and alarm data, and
leads to the problem of first-out alarm detection.

2.1. Preliminaries of Industrial Alarm System

Industrial alarm system consists of control and safety systems and user interfaces. As
shown in Figure 1, when the value of the monitored variable exceeds the normal value
range, the corresponding alarm signal changes from “0” to “1”, and the system will send
out the alarm prompts to the operator via visible or audible methods; then, the plant
operator takes actions to respond to alarms and seeks strategies to fix the issues. When
the operator takes the appropriate measures, the operating instructions are sent to the
controller, which controls the actuator to make the corresponding executive action, so that
the values of the abnormal variables are restored to the normal ranges to ensure that the
production is restored to a safe state. Good performance of an alarm system is of great
significance to ensure industrial safety, high efficiency, and stable production.
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Figure 1. Schematic and functionality of an industrial alarm system.

Modern industrial systems have complex equipment interconnections and topologies,
and failures occurring in one part may propagate through the system, causing other nodes
to also fail, thus generating a large number of associated alarms. Too many alarms would
degrade the performance of the alarm system and increase the operator’s workload. On
one hand, a large number of alarms are not only detrimental to the operator’s ability to
handle the correct alarms, but also make the operator ignore the correct alarms due to
the “crying wolf” effect, resulting in the alarm system being useless; on the other hand,
when there is a flood of alarms, even if all of the alarms are correct, due to the excessive
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number of alarms, it would go beyond the ability of operators to deal with them. Therefore,
eliminating nuisance alarms in an alarm system is of great significance for the improvement
of alarm monitoring performance.

An essential aspect of industrial alarm systems is to minimize false alarms and ensure
prompt abnormality detection. Such objectives must be considered in the design of indus-
trial alarm systems via techniques such as alarm limit optimization [27], alarm filters [28],
delay timers [29], and deadbands [30], which are usually applied to continuous-valued
process data to balance the false positive rate (also known as the false alarm rate) and
false negative rate (also known as the missed alarm rate). It needs to be clarified that the
first-out alarm detection in this work has a different objective, as it is a different task from
alarm system design and it relies on alarm and event data rather than continuous-valued
process data. Detection of first-out alarms aims to detect the relations between alarms, and
then extract rules of first-out alarms, so as to reduce redundant information during alarm
monitoring. Thus, it does not need to consider the minimization of the false positive rate
(or false alarm rate) and the false negative rate (or missed alarm rate). In this work, the pro-
posed method is specifically designed for detection of first-out alarms. The results can help
to reduce the number of alarms and prevent alarm overloading by ignoring subsequent
alarms occurring after the first-out alarms.

2.2. Introduction of Industrial Alarm Data

In an alarm system, high and low alarm thresholds are usually configured, so that
a binary alarm signal is generated by comparing the continuous process signal with the
thresholds. For a continuous process variable x, denote the corresponding high and low
alarm thresholds as xHAL and xLA, respectively. When the measured signal x(t) exceeds
the alarm thresholds, an alarm occurs and is recorded as “1”; otherwise, it is in the normal
state and is recorded as “0”. Thus, a binary-valued alarm signal is generated by

a(t) =
{

1 x(t) ≥ xHA or x(t) ≤ xLA,
0 otherwise.

(1)

The binary-valued alarm signal is a time series consisting of “0” and “1”, reflecting the state
of a single measurement variable at the sampling point. An example of the binary valued
alarm signal obtained from the process signal is shown in Figure 2.
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With deployment of the decentralized control systems and programmable logic con-
trollers, the configuration of alarms and historization of alarm data have become easy.
Usually, the historical alarm information is stored in the alarm logs in the form of alarm se-
quences. An alarm sequence is a sequence of time-stamped alarms ordered chronologically,
and is denoted by

Fk =< a1, a2, · · · , an > (2)

where Fk indicates the kth alarm sequence; n denotes the number of alarm events within
this sequence; and ai denotes the ith alarm event. Table 1 shows an example of alarm and
event data. In this table, alarm and event data contain alarm tags, timestamps, priorities,
and other information. The alarm tags in the alarm dataset are extracted, and the alarm
sequences can be obtained by arranging them in the order of occurrence time.

Table 1. An example of historical alarm and event data.

No. Alarm Tags Time Stamps Priority Units

1 TC202.MVLO 22 April 2022 10:37:04 High Reactor
2 TC202.SVHH 22 April 2022 10:37:38 Low Reactor
3 TC150.MVLO 22 April 2022 10:39:20 High Feedstock
4 TC150.MVLL 22 April 2022 10:40:11 Low Feedstock
5 TP401PV(6).PVLO 22 April 2022 10:40:34 Low Feedstock
6 TP401PV(6).PVHI 22 April 2022 10:51:22 Critical Feedstock
7 TC410.PVHI 22 April 2022 10:55:21 Critical Reactor
8 TP401PV(6).PVLO 22 April 2022 11:03:34 Low Reactor
9 FC420.MVHH 22 April 2022 11:06:31 Low Reactor

2.3. First-Out Alarm Detection Problem

In modern industrial processes, where different devices are physically connected, an
abnormality in one unit is likely to be transmitted to other devices through the material,
energy, and information flows, resulting in a large number of correlated alarms. Alarm
correlation analysis enables operators to focus on the most important alarms in a series of
alarms, thus ignoring invalid alarms, preventing alarm overload, and effectively improving
the performance of the alarm system. A large number of data-driven alarm correlation
analysis methods have been proposed in the existing literature with good results. However,
as a special class of problems in correlated alarm detection, research on first-out alarm
detection is scarce.

From the ISA-18.2 standard, it is known that a first-out alarm is the first alarm that
appears in the scenario of a series of alarms [25]. By analyzing the alarm sequences
occurring in the alarm system, the frequent patterns of alarm sequences are mined, and
the alarms appearing for the first time in these patterns are found, i.e., the first-out alarms.
Showing these important patterns and the first alarms appearing in these patterns to
the operator can effectively reduce the number of alarms by ignoring subsequent alarms
occurring after the first-out alarms. To understand this concept better, an illustrative
example is given. A sudden spike in the temperature from a boiler temperature sensor,
indicating a potential issue, triggers a first alarm “High Boiler Temperature Alarm”. Then,
the high boiler temperature might lead to other issues, causing a cascade of alarms. The
second alarm could be “Low Water Level Alert” as the increased temperature may cause
higher water evaporation. This is followed by a third alarm, “Steam Pressure Deviation”,
due to the impact on steam pressure. As a result, there are multiple highly correlated alarms
indicating one abnormal issue. Based on the chronological order, the alarms might unfold
as Alarm 1: High Boiler Temperature Alarm, Alarm 2: Low Water Level Alert, and Alarm
3: Steam Pressure Deviation. In this scenario, “High Boiler Temperature Warning” serves
as the first-out alarm, indicating the initiation of a potential problem, and the subsequent
alarms provide redundant information. In real systems, such relations between the first-out
alarm and subsequent alarms are not so straightforward as alarm messages are massive.
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Thus, detection of first-out alarms from historical alarm data is crucial for the identification
of such first-out alarms.

In real industrial processes, first-out alarm detection can only rely on process knowl-
edge or experienced operators; however, with the expansion of the system scale, it is
difficult to judge first-out alarms by relying on manual experience. Therefore, this pa-
per proposes to utilize association rule mining and association analysis to detect first-out
alarms and export first-out rules. Figure 3 presents the framework of the proposed method.
There are three key steps: First, alarm association rules are mined from the historical alarm
database using FP-Growth and J-Measure. Then, first-out and subsequent alarms are deter-
mined from the association rules through a hypothesis test on the conditional probability
and the consistency check of alarm occurrence orders. Last, first-out rule screening criteria
are proposed to screen and consolidate first-out rules. The systematic solution for first-out
alarm detection will be detailed in the next section.
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3. Proposed Method for First-Out Alarm Detection

This section proposes the first-out alarm detection method based on the association
rule mining and correlation analysis. The method consists of three major steps, namely the
association rule mining, the determination of first-out subsequent alarms, and screening
and consolidation of first-out rules.

3.1. Alarm Association Rule Mining Based on FP-Growth and J-Measure

This subsection proposes an alarm association rule mining method based on the
Frequent Pattern Growth algorithm and J-Measure to detect interesting alarm association
rules from the historical sequences. Some basic concepts are defined as follows: The set of
unique alarms in an alarm system is denoted by I = {i1, i2, · · · in}. An alarm set X contains
at least one alarm in I, namely, X ⊆ I. The support degree θ(X) = Xsup is the percentage of
historical sequences containing X to the total number of sequences in the alarm database
D. An alarm set X is said to be a frequent alarm itemset if its support is no less than a
given minimum support threshold s, i.e., θ(X)≥ s. Given two alarm itemsets X, Y ⊆ I, the
confidence C is calculated as the ratio of the number of sequences containing both X and Y
to the number of sequences containing only X, i.e.,

C(X ⇒ Y) =
θ(X ∪ Y)

θ(X)
(3)

where θ(X ∪ Y) denotes the support for co-occurrences of X, Y ⊆ I in the historical se-
quences. An alarm association rule X ⇒ Y is obtained if the confidence is no less than a
given confidence threshold c, i.e., C(X ⇒ Y) ≥ c.

Given an alarm database D, the objective of alarm association rule mining is to find
strong association rules that satisfy the minimum support threshold and the minimum
confidence threshold. The process includes two main steps: (1) identify all the itemsets
P whose supports are no less than the support threshold, i.e., generating frequent item-
sets; and (2) form the association rules X ⇒ Y based on the frequent itemsets, such that
C(X ⇒ Y) ≥ c; such rules are named strong association rules.
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The FP-Growth algorithm is a compelling choice for mining alarm association rules
from alarm and event data due to its efficiency in handling sparse datasets, memory opti-
mization through the FP-tree structure, and scalability for large datasets [31,32]. Unlike the
Apriori algorithm, FP-Growth does not rely on explicit candidate generation, contributing
to its computational efficiency, particularly in scenarios where the dataset is sparse and
the number of potential patterns is high, making FP-Growth well-suited for mining alarm
association rules.

In addition, FP-Growth is a method designed for mining itemset patterns without
considering orders, other than for sequence mining. This is because in sequence mining, the
goal is to uncover sequential patterns with a focus on the order of items, which is essential
for tasks involving temporal relationships. By contrast, the FP-Growth algorithm does not
inherently handle temporal dependencies or ordered relationships between items. Instead,
it aims at identifying frequent, unordered sets of items and does not provide mechanisms
to explore patterns based on the temporal order of events. In this study, the FP-Growth
algorithm is adopted to mine frequent alarm itemsets first, from which association rules
can be generated by checking the confidence.

The FP-Growth algorithm does not generate candidate sets and obtains frequent
itemsets through a partitioning strategy with high computational efficiency [31,32]. In
FP-Growth, an FP-tree is constructed to store the frequent patterns. In the FP-tree, each
node consists of a node-name, node-count, node-chain, node-link, and node-parent [31].
The pseudo code of the FP-Growth algorithm is reproduced in Algorithm 1. The procedures
are explained as follows:

Algorithm 1. FP-Growth algorithm to produce the set of frequent alarm itemsets

Input: Alarm database D; Support threshold s
Output: Set of frequent alarm itemsets L

1. Build an item header table: Scan the database D to obtain L1 = {il|θ(il) ≥ s, l = 1, 2, . . ., |L1|},
and then put L1 into an item header table and sort it in a descending order based on
supports of alarms in L1.

2. Build FP-tree: Create the root node of an FP-tree, and label it as “null”. For each transaction
in D, the following steps are executed.

3. Set k = 1 and L = L1.
4. Iterative loop:
5. From the bottom of the item header table, sequentially find the conditional pattern base

Ik and its corresponding conditional pattern tree.
6. Mine and obtain frequent itemset Lk.
7. Update k = k + 1, L = L ∪ Lk.
8. Continue the loop until it is not possible to generate frequent sets or candidate sets.
9. Return L = {Lk: θ(Lk) ≥ s, Lk ⊂ I}.

(1) In line 1, it scans the alarm database D once to generate a set of frequent items and
calculate their supports, sort the items in a descending order based on their supports,
and generate a list of frequent items L1.

(2) In line 2, it creates the root node of FP-tree, labeled as “null”.
(3) In lines 3–8, for each alarm sequence in the database D, conduct the following steps:

1⃝ Arrange the frequent items in the sequence according to the order in which they
are listed, and denote the result of the arrangement as [b/B], where b is the first
item and B is the list of remaining items; 2⃝ call insert_tree([b/B], T); 3⃝ if B is not
empty, recursively call insert_tree(B, N); procedure insert_tree([b/B], T) is executed as
follows: if T has children such that N.node-name = b; then the count of N is increased
by 1; otherwise, a new node N is created with its node-name set to b, its node-count
set to 1, and its node-parent linked to its parent node T, and link it to a node with the
same node-name through the node-chain and node-link.
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(4) In line 9, all frequent itemsets L = {Lk : θ(Lk) ≥ s, Lk ⊂ I} are extracted from the
alarm database D.

As the number of obtained itemsets is large, only those closed patterns are reserved. A
frequent alarm itemset Pk1 is a closed itemset if θ(Pk1) ≥ s and there is no super pattern
Pk2 such that Pk1 ⊂ Pk2 with θ(Pk2) = θ(Pk1). Accordingly, for two frequent patterns
Pk1 ∈ L, Pk2 ∈ L, if it is found that θ(Pk1) ≥ s, θ(Pk2) = θ(Pk1), Pk1 ⊂ Pk2, then Pk1 is deleted
from L. For each frequent alarm itemset Pk ∈ L, the association rules are determined by
calculating the confidences using Equation (3) and comparing them with the minimum
confidence threshold, i.e., an association rule is given by

X ⇒ Y for X ⊂ Pk, Y ⊂ Pk, X ∪ Y = Pk, if θ(Pk) ≥ s & C(X ⇒ Y) ≥ c (4)

However, association rules satisfying the minimum support and minimum confidence
thresholds are not necessarily interesting; the frequent co-occurrences of X and Y do not
imply X and Y are dependent on each other, so a rule X ⇒ Y can be deceiving [33]. To dis-
card such deceiving rules, a third measurement is needed to determine the interestingness
of association rules, which can be achieved by correlation analysis. Since the support is
essentially the probability of the occurrence of an itemset, it is straightforward to apply
the information theoretic measure to assess the interestingness [34]. A basic information
measure is the Shannon Entropy, which measures the relative information content of an
itemset Y in the historical alarm sequences; it is defined as

H(Y) = −p(Y)log2 p(Y)− p
(
Y
)
log2 p

(
Y
)

(5)

where p(Y) and p
(
Y
)

represent the probabilities that Y is present and absent in the historical
sequences, respectively. To measure the correlation between X and Y, it needs to incorporate
the conditional probabilities p(Y|X) and p

(
Y
∣∣X)

. J-Measure as a scaled cross entropy can
be used to measure the amount of information that X gives about Y, and thus is adopted
here. J-Measure for X ⇒ Y is defined as [35]

J(X ⇒ Y) = p(X, Y)log2
p(Y|X)

p(Y)
+ p

(
X, Y

)
log2

p
(
Y
∣∣X)

p
(
Y
) (6)

where p(X, Y) and p
(
X, Y

)
denote the joint probabilities that X occurs with the presence

and absence of Y in the historical sequences, respectively. The range of J(X ⇒ Y) is
[0, 1], with 0 indicating that X provides no information about Y. A higher J(X ⇒ Y)
indicates stronger correlation between X and Y for a rule X ⇒ Y , and thus X ⇒ Y is more
interesting. Accordingly, those rules with J(X ⇒ Y) equal or close to 0 should be discarded.

3.2. Determination of First-Out Alarm and Subsequent Alarms

From the above subsection, interesting alarm association rules are obtained from the
historical sequences. Depending on the number of items, there are two types of rules:
(1) The “one-to-many” rule: Given ax ∈ I, S(ax) ⊂ I, ax ∪ S(ax) = Pk, there is ax ⇒ S(ax) ,
such that C(ax ⇒ S(ax)) ≥ c, where ax denotes a single alarm and S(ax) denotes a subset of
Pk that excludes ax; and (2) the “many-to-many” rule: given Ax ⊂ I, Ay ⊂ I, Ax ∪ Ay = Pk,
there is Ax ⇒ Ay , such that C

(
Ax ⇒ Ay

)
≥ c, where Ax and Ay are two different subsets

of Pk. As the first-out alarm is referred to as the first occurrence of an alarm in the alarm
set S(ax), it only needs to pay attention to the strong correlation rule of multiple alarms
occurring after the occurrence of a single alarm, i.e., “one-to-many” strong correlation rule,
i.e., ax ⇒ S(ax) with C(ax ⇒ S(ax)) ≥ c. As a result, the candidate association rules for
determination of first-out rules are restricted to a reasonable small number that can be well
handled by the user.

Based on the “one-to-many” strong association rules obtained by association rule
mining, this section determines whether each association rule is a first-out rule, which
is achieved through two major steps, namely, a hypothesis test on the conditional prob-
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ability for the first-out alarm and its subsequent alarms, as well as the occurrence order
consistency check.

According to the ISA-18.2 standard [25], a first-out alarm is defined as the alarm that
occurs for the first time in a series of alarms. Accordingly, for each alarm ax ∈ I and the set
S(ax) ⊂ I, a first-out rule is formulated as

ax ⇒ S(ax) : ∀ax ∈ I, S(ax) ⊂ I, S(ax) = ∅, t(ax) ≤ t(ay), ∀ay ∈ S(ax) (7)

where t(ax) indicates the time stamp of ax in a sequence of D. If ax occurs, alarms in the
alarm set S(ax) also occur after it; then, any alarm in the alarm set S(ax) is the subsequent
alarm of ax and alarm ax is the first-out alarm of S(ax).

In order to determine whether ax is the first-out alarm of S(ax), a hypothesis test is
needed to determine whether p(S(ax)/ax) = 1 or p(ax, S(ax)) = p(ax) holds. Analogous
to [23,26], given ax ∈ I, S(ax) ⊂ I, ax ∪ S(ax) = Pk, a hypothesis test is formulated as{

H0 : p(ax, S(ax)) = p(ax)
HA : p(ax, S(ax)) ̸= p(ax)

(8)

where p(ax, S(ax)) is the joint probability that alarms ax and S(ax) occur together as a
frequent itemset Pk in D; p(ax) indicates the probability that ax occurs in D. According
to [23], the log-likelihood ratio Λ can be estimated as

∼
Λ = lim

N→+∞
Λ = −2

[
k1log

k1 + k2

k1
+ k2log

k1 + k2

k2

]
(9)

where k1 and k2 denote the numbers of sequences containing ax and Pk in D, respectively.

Therefore, given a threshold η, if
∼
Λ > η, then the null hypothesis H0 does not hold, and

ax ⇒ S(ax) is not a first-out rule; otherwise, if
∼
Λ ≤ η, then the null hypothesis H0 holds,

and ax ⇒ S(ax) is a potential first-out rule.
Next, it should examine the order for the first-out alarm ax and its subsequent alarms

in S(ax). The frequent patterns Pk mined by the FP-Growth algorithm are disordered, while
the first-out alarm ax should be the earliest alarm that appears in the alarm set Pk. In order
to verify whether ax ⇒ S(ax) is a true first-out rule, it is necessary to check the order in
which the alarms ax and each alarm ay ∈ S(ax) appear in the original alarm sequences.

For any alarm sequence in the alarm database, if there exists an alarm ax that appears
before all the alarms in the alarm set S(ax), i.e., t(ax) ≤ t(ay), ∀ay ∈ S(ax), then ax ⇒ S(ax)
is a true first-out rule; otherwise, ax ⇒ S(ax) is not a first-out rule. Since alarm ax may
occur more than once in an alarm sequence, it needs to count how many times ax appears
before all ay ∈ S(ax) in the original sequences in D. Suppose there are M alarm sequences
in D and there are m sequences that meet t(ax) ≤ t(ay), ∀ay ∈ S(ax) for a potential first-out
rule ax ⇒ S(ax) . Then, the judgement condition to determine a potential first-out rule is
true is formulated as {

ax ⇒ S(ax) is a true rule, if m/M ≥ η2
ax ⇒ S(ax) is a false rule, otherwise

(10)

where η2 is a user-defined first-out alarm threshold; as a rule of thumb, the value of
η2 ∈ [0, 1] should be closer to 1.

3.3. Screening and Consolidation of First-Out Rules

In Section 3.2, the first-out rules are determined from the “one-to-many” association
rules that pass the hypothesis test on conditional probabilities and meet the requirement on
occurrence orders of alarms in the original sequences. However, there may exist redundant
rules that resemble each other. Accordingly, this subsection proposes first-out rule screening
criteria to judge whether the first-out rules are redundant or not, and consolidate the results
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by deleting and merging redundant rules. This paper extends the two scenarios in [26] to
three scenarios where first-out rules might be redundant and summarizes the first-out rule
screening criteria for the corresponding scenarios.

(1) Scenario 1: Different alarms ax and ay are the first-out alarms of the same alarm set
S(ax), i.e.,

ax ⇒ S(ax) , ay ⇒ S(ax) (11)

(2) Scenario 2: The first-out alarm ay is a subsequent alarm of another first-out alarm
ax, i.e.,

ax ⇒ S(ax) , ay ⇒ S(ay), ay ∈ S(ax) (12)

(3) Scenario 3: Alarm ax is the first alarm of different alarm sets S(ax) and S′(ay), but
there exists an intersection of alarm sets S(ax) and S′(ax), i.e.,

ax ⇒ S(ax), ax ⇒ S′(ax), S(ax) ∩ S′(ax) ̸= ∅ (13)

In order to reduce redundant rules, it needs to be determined whether the first-out
alarm rules under all the above scenarios should be retained or merged. For these different
scenarios, the first-out screening criteria are summarized as follows:

(1) In Scenario 1, it is known that ax ⇒ S(ax) , ay ⇒ S(ay) , ax /∈ S(ay), ay /∈ S(ax),
S(ax) = S(ay). Thus, for az ∈ S(ax), p(ax/ay) ̸= 1, p(ay/ax) ̸= 1, p(az/ay) = 1,
and p(az/ax) = 1. If ax ⇒ az implies ay ⇒ az and ay ⇒ az implies ax ⇒ az , then
ay ⇒ az and ax ⇒ az are redundant, and only one rule should be retained. Otherwise,
ay ⇒ az and ax ⇒ az are distinct rules, and should both be preserved. In this scenario,
it should be checked whether ax and ay are redundant or not, which can be achieved
through hypothesis test on p(ax, ay) = p(ax).

(2) In Scenario 2, it is known that ax ⇒ S(ax) , ay ⇒ S(ay), ay ∈ S(ax) . Then, S(ax) can

be extended to
∼
S(ax) = S(ax) ∪ S(ay), and thus we can obtain ax ⇒

∼
S(ax) , and it

needs to be determined whether to retain ay ⇒ S(ay) . If ay always occurs after ax,
then one of the rules is duplicated and ay ⇒ S(ay) should be deleted. Otherwise,
ay ⇒ S(ay) should be retained. In this scenario, it should be checked whether ax

and ay hold a strong causal relation; as ay must follow ax as reflected by ax ⇒ S(ax) ,
ay ∈ S(ax), it is still necessary to check whether ax and ay are redundant.

(3) In Scenario 3, it is known that ax ⇒ S(ax) , ax ⇒ S′(ax) , S(ax) ∩ S′(ax) ̸= ∅. Let
∼
S(ax) = S(ax) ∪ S′(ax); then it needs to be determined whether ax ⇒

∼
S(ax) is valid.

If ax ⇒ S(ax) occurs and also ax ⇒ S′(ax) occurs, then the two first-out rules can be

combined, i.e., ax ⇒
∼
S(ax) . Otherwise, both ax ⇒ S(ax) and ax ⇒ S(ay) should be

preserved. In this scenario, it should be checked whether all alarms in S(ax) ∪ S′(ax)
always appear together in historical sequences.

As a result, consolidated first-out rules are screened out from the initial rules by
deleting or merging redundant rules. Then, the user can focus on a smaller number of more
meaningful first-out rules, which can help the user to recognize the most important alarms
in a series of alarms and ignore invalid or redundant alarm notifications.

3.4. Discussions

This subsection mainly introduces the differences between the proposed method and
the existing alarm correlation analysis methods, discusses the scalability of the proposed
method, and then presents the challenges faced during the testing phase.

Even though the proposed method exploits correlation analysis for the detection of
first-out alarms, it is very different from the existing alarm correlation analysis methods as
the objectives and exploited strategies are disparate. To justify the novelty and superiority
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of the proposed method, Table 2 lists and compares it with existing approaches to alarm
correlation analysis. The differences lie in the following aspects:

Table 2. Comparison between the proposed first-out alarm detection method and the existing alarm
correlation analysis methods.

Method Objective Main Algorithms
and Strategies

Type of Data
Inputs

Detect
Relations in
Pair or Not

Consider
Orders or Not

Proposed first-out
alarm detection

method

Identify first-out
alarms and export

first-out rules

Association rule mining,
J-Measure, hypothesis test,

and screening criteria

Sequences of alarm
events No Yes

Alarm correlation
analysis in [4,5]

Detect correlated
alarms and

calculate similarity
coefficients

Cross-correlation function,
Sorgenfrei and

Jaccard coefficients

Binary valued
alarm signals Yes No

Alarm correlation
analysis in [7,8]

Detect correlated
alarms and

measure
correlation levels

Gaussian kernel function,
Pearson’s correlation

coefficient, and estimation
of correlation delay

Continuous valued
pseudo alarm

signals
Yes No

Alarm correlation
analysis in [9,10]

Detect correlated
alarms and

measure
correlation levels

Cross-correlation function,
partition of time

sequences, matching of
sequence blocks

Time-stamped
alarm signals Yes No

Alarm correlation
analysis in [11]

Detect correlated
alarms and

measure
correlation levels

Calculation of
conditional probabilities

Multi-alarm-state
sequences Yes No

(1) The exploited data types are different. The data for alarm correlation analysis are
binary alarm time series over a certain consecutive period. Regarding first-out alarm
detection, the required data are essentially a collection of alarm sequences.

(2) The objectives are different. The proposed method aims at identifying first-out alarms
and exporting first-out rules, whereas existing alarm correlation analysis methods
measure and export the correlations between alarms.

(3) The principles are different. The detection of first-out alarms usually involves multiple
alarms and requires alarm order information, while existing alarm correlation analysis
methods only explore the correlation between two alarms and do not consider orders
between alarm occurrences.

It can be seen that even though first-out rules imply alarm correlations, there are obvi-
ous differences between the detection methods. Well-formulated existing alarm correlation
analysis cannot be applied for identification of first-out alarms. Thus, the proposed method
is specially designed and exhibits significant novelties in detecting first-out alarms.

Further, in real-world applications, the testing phase for the proposed method for
detecting first-out alarms may encounter some limitations and challenges that could impact
the accuracy and reliability of the results. Here, three challenges are summarized:

(1) Time stamps of alarm events are key information. Inaccurate or inconsistent time
stamps can lead to misinterpretations of the temporal order of alarms.

(2) Noisy or incomplete historical data may hinder the ability to accurately assess and
validate the first-out alarm detection method.

(3) Transitioning the method from a testing environment to a real-time implementation
may pose scalability challenges.

Thus, addressing these challenges during the testing phase is essential for refining and
improving the robustness of the first-out alarm detection method, ensuring its effectiveness
in diverse industrial environments. In view of the first two challenges, the foremost step
is to improve the data quality, which can be achieved by reducing chattering alarms and
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removing incomplete messages in the historical alarm data. Furthermore, the scalability
challenges can be handled according to the following discussion.

When implementing the proposed method for detection of first-out alarms, scalability
must be considered as the volume of alarm data can be massive in real-world industrial
systems. Thus, for application to large-scale systems, the following guidelines in terms of
computational resources and runtime can be considered:

(1) The data retrieval process can be optimized by using a database indexing system and
leveraging efficient data structures such as hash tables or tree structures, to expedite
the search for the earliest occurrences of each alarm.

(2) Data pruning or filtering can be applied first to preprocess the alarm data and elimi-
nate redundant information; thus the computational burden in the subsequent analysis
can be reduced.

(3) The detection task can be portioned into sub-tasks based on the units or groups
that alarms belong to, and thus the proposed method can work efficiently for each
sub-task.

4. Case Study

In this section, alarm data obtained from a public industrial simulation model are used
to validate the effectiveness of the proposed first-out alarm detection method.

4.1. Experiment Preparation

The Vinyl Acetate Monomer (VAM) industrial simulation model is based on a typical
full-flow open-source chemical platform, which has a full set of standard units required for
the production of VAM [36,37]. The model can simulate the actual chemical production,
providing users with a realistic operating environment. Both steady and unsteady states
are available in the simulation model, which is implemented through a visual modeler
that allows the introduction of anomalies in steady-state operation, a real time window
monitor that allows the user to monitor the process and equipment operating status, and
a data interface to extract data for analysis and secondary processing. The industrial
simulation model of “Visual Modeler” is available through Omega Simulation Co., Ltd.’s
website at www.omegasim.co.jp (accessed on 15 December 2023). The user can activate
single/multiple faults manually or automatically at any time and adjust the impact of
disturbances or faults by setting status parameters including variable percentage, time
constant, and fault mode.

The process flow diagram of the VAM simulation model is shown in Figure 4. It
consists of eight sections, namely the Raw Material Feed, Reactor, Separator and Com-
pressor, Absorber, Buffer Tank, CO2 Remover and Purge Line, Distillation Column, and
Decanter [36–38]. The Raw Material Feed section introduces raw materials into the Reactor,
where they undergo mixing to produce the VAM product. Then, the Separator divides the
gas exiting the reactor into the VAM crude and recycle gas; the latter is compressed and
circulated by the Compressor. Next, the Absorber absorbs the uncompressed VAM from
the recycle gas and feeds the compressed crude to the Buffer Tank, which then feeds the
crude to the Distillation Column. The CO2 Remover and Purge Line eliminates Carbon
Dioxide, a by-product, and replenishes Ethane from the recycle gas to the raw material
feed. The Distillation Column separates the crude into a VAM–Water mixture and acetic
acid. Last, the Decanter separates the liquid VAM and water.

www.omegasim.co.jp
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To extract alarm data, a simulated alarm system is configured by setting alarm thresh-
olds for the monitored process variables based on the setting in [38,39]. The model has
14 types of disturbances and 22 types of faults. In the data acquisition, the configuration
time of the faults was set to vary from 20 to 60 min. Then, 130 alarm sequences were
extracted by triggering the faults; among the 22 fault types, 13 faults were associated
with significant long sequences and thus were used. Details about generating alarm data
can be found in [38,39]. Given the collected data generated from the VAM, the proposed
first-out alarm detection method was exploited to extract the frequent patterns in the alarm
sequences, keep the interesting association rules, and obtain the first-out rules. The specific
experimental steps are as follows:

(1) The method in Section 3.1 was applied to extract alarm association rules. The min-
imum support degree and the minimum confidence level were set to 0.95 and 0.99,
respectively. Initially, a total of 673,588 frequent patterns could be obtained. By
keeping only closed alarm patterns and then identifying interesting association rules,
3104 rules were reserved from the historical alarm sequences.

(2) The method in Section 3.2 was exploited to determine first-out rules. In the hypothesis
test, the significance level was set to 0.05, and the corresponding χ2 threshold η was
3.84. The satisfaction rate threshold η2 was set as 0.9. As a result, 1746 first-out rules
were identified based on the interesting alarm association rules.

(3) The method in Section 3.3 was utilized to screen and consolidate first-out rules, so as
to reduce the redundancy in the results. Eventually, 204 consolidated first-out rules
were received.

Figure 5 presents the numbers of extracted alarm association rules, first-out rules, and
consolidated first-out rules according to the steps in Section 3.1, Section 3.2, and Section 3.3,
respectively. It can be seen that the reduction in rules is significant, making the first-out
rules in the final results less redundant. It should be noticed that validating the results is a
common and difficult problem in data mining [21–24]. It usually exploits standard metrics
such as support and confidence to evaluate whether the data mining is effective. In this
case study, all the extracted first-out rules satisfy both the minimum thresholds, implying
that the results are significant and reasonable. However, verifying the correctness of the
extracted rules is hard because the exploited data are unlabeled and sufficient knowledge
is required for verification. Accordingly, some examples of first-out rule screening under



Entropy 2024, 26, 30 14 of 19

different scenarios are presented in the following subsections, and the correctness of the
results is verified by process knowledge of the alarms.
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Figure 5. Numbers of extracted alarm association rules, first-out rules, and consolidated first-out
rules according to the steps in Section 3.1, Section 3.2, and Section 3.3, respectively.

4.2. Scenario 1

In Scenario 1, different alarms ax and ay are the first-out alarms of the same alarm set
S(az); it then needs to be determined whether ax ⇒ S(az) and ay ⇒ S(az) are redundant.
Two different results are presented. In Figure 6, alarms TC202.PVHI and TC202.MVLO are
the first-out alarms for FC170.PVLO, but they hold a redundancy relationship. Thus, only
one of them is kept by merging the two rules into one. The same conclusion is also drawn
for first-out rules TP201PV(6).PVHI ⇒ QI400.PVHI and QI204.PVHI ⇒ QI400.PVHI, as they
hold significant redundancy according to the hypothesis test. In Figure 7, TP201PV(6).PVHI,
TP401PV(4).PVHI, and TP401PV(5).PVHI are the first-out alarms for PC210.PVLL, and
after hypothesis testing, it is found that there is no redundancy relationship among the
three, so that all the three rules need to be retained.
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Figure 6. An example of first-out rules that should be merged under Scenario 1.
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To validate the result, it needs to be determined how these alarms are generated to form
such relations. Regarding the result in Figure 6, TC202.PVHI and TC202.MVLO indicate
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that the control variable and the manipulating variable of the same process tag (namely,
the temperature of the reactor’s catalyst bed) increase and exceed the alarm thresholds,
triggering the two alarms. The two alarms are related to the same tag and always occur
almost simultaneously. Further, the alarm FC170.PVLO denotes that the oxygen feed flow
rate decreases when the temperature of the reactor’s catalyst bed becomes abnormal, and
accordingly, FC170.PVLO happens after TC202.PVHI and TC202.MVLO. Thus, the result in
Figure 6 is reasonable.

In Figure 7, TP201PV(6).PVHI, TP401PV(4).PVHI, and TP401PV(5).PVHI denote that
the temperatures in the reactor (sensor 6), absorber (sensor 4), and absorber (sensor 5) reach
a high level and exceed the high alarm limits, thus triggering the corresponding alarms. The
alarm TP201PV(6).PVHI is located at a different unit compared to TP401PV(4).PVHI and
TP401PV(5).PVHI, and thus their occurrences are not correlated. Alarms TP401PV(4).PVHI
and TP401PV(5).PVHI are located at different positions of the reactor and thus also have
low correlations. Whenever one of the above temperatures reaches a high level, the pressure
controller PC210 in the reactor responds to export low values and triggers the extremely
low alarm PC210.PVLL. Thus, the result in Figure 7 is reasonable.

4.3. Scenario 2

In Scenario 2, the first-out alarm ay is the consequential alarm of another first-out
alarm ax, i.e., ax ⇒ S(ax), ay ⇒ S(ay) , ay ∈ S(ax). Under this scenario, an example of
first-out rules that should be merged is presented. In Figure 8, TP201PV(6).PVHI is the
first-out alarm for QC170.PVLL and QI200.PVLL, and TC202.PVHI is the first-out alarm for
TP201PV(6).PVHI, QC170.PVLL and QI200.PVLL. Thus, it needs to be determined whether
these two first-out rules should be merged into one first-out rule. According to the hypoth-
esis test, it is found that these two first-out rules hold a significant redundancy relationship
and thus should be merged into one first-out rule, i.e., TC202.PVHI ⇒ {TP201PV(6).PVHI,
QC170.PVLL, QI200.PVLL}.
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In this scenario, QC170 denotes the oxygen density of the raw material feed with
the fresh oxygen feed, TP201PV(6) indicates the temperature in the reactor, and QI200
represents the oxygen concentration from the reactor outlet gas to the separator. When the
controlled temperature of the reactor’s catalyst bed reaches a high level and goes beyond
the high alarm limit, the alarm TC202.PVHI is triggered. As a result, the temperature in
the reactor increases to trigger TP201PV(6).PVHI; by contrast, QC170 and QI200 decrease
drastically to trigger QC170.PVLL and QI200.PVLL, respectively. Thus, the result in Figure 8
is reasonable.
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4.4. Scenario 3

In Scenario 3, alarm ax is the first-out alarm of different alarm sets S(ax) and S′(ax),
but there exists an intersection of alarm sets S(ax) and S(ay), i.e., ax ⇒ S(ax) , ax ⇒ S′(ax) ,
and S(ax) ∩ S′(ax) ̸= ∅. Then, it needs to be judged whether ax ⇒ S(ax) and ax ⇒ S′(ax)
are redundant. From the studied dataset, two different results were obtained under Scenario
3. In Figure 9, TP201PV(6).PVHI is the first-out alarm for QC170.PVLL and QI200.PVLL,
the first-out alarm for QC170.PVLL and QI204.PVHI, and also the first-out alarm for
QI204.PVHI and QI400.PVHI. It has been validated that all these subsequent alarms appear
together in historical sequences with a high probability, and thus they are merged into one
rule TP201PV(6).PVHI ⇒{QC170.PVLL, QI200.PVLL, QI204.PVHI, QI400.PVHI}.
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In the scenario of Figure 9, when the temperature of the reactor reaches a high level
and triggers the alarm TP201PV(6).PVHI, four quality- or composition-related alarms
(QC170.PVLL, QI200.PVLL, QI204.PVLL, and QI400.PVLL) are very likely to occur after-
ward. Here, QI204 denotes the AcOH concentration from the reactor outlet gas to the
separator and QI400 indicates the oxygen concentration from the recycle gas to the reactor
outlet gas cooler. These process tags are highly associated with respect to the material flow
and are related to the temperature abnormality in the reactor. Thus, the obtained result in
Figure 9 is reasonable.

In Figure 10, TC202.PVHI is the first-out alarm for FC170.PVLO, PC210.PVLL, QC170.PVLL,
and QI200.PVLL. It is also the first-out alarm for PC210.PVHI, PC210.PVLL, TC201.PVHI, and
QI200.PVLL. It has been validated that these subsequent alarms appear together in historical
sequences with a low probability, and thus both of the first-out rules should be retained.
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The obtained result in this scenario is reasonable because of the following reason.
There are various causes of the high control temperature of the reactor’s catalyst bed. In
different occasions, the severities could be different. As a result, different subsequent
alarms may appear. In the upper subplot, the controlled oxygen feed flow rate FC170 and
the oxygen density QC170 reach a low level due to the reaction of the closed loop control. In
the lower subplot, the controller pressure and temperature in the reactor increase due to a
different control strategy. It should also be noted that PC210 and QI200 are highly correlated
with TC202, and thus PC210.PVLL and QI200.PVLL always appear after TC202.PVHI.

5. Conclusions

This paper proposes a first-out alarm detection method based on association rule
mining and correlation analysis. First, an alarm association rule mining method based on
FP-Growth and J-Measure is proposed to extract interesting alarm association rules from
historical sequences. Then, the first-out alarms and subsequent alarms are determined
through correlation analysis in the form of a hypothesis test on the conditional probability
for alarm occurrences. Last, criteria for screening and consolidation of first-out rules are
presented to merge redundant first-out rules and delete invalid rules. The proposed method
was tested via a case study with data obtained from a public chemical simulation plant.
According to the results, the proposed method successfully detected the first-out rules
based on the strong association rules mined from the historical alarm sequences. Such
results would provide decision-making support for the design and operation of the alarm
system, so as to reduce nuisance alarms and alleviate alarm overloading problem.

There exist some problems in this research that deserve future exploration: (1) Vali-
dating results is a common and difficult issue for data mining methods, and developing
an effective way to measure the accuracy of the first-out rules in this work rather than
relying on process knowledge is a hard problem that should be explored. (2) Future
work could focus on exploring the scalability of the proposed first-out alarm detection
method for large-scale industrial alarm datasets. (3) Integrating insights from domain ex-
perts and conducting case studies in real-world industrial settings could provide valuable
context-specific refinements for broader utility.
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