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Abstract: Errors are common issues in quantum computing platforms, among which leakage is one
of the most-challenging to address. This is because leakage, i.e., the loss of information stored in the
computational subspace to undesired subspaces in a larger Hilbert space, is more difficult to detect
and correct than errors that preserve the computational subspace. As a result, leakage presents a
significant obstacle to the development of fault-tolerant quantum computation. In this paper, we pro-
pose an efficient and accurate benchmarking framework called leakage randomized benchmarking (LRB),
for measuring leakage rates on multi-qubit quantum systems. Our approach is more insensitive to
state preparation and measurement (SPAM) noise than existing leakage benchmarking protocols,
requires fewer assumptions about the gate set itself, and can be used to benchmark multi-qubit leak-
ages, which has not been achieved previously. We also extended the LRB protocol to an interleaved
variant called interleaved LRB (iLRB), which can benchmark the average leakage rate of generic
n-site quantum gates with reasonable noise assumptions. We demonstrate the iLRB protocol on
benchmarking generic two-qubit gates realized using flux tuning and analyzed the behavior of iLRB
under corresponding leakage models. Our numerical experiments showed good agreement with the
theoretical estimations, indicating the feasibility of both the LRB and iLRB protocols.

Keywords: quantum computing; randomized benchmarking; leakage error; quantum gates

1. Introduction

Quantum computation maps information processing into the manipulation of (typi-
cally microscopic) physical systems governed by quantum mechanics. Although quantum
computation holds the promise to solve problems that are believed to be classically in-
tractable, practical quantum computation suffers from various noise sources, ranging
from fabrication defects and control inaccuracies to fluctuations in external physical en-
vironments. Such noise greatly hinders the practicability of quantum computation on
unprotected, bare physical qubits beyond proof-of-concept demonstrations.

While any kind of error is unwanted and would possibly affect the quality of the
computation processes, there is a significant difference between the harmfulness of dif-
ferent types of errors. The most “benign” error happens locally and independently on
single qubits; such errors can, in principle, be compressed arbitrarily with quantum er-
ror correction under reasonable assumptions on the error rates [1,2]. More-malicious
errors might introduce time correlations (e.g., non-Markovian errors) or space correlations
(e.g., crosstalk) and are more challenging to mitigate. Of particular interest is the leakage
error, where a piece of quantum information escapes from a confined, finite-dimensional
Hilbert space used for computation, called the computational subspace, to a leaked subspace of
a larger Hilbert space. Such escaped information might undergo arbitrary and uncontrolled
processes and is harder to detect, let alone correct. More seriously, typical frameworks
of quantum error correction only deal with errors happening within the computational
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subspace and are either unable to be applied or scale poorly with the leakage error. It is,
thus, of great importance to be able to detect, correct, or even suppress leakage errors in
order to conduct large-scale quantum computation.

This paper focuses on estimating the leakage error rate associated with a given quan-
tum processor, preferably efficiently and accurately. This task is part of a process usually
referred to as benchmarking, providing an estimate of certain characteristics of a piece of the
quantum device before proceeding with subsequent actions. In the context of leakage bench-
marking, the information can be used as a criterion to accept or abort a newly fabricated
quantum processor or as feedback information on leakage-suppressing gate schemes.

Given the diverse nature of errors occurring in quantum computation, many different
benchmarking schemes have been proposed over the years. A large class of benchmark-
ing schemes, collectively called randomized benchmarking (RB), extracts error information
from the fit result of multiple experiments with different lengths [3–14]. Compared to
tomography-based methods or direct fidelity estimation [15,16], RB schemes are typically
more gate-efficient, and the fitting results are typically insensitive to state preparation
and measurement (SPAM) errors, making them ideal candidates for benchmarking gate
errors. These protocols have been successfully implemented in many quantum experi-
ments [17–21].

The first theoretical framework for RB-based leakage benchmarking was given by
Wallman et al. [22]. Without any prior assumption on the SPAM noise, this protocol was
able to provide an estimate for the sum of the leakage rate and the seepage rate, i.e., the rate
information in the leaked subspace comes back to the computational subspace. Refs. [8,23]
later gave a detailed analysis of the protocol and illustrated this framework with several
examples relevant to superconducting devices. The authors were also able to differentiate
the leakage from the seepage with reasonable assumptions on the SPAM noise. Based
on these protocols, several experimental characterizations of single-qubit leakage noise
have been proposed in superconducting quantum devices [24,25], quantum dots [26],
and trapped ions [27].

There are two major limitations to the existing protocols [8,11,22,23]. First, all pro-
tocols require that the quantum gates act nontrivially on the leakage subspaces, in order
to eliminate non-Markovian behavior originating from residual information stored in the
leakage subspace. As most practical gate schemes only focus on their actions on com-
putational subspaces rather than the leakage subspaces, leakage benchmarking schemes
built upon them typically do not work in general, multi-qubit quantum systems. Second,
most existing protocols can only estimate the sum of the leakage rate and the seepage rate
without prior knowledge of SPAM noise, and the SPAM information is required if we need
to obtain the leakage and seepage rates separately. As there is typically only one set of state
preparation and measurements within one run of benchmarking, the SPAM errors do not
become amplified and cannot be measured accurately [28]. Such inaccuracy would further
affect the accuracy of gate leakage rate estimation. A natural question arises: How can one
characterize the leakage rate of a multi-qubit system without operating the leakage subspace while
maintaining robustness to SPAM noise?

In this paper, we propose a leakage benchmarking scheme based on RB, dedicated to
benchmark leakage rates on multi-qubit systems. Compared to existing protocols requiring
the leakage subspace to be fully twirled, our scheme only requires having access to the
Pauli group with gate-independent, time-independent, and Markovian noise. Assuming
each qubit has only one-dimensional leakage space, such a gate set does not twirl the
leakage subspace as a whole, but instead twirls each invariant subspace of the Pauli
group individually. This allows us to formulate the LRB process as a classical Markovian
process between different invariant subspaces, which can be described by a Markovian
Q-matrix [29]. The leakage and seepage rates of the system can then be estimated by
leveraging the spectral property of the Markovian process, which can, in turn, be estimated
similarly to RB protocols on the computational subspace.
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The Q-matrix has a dimension exponential with respect to the number of qubits
in general, and thus, the spectral property is hard to measure using LRB experiments.
To further simplify the problem, we studied the spectrum of the Q-matrix in two physically
motivated scenarios: The first model, named leakage damping noise, assumes that leakage
happens at most one qubit and leakage does not “hop” from one qubit to another, which
is the generalization of amplitude damping noise [30] in the computational subspace; the
second model assumes that each qubit undergoes an independent leakage process. In both
cases, the spectral property of the Q-matrix can be significantly simplified and easier for
data analysis. We also show how to calculate the corresponding average leakage rates
on the above two noise scenarios of the proposed LRB protocol. As an illustration of the
leakage damping noise model, we found that the noise model of commonly used two-qubit
gates such as iSWAP, SQiSW, and CZ gates belongs to this form.

Building upon the foundation of leakage randomized benchmarking (LRB) protocols,
we delve deeper into the study of leakage benchmarking for specific multi-qubit gates,
which is a crucial aspect of quantum hardware development. To this end, we propose
an interleaved variant of the LRB (iLRB) protocol that allows for the benchmarking of
individual gates, rather than a set of gates. We show that the leakage rate can be extracted
in general for arbitrary target gates with access to noiseless Pauli gates and performed
a more-careful analysis when Pauli gates were implemented as noisy. In addition, we
show that the leakage rate of the target gate can still be extracted under certain physically
motivated assumptions that inherently apply to flux-tuning gates in superconducting
quantum computation. To demonstrate the applicability of the iLRB protocol, we applied
it to the case of flux tunable superconducting quantum devices [31], constructed its noise
model, and benchmarked the leakage rate of the iSWAP gate.

This paper targets both theorists and experimentalists, as it seeks to establish an
experiment-friendly leakage benchmarking scheme. We offer a thorough theoretical analy-
sis for multi-qubit scenarios, as well as a numerical verification of the average leakage rate
for the iSWAP gate. This was achieved by extracting the noise model of the iSWAP gate
from its Hamiltonian evolution.

In Section 2, we introduce the fundamental concepts and notations. Section 3 presents
our LRB protocol and analyzes the calculation of the average leakage rate using this
method. In Section 4, we provide a detailed examination of the average leakage rate under
two leakage models: single-site leakage and no crosstalk. Section 5 proposes the iLRB
protocol for any target gate that commutes with the noise channel, focusing on a special
leakage damping noise. In Section 6, we numerically validate the LRB and iLRB protocols.
Additionally, we introduce the leakage damping noise model for iSWAP/SQiSW/CZ gates
in flux-tunable superconducting quantum devices, based on their Hamiltonian evolution.
We also tested the iLRB protocols numerically using the noise model of the iSWAP gate.
Finally, Section 7 concludes the paper with a discussion of our work and suggestions for
future research directions.

2. Notations

In order to characterize leakage, we assume that the quantum states lie in a Hilbert
space H with finite dimension d that decomposes into a computational and a leakage subspace,
denoted as Hc and Hl respectively. Let dc := dim(Hc) and dl := dim(Hl) = d − dc be the
dimensions of Hc and Hl . Unless explicitly specified, we assume throughout the paper
that a single qubit (site) lies in a three-dimensional Hilbert space with basis {|0⟩, |1⟩, |2⟩},
where the computational subspace is spanned by {|0⟩, |1⟩} and the leakage subspace by
{|2⟩}. In other words, higher-level excitations of a qubit can be ignored. We call such a
system a single qubit with leakage.

A composite system of n qubits with leakage lies in a Hilbert space H =
⊗n

k=1(Hck ⊕
Hlk ), where Hck (Hlk ) represents the computational (leakage) subspace of the qubit k. We
define the computational subspace of H be where no qubits leaks, that is, Hc =

⊗n
k=1 Hck .

Hence d = 3n, and dc = 2n. The projector on the computational subspace Πc = ⊗n
k=1Πck is
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a tensor product where Πck is the projector onto the computational subspace on the k-th
qubit. Note that the projector onto the leakage subspace on the k-th qubit is Πlk = |2⟩⟨2| and
the projector onto the leakage subspace Πl := I− Πc ̸= ⊗n

k=1Πlk , where I is the identity
operator on H. For each i = (i1, i2, · · · , in) ∈ {c, l}n, we define Hi :=

⊗n
k=1 Hik to be the

subspace where qubit k is leaked if and only if ik = l. The corresponding projector onto Hi
is Πi := ⊗n

k=1Π(ik)k
. Note that H =

⊕
i∈{c,l}n Hi,Hc = Hcn , and Hl =

⊕
i ̸=cn Hi. For each

Hilbert space Hi, denote Π̃i := Πi/ dim(Hi) the trace-normalized projector associated to
the projector Πi.

We assume the noise of interest to be Markovian and time-independent throughout
this paper. Given an ideal unitary U ∈ U(dc), we denote U (·) := (Πl ⊕ U) · (Πl ⊕ U†) as
the corresponding ideal unitary channel acting on the whole space. Given a completely
positive trace-preserving (CPTP) channel Û characterizing the noisy implementation of U ,
we further denote Λ := U † ◦ Û as the noise information of U accounting leakage. Note that
Û = U ◦ Λ as U is a unitary channel. The average leakage and seepage rates of a channel Λ
are defined as [23]

Lave(Λ) = Tr
(

ΠlΛ(Π̃c)
)

; (1)

Save(Λ) = Tr
(

ΠcΛ(Π̃l)
)

. (2)

We often write Lave and Save when the noise channel Λ being referred to is unambiguous.
Unless explicitly specified, we use the term “leakage noise” to represent both leakage and
seepage errors.

The Pauli group with phase P < U(2) is defined as ±{1, i} × {I, X, Y, Z}, where
X, Y, Z are 2 × 2 Pauli-X/Y/Z matrices respectively. Let Pn := P×n < U(2)×n. For an
element P =

⊗
i Pi ∈ Pn, its corresponding ideal unitary channel in the full space is defined

as P :=
⊗

i Pi. For sake of simplicity, we identify the element P with its corresponding
ideal channel P , and use P̂ as a shorthand for the corresponding noisy implementation
P ◦ Λ.

Inspired by the Pauli-transfer matrix (PTM) representation [32], here we define the
condensed-operator representation |·)) of linear operators as the Liouville representation [33]
with respect to the orthonormal operator basis I = {Πi/

√
dim(Hi)}i∈{c,l}n . The basis is

not complete in the sense that it does not span L(H); for a linear operator ρ not lying in
the span of I , |ρ)) is understood as the projection of ρ onto the span of I followed by the
vectorization, that is,

|ρ)) := |P̄(ρ))),

where P̄ : L(H) → span(I); P̄(ρ) := ∑i Tr(Πiρ)Π̃i is the twirling projector from L(H) to
span(I).

For sake of clarity, in the following, we represent the condensed operator represen-
tations under the basis {|Π̃i))}i, and the adjoints under the basis {((Πi|}i. Note that((

Πi|Π̃j

))
= δij. Under such basis choice, for a generic linear operator A ∈ L(H),

we have
|A)) = ∑

i
Tr(Πi A)|Π̃i)) and ((A| = ∑

i
Tr
(

Π̃i A†
)
((Πi|.

For a superoperator Λ, the corresponding condensed operator representation is then

QΛ := ∑
i,j

Tr
(

ΠiΛ(Π̃j)
)
|Π̃i))((Πj|. (3)

Since I does not form a complete basis, compositions of condensed operator repre-
sentations do not directly translate to compositions of the corresponding linear operators;
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rather they translate to compositions of the twirled versions of the corresponding linear
operators through the twirling projector P̄ . More specifically, we have

QΛ1 QΛ2 = QΛ1◦P̄◦Λ2
, (4)

QΛ|ρ)) = |(Λ ◦ P̄)(ρ))), (5)

((M|QΛ|ρ)) = Tr
(

M · (P̄ ◦ Λ ◦ P̄)(ρ)
)
. (6)

We denote [n] := {1, . . . , n} throughout the paper.

3. Leakage Randomized Benchmarking Protocol

Here we present a leakage randomized benchmarking protocol that does not require
actions on the leakage subspace or assumptions about SPAM errors. Our protocol is
based on the assumption that the noise, represented by the operator Λ, is Markovian,
time-independent, and gate independent. We further assume we have access to a noisy
measurement operator Π̂c close to the projector to the computational subspace Πc.

(1) Given a sequence length m, sample a sequence of m Paulis P1, . . . ,Pm from Pn uni-
formly i.i.d., and perform them sequentially to a fixed (noisy) initial state ρ̂0, obtaining
P̂m ◦ · · · ◦ P̂1(ρ̂0). Measure the output state under Π̂c and estimate the probability
pΠc(P1, . . . ,Pm) = Tr

(
Π̂cP̂m ◦ · · · ◦ P̂1(ρ̂0)

)
through repeated experiments.

(2) Repeat Step (1) multiple times to estimate pΠc(m), the expectation of pΠc(P̂1, . . . , P̂m)
under random choices of P1, . . . ,Pm from Pn.

(3) Repeat Step (2) for different m, and fit {(m, pΠc(m))} to a multi exponential decay
curve pΠc(m) = ∑i Ai · λm

i .

The average leakage rate Lave and seepage rate Save are estimated with the fitted
exponents λi. The number of exponents for pΠc(m) depends on the specific noise model of
Λ. In the following, we will show the explicit representation of E[pΠc(m)] and λi.

The Pauli group Pn can twirl any quantum state in computational subspace to the
maximum mixed state [34,35], i.e., 1

|Pn | ∑Pc∈Pn Pc(ρc) = Tr(ρc)Π̃c, where ρc ∈ L(Hc) is a
quantum state in computational subspace. Here we expand the twirling of a Pauli group
from computational subspace to the entire Hilbert space, as shown in Lemma 1.

Lemma 1. Let P̄ be the twirling projector such that P̄(ρ) = ∑i Tr(Πiρ)Π̃i for any quantum state
ρ. Then it can be equivalently represented as the expectation of all the Pauli channels,

P̄ =
1

|Pn| ∑
P∈Pn

P . (7)

Lemma 1 can be obtained from the twirling properties of Pauli group Pn in the compu-
tational subspace. We postpone the proof of Lemma 1 into Appendix A. With Lemma 1, we
can construct the connections of Lave, Save and the multi-exponential decay curve pΠc(m),
as shown in the following theorem.

Theorem 1. Given Pauli group Pn with gate-independent leakage error channel Λ, the aver-
age output probability in LRB protocol pΠc(m) = ((Π̂c|Qm−1|ρ̃0)), where Q := QΛ is the
condensed-operator representation of Λ and ρ̃0 is some noisy state determined by the input state
ρ̂0. The average leakage rate equals Lave = 1 − Qcn ,cn and the average seepage rate equals
Save = 1

3n−2n ∑i ̸=cn dim(Πi)Qcn ,i.
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Proof. Let P1, . . . ,Pm be the ideal gate elements sampled from Pn. Then the expectation of
the probability for measuring computational basis equals

pΠc(m) =
1

|Pn|m ∑
P1,...,Pm∈Pn

Tr
(
Π̂cP̂m ◦ · · · ◦ P̂1(ρ̂0)

)
(8)

= Tr

(
Π̂c

(
1

|Pn| ∑
P∈Pn

P ◦ Λ

)m

(ρ̂0)

)
(9)

= Tr
(

Π̂c
(
P̄ ◦ Λ

)m
(ρ̂0)

)
(10)

= Tr
(

Π̂c
(
P̄ ◦ Λ

)m−1P̄ ◦ Λ(ρ̂0

)
) (11)

= Tr
(

Π̂cP̄ ◦ (Λ ◦
(
P̄ ◦ Λ

)m−2
) ◦ P̄ ◦ Λ(ρ̂0)

)
(12)

= ((Π̂c|QΛ◦(P̄◦Λ)m−2 |ρ̃0)) (13)

= ((Π̂c|Qm−1
Λ |ρ̃0)). (14)

where ρ̃0 := Λ(ρ̂0), ρ̂0 is the input state with state preparation noise. Equation (10) holds
by Lemma 1; Equations (13) and (14) follows from Equations (6) and (4) respectively.

By the definition of Q, we have Qi,j = Tr
(

ΠiΛ(Π̃j)
)

. Moreover, for every j it
holds that

∑
i

Qi,j = Tr
(

Λ(Π̃j)
)
= Tr

(
Π̃j

)
= 1

since Λ preserves the trace. This indicates that Q is a Markov chain transition matrix. By the
definitions of Lave and Save in Equation (2), we have

Lave = Tr
(

ΠlΛ
(

Π̃c

))
= ((Πl |Q|Π̃c)) = ∑

i ̸=cn
((Πi|Q|Π̃c)) = 1 − Qcn ,cn (15)

and

Save = Tr
(

ΠcΛ
(

Π̃l

))
(16)

= ∑
i ̸=cn

Tr
(

ΠcΛ
(

dim(Hi)

dl
Π̃i

))
(17)

=
1

3n − 2n ∑
i ̸=cn

dim(Hi)Qcn ,i. (18)

Theorem 1 demonstrates that Pauli-twirled quantum channels with leakage can be
represented as Markov chains operating on distinct leakage subspaces, including the
computational subspace itself. The leakage properties can be inferred from the spectral
characteristics of the transition matrix, akin to analyses of RB protocols in the computational
space [36]. However, this framework does not directly provide an easily applicable LRB
scheme, as the transition matrix Q typically has a dimension of 2n, resulting in complex
matrix exponential decay behavior as the number of qubits increases.

Nonetheless, estimating the leakage rate can be significantly simplified in scenarios
where the number of qubits is small enough to allow manageable matrix exponential decay
or when additional assumptions can be made about the leakage behavior. In the subsequent
sections, we propose several physically relevant leakage noise models with straightforward
theoretical exponential decay curves suitable for experimental implementation.
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4. Average Leakage Rate for Specific Noise

In this section, we present two specific leakage noise models—single-site leakage
damping noise and crosstalk-free leakage noise. We also provide the respective average
leakage rates for each model.

In the following, we investigate the average leakage rate for specific leakage noise
where leakage only happens on a single site (qubit). For any 1 ≤ i ≤ n, we define

Bi = {a ∈ {0, 1, 2}n|ai = 2; aj ∈ {0, 1}, ∀j ̸= i}

such that {|k⟩}k∈Bi
forms a basis of the specific leakage subspace Hci−1lcn−i where only the

qubit i is leaking. Let Hl,(1) :=
⊕

i Hci−1lcn−i be the leakage subspace that exactly one qubit
is leaking, with the corresponding basis set B :=

⋃
i Bi. We propose a single-site leakage

damping noise model as a generalization to the amplitude damping noise [30]:

Definition 1. Let set W := ({0, 1}n, B) ∪ (B, {0, 1}n) ∪ {(Bi, Bi)}n
i=1 ∪ ({0, 1}n, {0, 1}n). De-

fine the Kraus operators

Ekk′ :=
√

pkk′ |k′⟩ ⟨k| , ∀(k, k′) ∈ W,

E0 =
√
I− ∑

(k,k′)∈W
E†

kk′Ekk′
(19)

where probabilities pkk′ , ∑k′ pkk′ , ∑k′ pk′k ∈ [0, 1] for any (k, k′) ∈ W with well-defined proba-
bilities pkk′ and pk′k. The single-site leakage damping noise model is defined as a CPTP map Λ
such that

Λ(ρ) = E0ρE†
0 + ∑

(k,k′)∈W
Ekk′ρE†

kk′ (20)

for any input state ρ. Denote the average leak and seep probabilities associated with the i-th site as

pi :=
1
2n ∑

k∈{0,1}n ,k′∈Bi

pkk′ , qi :=
1
2n ∑

k∈{0,1}n ,k′∈Bi

pk′k (21)

respectively.

In the above definition, the parameters pkk′ can be understood as the probability of
the state |k⟩ flipped to |k′⟩ after the leakage damping noise, and ΠH\Hc∪Hl,(1)

in E0 denotes
that the noise model has no effect on the Hilbert space with leakage happens on more than
one site. It is easy to check that ∑i E†

i Ei = I, hence Λ is a CPTP map [30] in Hilbert space H.
Additionally, we introduce Equation (21) to simplify the representation, and we will find
that the average leakage and seepage rates are only related to pi and qi for all of i ∈ [n].
The prefactor 1/2n is added to fit the definition of “average” leakage and seepage rates in
Equation (2).

4.1. Single-Site Leakage Noise

For the particular noise model described in Definition 1, we can simplify the average
leakage rate from Theorem 1 as stated in the following theorem.

Theorem 2. Let Λ be a single-site leakage damping channel as described in Definition 1. Let pi
and qi be as defined in Equation (21), and assume that pi > 0 for all i and q1 ≥ · · · ≥ qn. Then
after performing n-site LRB protocol, the expectation of the probability for measuring computational
basis pΠc(m) = ∑n

i=0 Aiλ
m
i , where Ai are real numbers, λ0 ≤ λ1 ≤ . . . ≤ λn = 1, and 1− 2qi ≤

λi ≤ 1 − 2qi+1 for 1 ≤ i ≤ n − 1, 1 − 2q1 − ∑i pi ≤ λ0 ≤ min(1 − 2q1, 1 − 2qn − ∑i pi).
The average leakage and seepage rates of Λ are Lave = ∑i pi and Save = 2n

3n−2n ∑i qi respectively.
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Proof. If the noise model is described by Definition 1, the corresponding condensed-
operator representation only acts non-trivially on the n + 1-dimensional subspace spanned
by
{
|Π̃i )) | |{k|ik = l}| ≤ 1

}
, as follows

Q =


1 − ∑i pi 2q1 . . . 2qn

p1 1 − 2q1 . . . 0
...

...
...

...
pn 0 . . . 1 − 2qn

, (22)

where pi, qi are defined in Equation (21). This transition matrix can be illustrated in Figure 1.
Equation (22) holds since Qci−1lcn−i ,cn = Tr

(
Πci−1lcn−i Λ(Π̃cn)

)
= pi, and similarly we can

obtain other elements of Q.

0

1

2

· · ·

n

p1

p2

· · ·

pn

2q1

2q2

· · ·

2qn

Figure 1. Single-site leakage model described as a Markov chain. Self-loops are omitted. Here 0
denotes computational subspace Hc, i where 1 ≤ i ≤ n denotes the subspace where only the i-th
qubit is leaked, i.e., Hci−1 lcn−i .

Although the spectrum of the transition matrix Q cannot be explicitly solved in
the general case, it is possible to derive bounds on all its eigenvalues by examining its
characteristic polynomial. For simplicity, we prove the theorem under a generic scenario
where n ≥ 2 and q1 > q2 > · · · > qn. In this case, it can be demonstrated that all
eigenvalues of Q are distinct, making Q inherently diagonalizable. A detailed analysis of
situations where algebraic multiplicities arise can be found in Appendix B.

Denote xi := 1 − 2qi. Consider

det(Q − λI) = (1 −
n

∑
i=1

pi − λ)
n

∏
j=1

(1 − λ − 2qj)−
n

∑
i=1

2piqi ∏
j∈[n]\{i}

(1 − λ − 2qj) (23)

= (1 − λ)

 n

∏
j=1

(xj − λ)−
n

∑
i=1

pi ∏
j∈[n]\{i}

(xj − λ)

. (24)

where [n] := {1, . . . , n}. Hence λ = 1 is an eigenvalue of Q. Let

f (x) :=
n

∏
i=1

(xi − x)−
n

∑
i=1

pi ∏
j∈[n]\{i}

(xj − x), (25)
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then the roots of function f (x) are meanwhile the eigenvalues of Q. Note that

f (xk) = −pk ∏
j∈[n]\{k}

(xj − xk). (26)

As q1 > q2 > · · · > qn ≥ 0 and pi > 0, we have x1 < x2 < · · · < xn ≤ 1. It can
be seen that f (xi) and f (xi+1) always have different signs, indicating a zero in (xi, xi+1)
for all i ∈ [n − 1]. As deg( f ) = n, there is only one zero left to be determined, which is
guaranteed to be real since all the other zeros are real. Let

h(x) =
f (x)

∏i∈[n](xi − x)
= 1 − ∑

i∈[n]

pi
(xi − x)

. (27)

When x < x1, h(x) and f (x) have the same sign, and

1 −
∑i∈[n] pi

(x1 − x)
> h(x) > 1 −

∑i∈[n] pi

(xn − x)
.

Therefore we have

• f (x1) = −pi ∏j∈[n]\{1}(xj − x1) < 0,
• h(x1 − ∑i∈[n] pi) < 0,
• h(xn − ∑i∈[n] pi) > 0,

indicating f having a zero in (x1 − ∑i∈[n] pi, min(x1, xn − ∑i∈[n] pi)).
To summarize, we have a complete characterization of all eigenvalues λ0 < λ1 <

· · · < λn of Q, namely

• λ0 ∈ (x1 − ∑i∈[n] pi, min(x1, xn − ∑i∈[n] pi)),
• λi ∈ (xi, xi+1), ∀i ∈ [n − 1];
• λn = 1.

By Theorem 1, the average leakage and seepage rates for the Pauli group with this
specific noise equal ∑i pi and 2n−1

3n−2n ∑i 2qi respectively.

We assume in Theorem 2 that pi > 0 for all i. When pi = 0 for some i, the matrix Q
might not be fully diagonalizable, requiring more complex data processing schemes. From a
physical perspective, such complications can be mitigated by preparing the initial state
such that the initial leakage on qubit i is negligible. Theorem 2 shows that when the seepage
probability of all qubits are close to each other and close to leakage probability, i.e., pi ≈ pj ≈
p̄P and qi ≈ qj ≈ q̄P for all of i, j ∈ [n], then the multi-exponential decay will approximately
collapse to two-exponential decay with λ1 ≈ 1− 2q̄P, λ0 = 1− 2qn −∑i pi ≈ 1− 2q̄P− np̄P.
With the properties of the eigenstates for eigendecomposition of the transition matrix Q,
we can further simplify the exponential curve to a single decay since the coefficient of
λ1 equals zero when the state preparation noise is negligible. The leakage and seepage
of the n-qubit system can be consequently derived according to Lave = ∑i pi ≈ np̄P,
and Save =

2n

3n−2n ∑j qj ≈ n2n

3n−2n p̄P, as shown in the following corollary.

Corollary 1. Let the leakage noise Λ be as described in Definition 1 such that pi = pj = p̄P > 0
and qi = qj = q̄P for different i, j ∈ [n], and assume state preparation is noiseless, then after
performing n-site LRB protocol, the expectation of the probability for measuring computational basis
pΠc(m) = A + B(1 − 2q̄P − np̄P)

m, where A, B are some real constants. The average leakage and
seepage rates of Λ are Lave = ∑i pi ≈ np̄P, and Save =

2n

3n−2n ∑j qj ≈ n2n

3n−2n q̄P respectively.

The decay rate 1 − 2q̄P − np̄P obtained from the LRB experiment does not provide
sufficient information to fully determine Lave and Save. Rather, additional prior knowledge
is required, such as the ratio of the leakage and the seepage rates. We postpone the proof of
this corollary into Appendix C.
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4.2. Cross-Talk-Free Leakage Noise

Previous studies have indicated that crosstalk in real devices can be significantly
minimized [19]. In the subsequent subsection, we demonstrate that the exponential decay
can be simplified under the condition that leakage noise occurs independently and locally
across different qubits. We make the assumption that the local noise adheres to Definition 1
for each individual gate. It is important to note that in this context, the noise is inherently
single-site, as each qubit possesses only one leakage site.

Corollary 2. By performing the LRB circuit in n-site crosstalk free system for the Pauli group,
the expectation of the output probability for the computational subspace of the k-th qubit is equal to
pΠck

(m) = A + Bλm
k , and the average leakage and seepage rates

Lave = 1 −
n

∏
k=1

(1 − pk), (28)

Save =
2n

3n − 2n

n

∏
k=1

(1 − pk + qk)−
2n

3n − 2n

n

∏
k=1

(1 − pk) (29)

where λk = 1 − pk − 2qk, and A, B are some real numbers, pk, qk are leakage rates associated with
Equation (21) in the k-th qubit.

We postpone the proof of the corollary into Appendix D. This corollary can be obtained
by restricting the noise in Theorem 2 to be the tensor product form of each local noise
on a single qubit. Then if pk ≈ qk or we know the relationship between pk and qk with
the analysis of the system, we can estimate L, S by fitting pk from pΠck

for all of k ∈ [n]
independently. We note that the crosstalk-free noise is different from the noise defined in
Definition 1, since only a single qubit can leak in Definition 1. By Corollary 2, the fitted
curve associated with pΠc will not follow a single exponential decay, since

pΠc(m) = pΠc1
(m) · · · pΠcn

(m) = (A1 + B1λm
k ) · · · (An + Bnλm

n ). (30)

We can check that when n equals to 2, there will be 3 exponents, λ1 = 1 − p1 − 2q1,
λ2 = 1 − p2 − 2q2 and λ3 = (1 − p1 − 2q1)(1 − p2 − 2q2) with average leakage rate Lave =
1 − (1 − p1)(1 − p2) and seepage rate Save = 4

5(1 − p1 + q1)(1 − p2 + q2) − 4
5(1 − p1)(1 − p2).

5. Interleaved LRB Protocol for Specific Target Gates

In this section, we focus on benchmarking specific target gates. Benchmarking the
leakage rate of an arbitrary target gate T differs from benchmarking the leakage rate of
the Pauli group, as the target gate does not readily form the Pauli group. We propose an
interleaved variant of the leakage for the previous interleaved randomized benchmarking
protocol [10], named iLRB (interleaved leakage randomized benchmarking). We note that
the target gate channel T can be any gate scheme, provided that the associated leakage
noise model conforms to the form discussed in this section. The iLRB protocol is outlined
as follows:

(1) Sample a sequence of m Paulis P1, . . . ,Pm from Pn and perform them sequentially to
the noisy initial state ρ̂0 interleaved by target gate T to obtain P̂m ◦ T̂ ◦ · · · ◦ P̂1 ◦ T̂ (ρ̂0).
Measure the output states and estimate pΠc(P1, . . . ,Pm)= Tr

(
Π̂cP̂m ◦ T̂ ◦ · · · ◦ P̂1 ◦ T̂ (ρ̂0)

)
through repeated experiments.

(2) Repeat Step (1) multiple times to estimate pΠc(m), the expectation of pΠc(P1, . . . ,Pm)
under random choices of P1, . . . ,Pm.

(3) Sample a sequence of m Paulis P1, . . . ,Pm in Pn, and perform them sequentially to the
prepared noisy initial state ρ̂0, i.e., P̂m ◦ · · · ◦ P̂1(ρ̂0). Measure the output states and
estimate pΠc ,P(P1, . . . ,Pm) = Tr

(
Π̂cP̂m ◦ · · · ◦ P̂1(ρ̂0)

)
through repeated experiments.
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(4) Repeat Step (3) multiple times to estimate pΠc,P(m), the expectation of pΠc,P(P1, . . . ,Pm)
under random choices of P1, . . . ,Pm.

(5) Repeat Steps (2), (4) for different m, and fit the exponential decay curves of pΠc(m),
pΠc ,P(m) with respect of m.

When the leakage noise of the Pauli gates is negligible compared to that of the target
gate T , we can benchmark any target gate T̂ = T ◦ ΛT where ΛT has the same leakage
noise as in Definition 1, by only performing the first two steps of the above iLRB protocol.
In this case, we can directly leverage Theorem 2 to obtain the average leakage rate of ΛT .

When the leakage noise of the Pauli gates is not negligible, however, steps (3) and
(4) are needed to separate the target gate leakage from the Pauli gate leakage, and more
assumptions on the target gate leakage noise are needed. We assume a specific case of
the noise model in Definition 1, where the target gate T has the noisy implementation
T̂ = T ◦ ΛT = ΛT ◦ T and the noise ΛT is defined in Definition 2 with the same value for
all of pi, qj in Equation (21). Similarly, we assume that P̂ = P ◦ ΛP with noise channel ΛP
as defined in Definition 2 also having same value for all of pi, qj in Equation (21).

Definition 2. We define the simplified single-site leakage damping noise model as a CPTP
map Λ such that

Λ(ρ) = E0ρE†
0 +

n

∑
i=1

E0iρE†
0i +

n

∑
i=1

Ei0ρE†
i0 (31)

for any input sate ρ, where

E0 =
√

1 − np |u0⟩ ⟨u0|+
n

∑
i=1

√
1 − p |ui⟩ ⟨ui|+ ∑

i∈S
|i⟩ ⟨i| , (32)

E0i =
√

p |ui⟩ ⟨u0| , Ei0 =
√

p |u0⟩ ⟨ui| ∀i ∈ [n], (33)

where ui ∈ Bi, u0 ∈ {0, 1}n, 0 ≤ np ≤ 1, S = {0, 1, 2}n\{ui|0 ≤ i ≤ n} for any i, with p̄ = p
2n .

Definition 2 is to be regarded as a particular case of Definition 1, with at most a single
leak happening between each Hci−1lcn−i ⊆ Hl,(1) and Hc. Such a simplified noise model has
important applications such as measuring leakage for two-qubit gates on superconducting
quantum chips. See more details in the next section. The requirement of the noise model
for iLRB protocol can be further relaxed to more than a single leak between each Hci−1lcn−i

and Hc with the same leak probability.
With the assumption of the above noise model, the average leakage rate of target

gate T can be estimated with exponential decay curves of pΠc(m), pΠc ,P(m) obtained from
iLRB protocol, as shown in the following theorem. Usually, the state preparation noise is
negligible compared with gate and measurement noise, we also show that assuming state
preparation is noiseless, we can further simplify the iLRB protocol to single-exponent decay
curves in the following theorem.

Theorem 3. For any n-site target gate T where its noisy implementation T̂ = T ◦ ΛT = ΛT ◦ T ,
ΛT and the noise of Pauli groupPn both have the formations as in Definition 2 with noise parameter p̄
be ϵT , p̄P respectively, after performing the iLRB protocol, the expectation of the output probabilities

pΠc = A0 + A1λm
1 + A2λm

2 (34)

pΠc ,P = B0 + B1λm
P1 + B2λm

P2 (35)

where λ1 = 1 − 2(ϵT + p̄P) + 2n+1 p̄PϵT , λ2 = 1 − (n + 2)( p̄P + ϵT) + (n + 1)(n + 2)2n p̄PϵT ,
λP1 = 1 − 2p̄P, λP2 = 1 − (n + 2) p̄P, and the average leakage and seepage rates for target gate T
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equal LT = nϵT , ST = 2nnϵT
3n−2n respectively. Assuming state preparation is noiseless, we can further

simplify Equations (34) and (35) to

pΠc = A0 + A2λm
2 (36)

pΠc ,P = B0 + B2λm
P2. (37)

Proof. By Theorem 2, we have λP1 = 1 − 2p̄P, and λP2 = 1 − (n + 2) p̄P. Since T ◦ ΛT =
ΛT ◦ T , and ΛP, ΛT both have formations as in Definition 2, then

pΠc(m) =
1

|Pn|m ∑
P1,...,Pm∈Pn

Tr
(
Π̂cP̂m ◦ T̂ ◦ · · · ◦ P̂ ◦ T̂ (ρ̂0)

)
(38)

= Tr

(
Π̂c

(
1

|Pn| ∑
P∈Pn

P ◦ ΛP ◦ T ◦ ΛT

)m

(ρ̂0)

)
(39)

= Tr
(

Π̂c
(
P̄ ◦ ΛP ◦ ΛT

)m
(ρ̂0)

)
(40)

= Tr
(

Π̂c
(
P̄ ◦ ΛP ◦ ΛT

)m−1P̄ ◦ (ΛP ◦ ΛT(ρ̂0))
)

(41)

= ((Π̂c|Qm−1
ΛP◦ΛT

|ρ̃0)) (42)

where |ρ̃0)) = ΛP ◦ ΛT(ρ̂0). Let Λ := ΛP ◦ ΛT with condensed-operator representa-
tion Q. Since the (i, j)-th element of Q is Qij = Tr

(
Πci−1lcn−i ΛP ◦ ΛT

(
Π̃cj−1lcn−j

))
for

i ∈ {0, 1, . . . , n}, then we have

Qij = 2n+1 p̄PϵT , ∀i ̸= j ∈ [n] (43)

Q0i = 2Qi0 = 2(ϵT + p̄P)− (n + 1)2n+1 p̄PϵT , ∀i ∈ [n] (44)

Qii = 1 − ∑
j ̸=i

Qji, ∀i ∈ {0, 1, . . . , n}. (45)

We also provide the details for the representation of Q in Appendix E. Let λ be the eigen-
value of Q, with the representation of Q we have

det(Q − λI) = (1 − λ)
(

1 − 2(ϵT + p̄P) + 2n+1 p̄PϵT − λ
)n−1

(1 − (n + 2)( p̄P + ϵT) + (n + 1)(n + 2)2n p̄PϵT − λ) = 0, (46)

which implies we have eigenvalues

λ1 = 1 − 2(ϵT + p̄P) + 2n+1 p̄PϵT , (47)

and

λ2 = 1 − (n + 2)( p̄P + ϵT) + (n + 1)(n + 2) p̄P2nϵT , (48)

and λ3 = 1. Specifically, the multiplicity of λ1 equals n − 1. We postpone the proof of
Equation (46) into Appendix F.

The average leakage rate for T gate can then be determined as LT = Tr(ΠlΛT(Πc/2n)) = nϵT,
and seepage rate ST = Tr(ΠlΛT(Πc/(3n − 2n))) = 2nnϵT

3n−2n .
The single exponential decay result of this theorem for noiseless preparation noise can

be obtained from Theorem 3 and the properties of the eigenstates for the eigendecomposi-
tion of the transition matrix Q. We postpone the proof into Appendix G.

By leveraging of Theorem 3, we can estimate LT , ST using the fitted λi estimated from
iLRB protocol.
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6. Numerical Results

In this section, we carry out the numerical experiments for the average leakage rate
of the multi-qubit Pauli group with the LRB protocol proposed in Section 3. Our iLRB
protocol proposed in Section 5 can be applied to few-qubit cases, which is experimentally
important to test the leakage and seepage of quantum gates. To support this, we show
average leakage rates for iSWAP/SQiSW and CZ gates with prior noise according to the
Hamiltonian of superconducting quantum devices in Appendix I.

6.1. Average Leakage Rate for Multi-Qubit Pauli Group

In this subsection, we numerically implement the LRB protocol introduced in Section 3
to estimate the average leakage rate of the Pauli group. We list two examples to show the
robustness of our protocol.

Example 1 presents a simple noise model where the amplitude damping only happens
in a pair of qubits between the set Bi and {0, 1}n for any i ∈ [n] in noise model 1. To show
the robustness of our protocol, in Example 2 we give a more complex noise model that
contains all of the amplitude dampings of the qubit pairs between the set Bi and {0, 1}n for
any i ∈ [n], and we additionally add the amplitude damping for qubit pairs both in the
same Bi or {0, 1}n.

Example 1. For an n-qubit circuit, we select a specific form of the noise Λ from the noise model
in Definition 1. Let fi, gi be n-trit string denoting basis from computational subspace and leakage
subspace respectively, and fi := 0 . . . 01i1i−10 . . . 0, gi := 0 . . . 02i0i−1 . . . 0 when 2 ≤ i ≤ n,
and f1 := 0 . . . 011 = f2, g1 := 0 . . . 02. We define the noise model as

Λ(ρ) = E0ρE0 + ∑
1≤i≤n

FiρF†
i + ∑

1≤i≤n
GiρG†

i (49)

where

E0 =
√

1 − p1 − p2 | f1⟩ ⟨ f1|+ ∑
3≤i≤n

√
1 − pi | fi⟩ ⟨ fi|+ ∑

1≤i≤n

√
1 − qi |gi⟩ ⟨gi|+ ∑

i∈S
|i⟩ ⟨i| (50)

where S = {0, 1, 2}n\{ fi, gi|i ∈ [n]}, and

Fi =
√

pi |gi⟩ ⟨ fi| , Gi =
√

qi | fi⟩ ⟨gi| , ∀i ∈ [n], (51)

where pi, qi are uniformly randomly picked from [2.5 × 10−5, 3.75 × 10−5] for i, j ∈ [n]. We take
the number of qubits n = 4 in the numerical experiment.

To demonstrate the SPAM robustness of the LRB protocol, we choose a specific form of noise
in the state preparation and measurement processes. Assume the state preparation process has the
depolarizing noise in Hc and Hl . The resulting initial state can be denoted as

ρ̂0 = (1 − pc − pl)ρ0 + pc
Πc

dc
+ pl

Πl
dl

(52)

where ρ0 = |0⟩ ⟨0|, and pc, pl are the depolarize probabilities with pc + pl ≤ 1. The measurement
noise is modeled as a perfect computational basis measurement followed by independent classical
probabilistic transitions on each individual site. The probability transition matrix associated with
site j is denoted as

ΛM,j =

1 − ηj0 − ηlj0
ηj1 ηsj0

ηj0 1 − ηj1 − ηlj1
ηsj1

ηlj0
ηlj1

1 − ηsj0 − ηsj1

, (53)

where ηj0, ηj1 are 0-flip-to-1, and 1-flip-to-0 probabilities respectively, ηlji
, ηsji are i-flip-to-2 and

2-flip-to-i probabilities respectively, where i ∈ {0, 1} for the j-th qubit.
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We set parameters pc = pl = 0.0001, and ηj0 = 0.05, ηj1 = 0.1, ηlj0
= ηsj0 = 0.0001,

ηlj1
= ηsj1 = 0.0005 for any j ∈ [n]. The number of qubits n = 4. We depict the probabilities of

measuring outcomes in the computational subspace with the circuit size of Pauli gates as in Figure 2.
Note that here we regard a Pauli gate as a series of Pauli X/Y/Z gates without interaction.
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Figure 2. The probabilities of measuring outcomes in computational subspace with circuit size m.
Here the probability is estimated over 200 randomly selected circuits. The vertical axis denotes the
estimation for pΠc , and the horizontal axis denotes the size of Pauli gates sampled from n-qubit Pauli
group. (b) is the zoom-in figure of the red box curves of (a).

The theoretical leakage rate Lave = ∑i pi = 3.4 × 10−5, and seepage rate Save = ∑i qi =
8 × 10−6. We fit the exponential decay curve with the LRB protocol proposed in Section 4. By
Theorem 2 and Corollary 1 we see that if pi and qj are close to each other for all of i, j ∈ [n], then
the probability pΠc will be approximately collapse to a two-exponential decay with λ1 ≈ 1 − 2p̄P,
and λ0 ≈ 1 − (n + 2) p̄P. When the state preparation noise is small, we can approximate p̄P via
a single exponential decay p̄P(m) = A + Bλm

0 for some constants A, B. We fit the experimental
data to a single exponential decay curve to obtain λ̂0 = 0.999957 ± 1.2 × 10−5. Then the average
error p̄ = (1 − λ̂0)/(n + 2) = (7.14 ± 2.00)× 10−6, and thus the estimated average leakage
rate L̂ave = np̄ = (2.86 ± 0.80)× 10−5 and seepage rate Ŝave = n2n p̄

3n−2n = (7.03 ± 1.97)× 10−6.
The estimated results are consistent with the theoretical ones within the errors of statistics, which
verify the validity of the LRB protocol.

Example 2. The SPAM noise is set the same way as in Example 1. To show the robustness of
the LRB protocol, we choose noise Λ which contains all of the flips (1) between subspace Hl,(1)
and computational subspace Hc, and (2) inside each subspace Hk for all k ∈ {c, l}n. We choose
the number of qubits n = 3. The noise strength pij is picked uniformly and randomly from
interval 10−3[1, 1 + 10−5] for (i, j) in (Hc,Hl,(1)) ∪ (Hl,(1),Hc) and pij is picked uniformly and
randomly from interval 10−6[1, 1 + 10−5] for i and j both in Hk and i ̸= j, k ∈ {c, l}n. By
Theorem 2, the theoretical average leakage and seepage rates are Lave = ∑n

i=1 pi = 1.51 × 10−5

and Save = 2n

3n−2n ∑n
i=1 qi = 6.41 × 10−6 respectively. By Corollary 1, we fit the experimental

data using a single exponential decay curve and obtain λ̂ = 0.999974 ± 1.046 × 10−5. Then
the average error p̄ = (1 − λ̂)/(n + 2) = (5.19 ± 2.09) × 10−6, and the estimated average
leakage rate L̂ave = (1.56 ± 0.63)× 10−5 and average seepage rate Ŝave = (6.56 ± 2.64)× 10−6.
The numerical results validate the LRB protocol and demonstrate that the noise in the computational
subspace does not affect the average leakage rate. We depict the probabilities of measuring outcomes
in the computational subspace with the circuit size of Pauli gates as in Figure 3.
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Figure 3. The probabilities of measuring outcomes in computational subspace with circuit size m.
The estimation is over 200 randomly selected circuits. The vertical axis denotes the estimation for pΠc ,
and the horizontal axis denotes the Pauli gates sampled from n-qubit Pauli group. (b) is the zoom-in
figure of the red box curves of (a).

6.2. Average Leakage Rate for Specific Gates

One important application of the iLRB protocol in Section 5 is measuring leakage
of experimentally realized two-qubit quantum gates. Noise in real quantum gates can
be very hard to characterize due to the complexity of gate schemes. For example, in the
flux-tunable superconducting quantum devices, to implement a two-qubit iSWAP gate,
the two qubits are brought to resonance adiabatically, left alone to evolve for some time
duration, and finally detuned adiabatically back to their normal working frequencies [31].
Both the adiabatic evolution and the resonant evolution might lead to leakage and seepage.
If one carries out the iLRB protocol for some specific gates proposed in Section 5, one
would theoretically obtain one decay curve that consists of multiple exponents. A general
multi-exponential decay curve is hard to fit due to statistical errors in real quantum experi-
ments. To simplify the problem, we focus on the leakage damping noise models given in
Definition 2 (The explicit form of the two-qubit case is given below). It can make the data
fitting and processing more manageable. These simplified noise models are supported by
the Hamiltonian evolution of the target two-qubit gates.

6.2.1. Average Leakage Rate Analysis

The leakage damping noise model for iSWAP/SQiSW gate is shown below. This noise
model is supported by qubits’ Hamiltonian evolution. See more details in Appendix I.

ΛiSWAP(ρ) = E0ρE†
0 + ∑

(k,k′)∈S
Ekk′ρE†

kk′ (54)

where S = {(02, 11), (11, 02), (20, 11), (11, 20)}, and

Ekk′ =
√

ϵ |k′⟩ ⟨k| , ∀(k, k′) ∈ S ,

E0 =
√
I− ∑

(k,k′)∈S
E†

kk′Ekk′ ,
(55)

where ϵ ∈ [0, 1/2]. This noise model contains one parameter ϵ that remained to be fitted
by the iLRB experiment. Since this noise model belongs to the noise model in Definition 2,
the average leakage rate of these gates can be formalized with Theorem 3.

Another commonly realized two-qubit gate in flux-tunable superconducting quantum
devices is the CZ gate, of which leakage damping noise model reads (See Appendix I for
more details)
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ΛG(ρ) = E0ρE0 + ∑
(k,k′)∈S

Ekk′ρE†
kk′ (56)

where S = {(02, 11), (11, 02), (20, 11), (11, 20)} and

E0 =
√

1 − ϵ1 |02⟩ ⟨02|+
√

1 − ϵ1 − ϵ2 |11⟩ ⟨11|+
√

1 − ϵ2 |20⟩ ⟨20|+ ΠH\{02,11,20},

E02,11 =
√

ϵ1 |11⟩ ⟨02| , E11,02 =
√

ϵ1 |02⟩ ⟨11| , E20,11 =
√

ϵ2 |11⟩ ⟨20| , E11,20 =
√

ϵ2 |20⟩ ⟨11| .
(57)

Similar to iSWAP/SQiSW gates, the noise model of the CZ gate learned from Hamiltonian
evolution can be represented as noise model (56). Since usually, the noise for single-
qubit gates is much lower than that of the two-qubit gates, we make the assumption that
Pauli gates are noiseless. Comparing Equation (55) with Equation (57), one finds the
leakage damping noise model for iSWAP/SQiSW gate can be treated as a special case with
ϵ1 = ϵ2 = ϵ. Thus for the more general leakage damping noise model in Equation (57), we
provide the following corollary for the data analysis after carrying out the iLRB protocol.

Corollary 3. For two-qubit target gate T with noisy implementation T̂ = T ◦ ΛG, where ΛG has
the form defined in Equation (56), and we assume the Pauli gates are noiseless. Then by performing
the iLRB protocol, the expectation of the output probability is E[pΠc ] = A + B1λm

1 + B2λm
2 , where

λi ∈
{

1 − 3
8 ϵ1 − 3

8 ϵ2 ± 1
8

√
9ϵ2

1 − 14ϵ1ϵ2 + 9ϵ2
2

}
, and the average leakage rates L = ϵ1+ϵ2

4 , and

S = ϵ1+ϵ2
5 .

We postpone the proof of this corollary in Appendix J. Here we only need the assump-
tion that the noise of T gate is right hand side of T , since E

[
Pj ◦ T ◦ ΛT

]
= E

[
Pj ◦ ΛT

]
. By

Corollary 3, we can obtain the average leakage rates by fitting λ1, λ2 from the exponential
curve pΠc .

6.2.2. Numerical Results for iSWAP Leakage Rate Estimation

Here we numerically analyze the average leakage rate for any two-qubit gates with
leakage noise model ΛiSWAP. To demonstrate the SPAM robustness of the iLRB protocol,
we implement measurement noise which has the same setting as in Section 6.1. Here
we choose a smaller preparation noise with pc = pl = 10−6 in Equation (52). The leak-
age noise of the Pauli gate is chosen as p̄P = 5 × 10−6. The noise rate of the target
gate is chosen as ϵ̄iSWAP = ϵiSWAP/4 = 5 × 10−5. Hence LiSWAP = 2ϵ̄iSWAP = 10−4,
SiSWAP = 8

5 ϵ̄iSWAP = 8 × 10−5. By Theorem 3, we have the theoretical average leakage and
seepage rates equal

LiSWAP =
λP − λ

2(3λP − 2)
, SiSWAP =

2(λP − λ)

5(3λP − 2)
.

Figure 4 gives the fitted curve from simulated experimental results. From the figure, we
can fit the exponent λ = 0.999782(2) and pauli noise λP ≈ 0.999980(1). Hence the estimated
average leakage and seepage rates are L̂iSWAP = 9.9(2)× 10−5 and ŜiSWAP = 7.9(2)× 10−5

respectively, which verifies theoretical values.
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Figure 4. The probabilities of measuring computational subspace with the number of circuit size of
iLRB protocol. (b) is the zoom-in view of (a) with an error band. Here the probability is estimated
over 500 randomly selected circuits. The vertical axes for (a,b) denote the estimation for pΠc , pΠc ,P
respectively, and horizontal axes denote the size of Pauli gates sampled from n-qubit Pauli group.
(b) is the zoom-in figure of the red box curves of (a).

7. Discussion

In this paper, we proposed a framework of leakage randomized benchmarking that ad-
dresses the limitations of previous proposals and is more versatile in its applicability to a
wider range of gates. The LRB protocol is particularly suitable for multi-qubit scenarios
in the presence of SPAM noise. We presented an interleaved variant of the LRB protocol
(iLRB) and conducted a thorough analysis of the leakage and seepage rates under various
noise models, with a focus on the leakage-damping noise model and two-qubit gates
in superconducting quantum devices. We carried out numerical experiments and see a
good agreement between the theoretical leakage/seepage rates and the numerical ones for
multiple gates. As the iLRB protocol is sensitive only to leakage, rather than the specific
logic gate in computational subspace, it can be easily extended to other two-qubit gates
realized in experiments. We leave the experimental demonstration of the iLRB protocol for
future work.

One major difference between LRB and RB protocols is that single-exponential decays
are guaranteed under general assumptions for RB protocols if the computational space is
sufficiently twirled. However, leakage subspaces are hardly affected by any gate schemes
designed on purpose for the computational subspaces, causing LRB to exhibit much more
complicated decay behavior. Alternatively, gates that can twirl the leakage subspace might
lead to cleaner decay behavior, but would pose somewhat unrealistic assumptions on the
gate implementation that might not be experiment-friendly. In our work, we choose not to
pose assumptions about the gates themselves, but instead require prior knowledge of the
leakage noise models. Such prior knowledge facilitates data processing and interpretation,
but their validity needs to be established either experimentally or through first-principle
error analysis. Although we have proposed two simplifications under which the LRB
behaviors are better understood, a more case-by-case study might be needed for other
physically oriented noise models. As a complement, in Appendix J we also analyze the
leakage information we can gain in a more complex noise model.

We have posed several intriguing open questions for future exploration:

(1) Could we apply the LRB protocol discussed in Section 3 to compute the average
leakage rate for the Pauli group, considering other Markovian and gate-independent,
time-independent noise types aside from leakage damping noise?
Looking ahead, is it feasible to extend our protocol to address non-Markovian noise
within the entire space?

(2) Is the requirement for the noise channel and gate operation to commute essential
when benchmarking any gate?
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(3) The iLRB protocol aims to evaluate the leakage rate of the iSWAP/SQiSW gate. Exper-
imental verification is anticipated as the next step in future work.
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Appendix A. The Twirling of Pauli Group in the Hilbert Space H
In this section, we prove Lemma 1, i.e., 1

|Pn | ∑P∈Pn P = P̄ . This is an extension to
the result that Pauli twirl turns any state in the computational subspace to a maximally
mixed state.

Proof of Lemma 1. We first prove the case n = 1. For any single qubit state ρ with leakage,
we have

1
|Pn| ∑

P∈Pn

P(ρ) (A1)

=
1

|Pn| ∑
U∈±{1,i}×{I,X,Y,Z}

(U ⊕ Πl)ρ(U† ⊕ Πl) (A2)

=
1

|Pn| ∑
U∈±{1,i}×{I,X,Y,Z}

(
UρU† + ΠlρU† + UρΠl + ΠlρΠl

)
(A3)

=Tr(ρΠc)Π̃c + 0 + 0 + Tr(ρΠl)Π̃l (A4)

=P̄(ρ). (A5)

The middle two terms vanish since ∑U U = ∑U U† = 0; the first term follows the
twirling property of the Pauli group in the computational subspace and the last one from
that Hl is one-dimensional. For general n, we then have

1
|Pn| ∑

P∈Pn

P(·) (A6)

=
⊗

k

(
1
|P| ∑

Pk∈Pn

Pi(·)
)

k

(A7)

=
⊗

k

 ∑
ik∈{c,l}

Tr
(
Πik ·

)
Π̃ik


k

(A8)

= ∑
i∈{c,l}n

⊗
k

(Tr
(
Πik ·

)
Π̃ik )k (A9)

= ∑
i∈{c,l}n

(
Tr

((⊗
k

Π(ik)k

)
·
)(⊗

k

Π̃(ik)k

))
(A10)

= ∑
i∈{c,l}n

Tr(Πi·)Π̃i = P̄(·), (A11)
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for any n-qubit quantum state ρ. We here denote by Ck a quantum operation C acting on
the k-th qubit.

Appendix B. Complete Proof of Theorem 2

Proof. We prove Theorem 2 under more general cases where n = 1 or qi = qi+1 for some
i. While the eigenvalues of such matrices can be derived from the continuity of roots of
polynomials with respect to the coefficients, we prove here that Q is always diagonalizable,
even if algebraic multiplicities occur.

The matrix Q is defined by the two vectors p⃗ and q⃗. In the following, we use the
notation Q( p⃗, q⃗) in case p⃗ and q⃗ are to be explicitly specified.

• n = 1: In this case we have Q =

[
1 − p1 1 − x1

p1 x1

]
where xi = 1 − 2qi; the two

eigenvalues are 1 and x1 − p1. Note that x1 − p1 = 1 iff Q = I, and therefore Q is
always diagonalizable.

• There exists i such that qi = qi+1. We prove that Q is similar to Q′ = Q( p⃗′, q⃗′), where
p′i = pi + pi+1, p′i+1 = 0, q′i = qi, q′i+1 = 0, and p′j = pj, q′j = qj for all j ̸∈ {i, i + 1}.

Such similarity is given by the following transformation Q′ = AQA−1, where

A :=



1
1

. . .
1 1

pi+1 −pi
. . .


.

By repeatedly applying such similar transformations and rearranging the rows and columns,

we can reduce Q to a canonical form
[

Q∗ 0
0 Σ

]
, where Σ is diagonal, and Q∗ = Q( p⃗∗, q⃗∗)

where no pairs of entries in q⃗∗ collide. Q∗ is diagonalizable and hence so is Q.

Appendix C. Proof of Corollary 1

By Theorem 1, after performing n-site LRB protocol, the expectation of the probability
for measuring computational basis equals

pΠc =
((

Π̂c|Qm−1
Λ |ρ̃0

))
. (A12)

By eigen-decomposing matrix QΛ,

QΛ = VΣV−1, (A13)

where Σ is the diagonal matrix contains all of the eigenvalues of QΛ, and V is the ma-
trix contains all of the associated eigenstates. By Theorem 2 we see that there are three
different eigenvalues,

(1) λ0 = 1 − 2q̄ − np̄ with multiplicity one. Let the associated eigenstate be
v⃗ = (v0, v1, . . . , vn);

(2) λ1 = 1 − 2q̄ with multiplicity n − 1. Let the associated eigenstates be u(s) = (u(s)
0 , u(s)

1 ,

. . . , u(s)
n )T , where s ∈ [n − 1];

(3) λ2 = 1 with multiplicity one. Let the associated eigenstates be w⃗ = (w0, w1, . . . , wn).

Hence we have Σ = diag(λ0, . . . , λ0, λ1, 1). Let Q′ be the matrix obtained by adding all
of the rows {1, . . . , n + 1} into the 0-th row of Q−λI, and adding the k+ 1-th row into the k-
th row for any k ∈ {0, . . . , n} (We assume the index of elements is in ({0, . . . , n}, {0, . . . , n})).
By the definition of Q, for any λ ∈ {λ0, λ1, λ2},
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(Q − λI)⃗q = Q′⃗q (A14)

=


1 − λ 1 − λ 1 − λ . . . 1 − λ 1 − λ

0 1 − 2q̄ − λ −(1 − 2q̄ − λ) . . . 0 0
0 0 1 − 2q̄ − λ . . . 0 0
0 0 0 . . . 1 − 2q̄ − λ −(1 − 2q̄ − λ)
p̄ 0 0 . . . 0 1 − 2q̄ − λ

q⃗ (A15)

= 0, (A16)

where q⃗ := (q0, . . . , qn) ∈ Rn+1 is the eigenstate associated with eigenvalue λ. Then

(1 − λ)(q0 + . . . + qn) = 0, (A17)

(1 − 2q̄ − λ)(qi − qi+1) = 0, ∀i ∈ [n − 1], (A18)

p̄q0 + (1 − 2q̄ − λ)qn = 0. (A19)

By substituting λ into the above equations, we have

v0 + nv1 = 0, vi = vj, ∀j ∈ [n] (A20)

u(s)
0 = 0, u(s)

1 + . . . + u(s)
n = 0 (A21)

w0 = 2w1, wi = wj, ∀j ∈ [n] (A22)

Therefore, all of u(s) are orthogonal to w⃗ and v⃗. Let V =
[
u⃗(1), u⃗(2), . . . , u⃗(n−1), v⃗, w⃗

]
. Then

V0k = V−1
k0 = 0 for k ∈ {0, 1, . . . , n − 2}. We also give the matrix representation of V and

V−1 as follows,

V =



−n 0 0 · · · 0 0 2
1 1 1 · · · 1 1 1
1 −1 0 · · · 0 0 1
1 0 −1 · · · 0 0 1
...

...
...

...
...

...
...

1 0 0 · · · −1 0 1
1 0 0 · · · 0 −1 1


, V−1 =



− 1
n+2

2
n(n+2)

2
n(n+2)

2
n(n+2) · · · 2

n(n+2)
2

n(n+2)
0 1

n
1
n − 1 1

n · · · 1
n

1
n

0 1
n

1
n

1
n − 1 · · · 1

n
1
n

...
...

...
...

...
...

...
0 1

n
1
n

1
n · · · 1

n
1
n − 1

1
n+2

1
n+2

1
n+2

1
n+2 · · · 1

n+2
1

n+2


. (A23)

With the state preparation noise-free assumption, we let the vector representation for |ρ0))
be (1, 0, . . . , 0). Since there exist some coefficients {αk}n

k=1 such that ((Π̂c| = ∑n
k=0 αk((Πck−1lcn−k |,

then

pΠc(m) =
((

Π̂c|Qm−1
Λ |ρ̃0

))
(A24)

=
n

∑
j=0

αjQm−1
Λ (j, 0) (A25)

=
n

∑
j=0

αj

n

∑
k=0

VjkΣm−1
k V−1

jk (A26)

=
n

∑
j=0

αj

(
λm−1

0

n−2

∑
k=0

VjkV−1
k0 + λm−1

1 Vj(n−1)V
−1
(n−1)0 + VjnV−1

n0

)
(A27)

= A0 + A1λm
0 , (A28)

for some real constants A0, A1.
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Appendix D. Proof of Corollary 2

Proof of Corollary 2. Let pj, qj be the average leakage rate and seepage rate in the j-th
qubit defined as in Equation (21). Since the noise has no crosstalk, the average leakage rate
can be calculated as

Lave = Tr
(

ΠlΛ
(

Π̃c

))
(A29)

= Tr

Πl
⊗

j
Λj

(
Π̃cj

) (A30)

= 1 −
n

∏
j=1

Tr
(

Πcj Λ
(

Π̃cj

))
(A31)

= 1 −
n

∏
j=1

(
1 − pj

)
. (A32)

Similarly, the average seepage rate

Save = Tr
(

ΠcΛ
(

Πl
dl

))
(A33)

= Tr
(

ΠcΛ
(
I− Πc

dl

))
(A34)

=
1
dl

n⊗
j=1

Tr
(

Πcj Λj

(
Πcj + Πlj

))
− dc

dl

n

∏
j=1

(1 − pj) (A35)

=
1
dl

n

∏
j=1

(
2(1 − pj) + 2qj

)
− dc

dl

n

∏
j=1

(1 − pj) (A36)

=
2n

3n − 2n

n

∏
j=1

(
1 − pj + qj

)
− 2n

3n − 2n

n

∏
j=1

(1 − pj). (A37)

where Πcj and Πlj
denote the projector for computational and leakage subspaces in the j-th

site respectively.

Appendix E. Condensed Representation for Two Continuous Noise Channels

This section will give the condensed representation for the two continuous noise
channels with the same formation as in Definition 2.

Let ΛP and ΛT be two noise channel as defined in Definition 2, then

Λs(Πci−1lcn−i ) = ps
i0 |u0⟩ ⟨u0| − ps

i0 |ui⟩ ⟨ui|+ Πci−1lcn−i , ∀i ∈ [n], (A38)

Λs(Πc) = −
n

∑
j=1

ps
0j |u0⟩ ⟨u0|+ ∑

j
ps

0j |uj⟩ ⟨uj|+ Πc, (A39)

where ui ∈ Bi, and ps
i0, ps

0i in [0, 1] are probabilities for s ∈ {P, T}. Hence, we have

Tr
(

Πcj−1lcn−j ΛP ◦ ΛT

(
Π̃ci−1lcn−i

))
= pP

0j p
T
i0/ dim(Πi) = 2n+1 pP

j qT
i , ∀i ̸= j ∈ [n] (A40)

Tr
(

Π0ΛP ◦ ΛT(Π̃ci−1lcn−i )
)
=

(
(1 − pT

i0)pP
i0 + pT

i0(1 −
n

∑
j=1

pP
0j)

)
21−n = 2(1 − 2nqT

i )q
P
i + 2qT

i (1 − 2n
n

∑
j=1

pP
j ), ∀i ∈ [n] (A41)

Tr
(

Πci−1lcn−i ΛP ◦ ΛT(Π̃0)
)
=

(
(1 −

n

∑
j=1

pT
0j)pP

0i + pT
0i(1 − pP

i0)

)
2−n = (1 − 2n

n

∑
j=1

pT
j )pP

i + pT
i (1 − 2nqP

i ), ∀i ∈ [n] (A42)
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where i ̸= j and i, j ∈ {1, . . . , n}. Let Q be the condensed representation of ΛP ◦ ΛT . By the
definition of Q in Equation (3), Qij = Tr

(
Πci−1lcn−i ΛP ◦ ΛT

(
Π̃cj−1lcn−j

))
for

i, j ∈ {0, 1, . . . , n}. When ps
0j = ps

j0 = p̄s
2n for any j ∈ [n], the elements of Q have the

following formations

Qij = 2n+1 p̄P p̄T , ∀i ̸= j ∈ [n] (A43)

Q0i = 2Qi0 = 2( p̄T + p̄P)− (n + 1)2n+1 p̄P p̄T , ∀i ∈ [n] (A44)

Qii = 1 − ∑
j ̸=i

Qji. (A45)

Appendix F. Eigenvalues for iLRB Protocol

Let Q be defined as

Qij = 2n+1 p̄PϵT , ∀i ̸= j ∈ [n] (A46)

Q0i = 2Qi0 = 2(ϵT + p̄P)− (n + 1)2n+1 p̄PϵT , ∀i ∈ [n] (A47)

Qii = 1 − ∑
j ̸=i

Qji, ∀i ∈ {0, 1, . . . , n}. (A48)

In the following, we will prove that

det(Q − λI) = (1 − λ)((1 − 2n p̄P)(1 − 2ϵP)− λ)n−1((1 − (n + 1)2n p̄P)(1 − (n + 2)ϵT)− λ) (A49)

Since the summation of any columns of Q equals one, i.e., ∑n
k=0 Qkj = 1 for any j, where

Qkj is the (k, j)-th element of Q, where k, j ∈ {0, . . . , n}. Let Q′ be the matrix obtained by
adding all of the rows in set {1, . . . , n + 1} into the 0-th row of Q − λI, and then adding the
k + 1-th row into the k-th row for any k ∈ {0, . . . , n}. we can simplify det(Q − λI) to

det(Q − λI) = det(Q′) (A50)

= det



1 − λ 1 − λ 1 − λ . . . 1 − λ 1 − λ
0 A − λ −(A − λ) . . . 0 0
0 0 A − λ . . . 0 0
...

...
...

...
...

...
0 0 0 . . . A − λ −(A − λ)
B C C . . . C D − λ


(A51)

= (1 − λ)(A − λ)n−1 det



1 1 1 . . . 1 1
0 1 −1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 D − λ − B + (n − 1)(C − B)


, (A52)

where A = D − C, B = ϵT + p̄P − (n + 1)2n p̄PϵT , C = 2n+1 p̄PϵT , D = 1 − 2(ϵT + p̄P) +
2n+2 p̄PϵT . It is easy to check

det(Q − λI) = (1 − λ)
(
(n − 1)C(A − λ)n−1 + (D − λ)(A − λ)n−1 − nB(A − λ)n−1

)
(A53)

= (1 − λ)(A − λ)n−1((n − 1)C + D − nB − λ) (A54)

= (1 − λ)
(

1 − 2(ϵT + p̄P) + 2n+1 p̄PϵT − λ
)n−1

((1 − (n + 2)( p̄P + ϵT) + (n + 1)(n + 2)2n p̄PϵT)− λ). (A55)
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Appendix G. iLRB Protocol with Free-Preparation Noise

Proof of the single decay for Theorem 3. Let the eigenstate for λ0 = 1 be w⃗ = (w1, w2, . . . ,
wn), the eigenstates for eigenvalue λ1 = 1− 2(ϵT + p̄P) + 2n+1 p̄P be u⃗(s) = (u0, u1 . . . , un)T

for s ∈ [n − 1], and the eigenstate for

λ2 = (1 − (n + 2)( p̄P + ϵT) + (n + 1)(n + 2)2n p̄PϵT)

be v⃗ = (v0, v1, . . . , vn). By Equation (A51), we see that u⃗(s) have the properties

n

∑
k=0

uk = 0, (A56)

Bu0 + C
n

∑
k=1

uk = 0, (A57)

where B = ϵT + p̄P − (n + 1)2n p̄PϵT, C = 2n+1 p̄PϵT. Hence we have u0 = 0 and ∑n
k=1 uk = 0.

Similarly, we have

w0 = 2wn, wk = wn∀k ∈ [n], (A58)

v0 = −nvn, vk = vn∀k ∈ [n]. (A59)

Therefore, all of the n − 1 vectors u⃗(s) are orthogonal to w⃗ and v⃗. Let

V =
[
w⃗, u⃗(1), . . . , u⃗(n−1), v⃗

]
, (A60)

then V−1
j0 = 0 for j ∈ [n − 1]. Let the vector representation for |ρ0)) be (1, 0, . . . , 0). Let the

(n + 1)× (n + 1) diagonal matrix Σ = diag(1, λ1, λ1, . . . , λ1, λ2). Since there exist some
coefficients {αk}n

k=0 such that ((Π̂c| = ∑n
k=0 αk((Πck−1lcn−k |, then we have

pΠc(m) = ((Π̂c|Qm−1
ΛP◦ΛT

|ρ0)) (A61)

=
n

∑
j=0

αjQm−1
ΛP◦ΛT

(j, 0) (A62)

=
n

∑
j=0

αj

n

∑
k=0

VjkΣm−1
k V−1

jk (A63)

=
n

∑
j=0

αj

(
Vj0V−1

00 + λm−1
1

n−1

∑
k=1

VjkV−1
k0 + λm−1

2 VjnV−1
n0

)
(A64)

= A0 + A1λm
2 , (A65)

where Σk be the k-th diagonal element of the diagonal matrix Σ, and A0, A1 are some real
numbers. Similarly, we have pΠc ,P(m) = B0 + B1λm

P , where λP = 1 − (n + 2) p̄P.

Appendix H. Gate Representations

Here we provide the matrices representation of two-qubit gates iSWAP, SQiSW, and CZ
operating on the entire Hilbert space H as follows.
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iSWAP =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, SQiSW =



1 0 0 0 0 0 0 0 0
0

√
1

2 0 i√
2

0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 i√

2
0 1√

2
0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


. (A66)

CZ = diag(1, 1, 1, 1,−1, 1, 1, 1, 1). (A67)

Appendix I. Leakage Damping Noise Model of iSWAP/SQiSW and CZ Gate

iSWAP and CZ gate are the most commonly realized two-qubit gates in the modern
flux-tunable superconducting quantum devices [31], In this appendix, we will introduce
how to extract the leakage damping noise model of these two gates according to the
effective Hamiltonian of the superconducting quantum system.

The Hamiltonian of a two-qubit quantum system in flux-tunable superconducting
quantum devices reads [31]

H = ∑
j

ωA
j |j⟩A ⟨j|A + ωB

j |j⟩B ⟨j|B + g(a†
AaB + a†

BaA) (A68)

where ωA
j , ωB

j are the energies (with h̄ = 1) of the j-th excited states of qubit A and

qubit B, a(†)A/B are the annihilation(creation) operator to the quantum harmonic oscillator
eigenstates of the two qubits, and g is the coupling strength of the two qubits. In the
idle case, the two qubits are detuned so that they have different energy spectra and the
coupling term can be omitted, i.e., g = 0. When implementing some two-qubit gates,
the energy spectra of the two qubits can be tuned by the external magnetic flux and we
have g ̸= 0. In the above Hamiltonian Equation (A68), we have used the rotating wave
approximation(RWA) [31], which drops fast rotating terms, so that H can be decomposed
into several orthogonal subspaces

H =


H0

H1
H2

. . .

,

and H0, H1, H2 are the ground state Hamiltonian, single excitation Hamiltonian and double
excitation Hamiltonian respectively with

H0 =
(

ω00
)
, H1 =

(
ω01 g

g ω10

)
, H2 =

 ω11
√

2g
√

2g√
2g ω02 0√
2g 0 ω20

. (A69)

Here we denote ωij := ωA
i + ωB

j . Notice that with RWA, we do not need to consider the
interaction between, e.g., state |00⟩ and |11⟩, and only the double excitation Hamiltonian
H2 leads to leakage and seepage when some two-qubit quantum gates are implemented.
In other words, the leakage amplitude damping noise model of the two-qubit quantum
gate would only involve the states |11⟩ , |20⟩ , |02⟩.

When implementing the iSWAP gate, the two qubits are working at the same frequency,
which means the energy spectra of the two qubits are the same. In that case, by assuming the



Entropy 2024, 26, 71 25 of 28

ground state energy ωA
0 = ωB

0 = 0, we can denote ωA
1 = ωB

1 = ω, and ωA
2 = ωB

2 = 2ω − η,
where η is conventionally called anharmonicity which quantifies the difference between
energy gap ω

(A/B)
1 − ω

(A/B)
0 and energy gap ω

(A/B)
2 − ω

(A/B)
1 . Then, the double excitation

Hamiltonian can be rewritten as

H2 =

 2ω
√

2g
√

2g√
2g 2ω − η 0√
2g 0 2ω − η

 (A70)

With this effective Hamiltonian, we can see explicitly the symmetry between states |20⟩
and |02⟩. With these intuitions, we can write the leakage damping noise model of iSWAP
gate as

ΛiSWAP(ρ) = E0ρE†
0 + ∑

(k,k′)∈S
Ekk′ρE†

kk′ (A71)

where S = {(02, 11), (11, 02), (20, 11), (11, 20)},

E0 =
√

1 − ϵ02,11 |02⟩ ⟨02|+
√

1 − ϵ11,20 − ϵ11,02 |11⟩ ⟨11|+
√

1 − ϵ20,11 |20⟩ ⟨20|+ ΠH\{02,11,20}, (A72)

and Ekk′ =
√

ϵkk′ |k′⟩ ⟨k| for (k, k′) ∈ S . The symmetry between |02⟩ and |20⟩ implies
ϵ20,11 = ϵ02,11 and ϵ11,20 = ϵ11,02.

To see how the leakage damping noise model can be obtained from the Hamiltonian
Equation (A70), within the double excitation subspace, we assume the initial density matrix
can be parameterized as

ρ0 ≡ ρ11 |11⟩ ⟨11|+ ρ′ |02⟩ ⟨02|+ ρ′ |20⟩ ⟨20| =

 ρ11
ρ′

ρ′

. (A73)

Here we assume the coefficients for |02⟩ and |20⟩ are the same, due to the symmetric
structure in the Hamiltonian (A70). Additionally, we assume that the evolution of the initial
state follows the Schrödinger equation. Thus we have

e−iH2tρ0eiH2t =

 (1 − 2ϵ̂)ρ11 + 2ϵ̂ρ′ ∗ ∗
∗ ρ′(1 − ϵ̂) + ϵ̂ρ11 ∗
∗ ∗ ρ′(1 − ϵ̂) + ϵ̂ρ11

 (A74)

ϵ̂ := ϵ̂(t) =
16g2

16g2 + η2 (1 − cos(
√

16g2 + η2t)) (A75)

Here we use (∗) to denote some irrelevant off-diagonal entries in the density matrix. If we
focus on the diagonal entries of the resulting density matrix, compared with ΛiSWAP(ρ0),
it can be realized that we can identify ϵ̂ = ϵkk′ , ∀(k, k′) ∈ S . Considering the definition
of the average leakage and seepage rate in Equation (2), if all the above approximations
and assumptions hold, the leakage damping noise model and the real quantum gate
would have the same average leakage and seepage rate, which verifies the reasonabil-
ity of the leakage damping noise model Equation (54) for iSWAP gate in the main text.
The SQiSW gate is similar to the iSWAP gate, with an only difference at the evolution
time t in Equation (A75). Thus the leakage damping noise model of SQiSW gate can also
be described in Equation (54), where the free parameter ϵ is different from the one for
iSWAP gate.

To quantify the magnitude of ϵ̂, notice that for iSWAP gate, the evolution time
t = 2π/g [31], so ϵ̂ in Equation (A75) is determined by the anharmonicity η and cou-
pling strength g of the two-qubit system. Taking experimental data from, e.g., ref. [18],
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where η = −2π × 1.87 GHz and g = 2π × 11.2 MHz, we have ϵ̂iSWAP ∼ 2.8 × 10−4. We
will use this magnitude of ϵ in our iLRB numerical experiments for the iSWAP gate.

The leakage damping noise model of the CZ gate can be obtained by generalizing that
of the iSWAP gate. When implementing the CZ gate in superconducting quantum devices,
the effective Hamiltonian is still in Equation (A68) under RWA, thus the corresponding
leakage damping noise model involves states |11⟩ , |20⟩ , |02⟩. Different from the iSWAP
gate, here, we do not take the two qubits to resonance. To realize a CZ gate, by tuning the
eigenenergy of one of the qubits, one would bring the state |11⟩ to resonate with, e.g., |20⟩,
to accumulate phase on |11⟩ at the CZ resonance point (See Figure A1), which means the
energies of |11⟩ and |20⟩ are very close during the tuning and at the resonance point. Thus
state |11⟩ has larger probability of leaking to |20⟩, compared with leaking to state |02⟩ [37].
Thus, different from iSWAP gate, if we still write the leakage damping noise model of CZ
gate as the form in Equation (A71), we have ϵ20,11 ̸= ϵ02,11 and ϵ11,20 ̸= ϵ11,02. Further,
the explicit Hamiltonian evolution for the CZ gate can be described by the Landau-Zener
transition [37,38]. It tells us that we can identify ϵ11,02 = ϵ02,11 and ϵ11,20 = ϵ20,11. Thus the
operators in the Equation (A71) can be parameterized as

E0 =
√

1 − ϵ1 |02⟩ ⟨02|+
√

1 − ϵ1 − ϵ2 |11⟩ ⟨11|+
√

1 − ϵ2 |20⟩ ⟨20|+ ΠH\{02,11,20},

E02,11 =
√

ϵ1 |11⟩ ⟨02| , E11,02 =
√

ϵ1 |02⟩ ⟨11| , E20,11 =
√

ϵ2 |11⟩ ⟨20| , E11,20 =
√

ϵ2 |20⟩ ⟨11| .
(A76)

This noise model contains two parameters ϵ1 := ϵ11,02 = ϵ02,11 and ϵ2 := ϵ11,20 = ϵ20,11,
which remain to be fitted by the iLRB experiments.

Figure A1. Illustration of the spectrum of the double excitation Hamiltonian H2, as a function of the
local magnetic flux of qubit A. The trajectory of implementing the CZ gate is denoted as the black
curve. At the CZ resonance point, the energy of |11⟩ is close to that of |20⟩. Thus state |11⟩ has larger
probability of leaking to |20⟩, compared with leaking to state |02⟩. More details about this figure can
be found in [31].

Appendix J. Generalized Noise Model for 2-Qubit Gate

Here we consider the noise model which contains the flip between the sites in leakage
subspace Hl :

Λ(ρ) = E0ρE†
0 + ∑

(k,k′)∈S
Ekk′ρE†

kk′ (A77)
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where S = {(02, 11), (11, 02), (20, 11), (11, 20), (12, 21)},

E0 =
√

1 − ϵ1 |02⟩ ⟨02|+
√

1 − ϵ1 − ϵ2 |11⟩ ⟨11|+
√

1 − ϵ2 |20⟩ ⟨20|+
√

1 − ϵ3 |12⟩ ⟨12|+
√

1 − ϵ3 |21⟩ ⟨21|+ ΠH\{02,11,12,20,21}, (A78)

and Ekk′ =
√

ϵ |k′⟩ ⟨k| for (k, k′) ∈ S . We give the average leakage rate with iLRB protocol
with noise model Λ defined in Equation (A77).

Corollary A1. For any two-qubit target gate T with noise model Λ in Equation (A77), with the
assumption that Pauli group is noiseless, after performing the iLRB protocol, the expectation of the
output probability pΠc(m) = A + B1λm

1 + B2λm
2 , where

λi ∈
{

1 − 3
8

ϵ1 −
3
8

ϵ2 −
1
2

ϵ3 ±
1
8

√
9ϵ2

1 + 9ϵ2
2 + 16ϵ2

3 − 14ϵ1ϵ2 − 8ϵ1ϵ3 − 8ϵ2ϵ3

}
, (A79)

and the average leakage rates L = ϵ1+ϵ2+ϵ3
4 , and S = ϵ1+ϵ2+ϵ3

5 .

Proof. By the definition of Λ in Equation (A77), we have

Q =

1 − ϵ1/4 − ϵ2/4 ϵ1/2 ϵ2/2
ϵ1/4 1 − ϵ1/2 − ϵ3/2 2ϵ3
ϵ2/4 ϵ3/2 1 − ϵ2/2 − ϵ3/2

 (A80)

with eigenvalues as shown in Equation (A79). Lave = 1 − Qcc,cc = ϵ1+ϵ2
4 and

Save = 2
5 (Qcc,cl + Qcc,lc) =

ϵ1+ϵ2
5 .

Note that we can hardly determine all of these three parameters together. Nevertheless,
we can determine the value of L and S if we have the prior knowledge of ϵ1, ϵ2, ϵ3. For in-
stance, if we know that the noise has similar leakage for leakage subspace |02⟩ and |20⟩, we
have ϵ̄ ≈ ϵ1 ≈ ϵ2 and L ≈ 5/8 + λ1/8 − 3λ2/4 if ϵ̄ ≥ 2ϵ3, and L ≈ 5/8 + λ2/8 − 3λ1/4
otherwise.

Corollary 3 can be obtained by letting ϵ3 = 0 in Corollary A1.
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