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Abstract: Active learning (AL) is a paradigm focused on purposefully selecting training data to
enhance a model’s performance by minimizing the need for annotated samples. Typically, strategies
assume that the training pool shares the same distribution as the test set, which is not always
valid in privacy-sensitive applications where annotating user data is challenging. In this study, we
operate within an individual setting and leverage an active learning criterion which selects data
points for labeling based on minimizing the min-max regret on a small unlabeled test set sample.
Our key contribution lies in the development of an efficient algorithm, addressing the challenging
computational complexity associated with approximating this criterion for neural networks. Notably,
our results show that, especially in the presence of out-of-distribution data, the proposed algorithm
substantially reduces the required training set size by up to 15.4%, 11%, and 35.1% for CIFAR10,
EMNIST, and MNIST datasets, respectively.

Keywords: active learning; universal prediction; deep active learning; individual sequences;
normalized maximum likelihood; out-of-distribution

1. Introduction

In supervised learning, a training set is provided to a learner, which can then be
used to choose parameters for a model that minimize the error on this set. The process
of creating this training set requires annotation, where an expert labels the data points.
This is a time-consuming and costly process and results in only a small subset of the data
being labeled, which may not represent the true underlying model [1]. Active learning,
where the training data are actively and purposely chosen, allows the learner to interact
with a labeling expert by sequentially selecting samples for the expert to label based on
previously observed data, thereby reducing the number of examples needed to achieve a
given accuracy level [2].

Recent research has focused on obtaining a diverse set of samples for training deep
learning models with reduced sampling bias. The strategies in [3–6] aim to quantify the
uncertainties of samples from the unlabeled pool and utilize them to select a sample for
annotation. A widely used criterion for active learning is Bayesian Active Learning by
Disagreement (BALD), which was originally proposed by Houlsby et al. [3]. This method
finds the unlabeled sample x̂i that maximizes the mutual information between the model
parameters θ and the candidate label random variable Yi given the candidate xi and training
set zn−1 = {(xi, yi)}n−1

i=1 :

x̂i = argmax
xi

I(θ; Yi|xi, zn−1) (1)

where I(X; Y|z) denotes the mutual information between the random variables X and Y
conditioned on a realization z. The idea in BALD’s core is to minimize the uncertainty
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about model parameters using Shannon’s entropy. This criterion also appears as an upper
bound on information-based complexity of stochastic optimization [7] and also for experi-
mental design [8,9]. There is an issue of postulating a reasonable prior for this Bayesian
approach. Empirically, this approach was investigated by Gal et al. [4], where a heuris-
tic Bayesian method for deep learning was proposed, leading to several heuristic active
learning acquisition functions that were explored within this framework.

However, BALD has a fundamental disadvantage if the test distribution differs from
the training set distribution, since what is maximally informative for model estimation
may not be maximally informative for test time prediction. In a previous work, Shayovitz
and Feder [6] derived a criterion named Universal Active Learning (UAL) that takes into
account the unlabeled test set when optimizing the training set:

x̂i = argmin
xi

I(θ; Y|X, xi, Yi, zn−1) (2)

where X and Y are the test feature and label random variables. UAL is derived from a
capacity–redundancy theorem [10] and implicitly optimizes an exploration–exploitation
trade-off in feature selection. In addition, in the derivation of [10], the prior on θ is expressed
as the capacity-maximizing distribution for I(θ; Y|X, xi, Yi, zn−1). It should be noted that
Smith et al. [11] have recently proposed a criterion denoted Expected Predictive Information
Gain (EPIG) which also takes into account the unlabelled test set and focuses on prediction
and not model estimation (In Appendix A, it is proven that EPIG is equivalent to UAL, but
unlike EPIG, which does not optimize the model prior, UAL provides an expression for the
optimal model prior.):

x̂i = argmax
xi

I(Y; Yi|X, xi, zn−1) (3)

However, the above-mentioned AL schemes assume that both training and test data
follow a conditional distribution which belongs to a given parametric hypothesis class,
{p(y|x, θ)}. This assumption cannot be verified on real-world data, particularly in privacy-
sensitive applications where real user data cannot be annotated [12] and the unlabeled pool
may contain irrelevant information. In such cases, choosing samples from the unlabeled
pool may not necessarily improve model performance on the test set. As an alternative to
making distributional assumptions, we build upon the individual setting [13]. This setting
does not assume any probabilistic connection between the training and test data. Moreover,
the relationship between labels and data can even be determined by an adversary. The
generalization error in this setting is known as the regret [14], which is defined as the log-
loss difference between a learner and a genie: a learner that knows the specific test label but
is constrained to use an explanation from a set of hypotheses. The predictive Normalized
Maximum Likelihood (pNML) learner [14] was proposed as the min-max solution of the
regret, where the minimum is over the learner choice and the maximum is for any possible
test label value. The pNML was previously developed for linear regression [15] and was
evaluated empirically for DNN [16].

The setting considered in this work, i.e., active learning with no distributional as-
sumption, is related to the active online learning literature [17,18], which deals primarily
with task-agnostic learning that does not assume a connection between the training and
test tasks. The research in Yoo and Kweon [17] proposed an active learning method that
works efficiently with deep networks. A small parametric module, named “loss prediction
module”, is attached to a target network, and learns it to predict target losses of unlabeled
inputs. Then, this module can suggest data for which the target model is likely to produce
a wrong prediction. This method is task-agnostic, as networks are learned from a single
loss regardless of target tasks. The research in Sinha et al. [18] suggested a pool-based
semi-supervised active learning algorithm that implicitly learns a sampling mechanism in
an adversarial manner. Unlike conventional active learning algorithms, this approach is
task-agnostic, i.e., it does not depend on the performance of the task for which we are trying
to acquire labeled data. This method learns a latent space using a variational autoencoder
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(VAE) and an adversarial network trained to discriminate between unlabeled and labeled
data. The minimax game between the VAE and the adversarial network is played such
that while the VAE tries to trick the adversarial network into predicting that all data points
are from the labeled pool, the adversarial network learns how to discriminate between
dissimilarities in the latent space.

Moreover, as an additional incentive for the individual setting, in scenarios involving
Out-Of-Distribution (OOD) data, the application of uncertainty-based Active Learning (AL)
without meticulous consideration may increase the likelihood of selecting OOD samples
for labeling, surpassing the selection of in-distribution (IND) data. OOD data typically
demonstrate high uncertainty, leading the AL algorithm to preferentially choose such
samples for labeling, thereby inefficiently utilizing the labeling budget. Consequently, there
is an urgent need for active learning methods resilient to such scenarios.

While empirical evidence has demonstrated the real-life impact of the OOD problem
on AL [19], there is a scarcity of research addressing this crucial issue. The research
in Kothawade et al. [20] approached OOD as a sub-task, and its sub-modular mutual
information-based sampling scheme is marked by both time and memory consumption.
In contrast, Du et al. [21] mandated the pre-training of additional self-supervised models
like SimCLR [22], introducing hyperparameters to balance semantic and distinctive scores.
The values of these hyperparameters exert a significant influence on the final performance,
thereby limiting the broader applicability of the proposed approach.

In addition to the challenges highlighted in the aforementioned context, another
promising avenue of research explores counterfactual training [23] to enhance OOD gen-
eralization. This approach involves learning model parameters by comparing pairs of
factual samples and counterfactual samples, illustrating how changes in features lead to
changes in labels. Notably, modifications to causal features and labels disrupt spurious
correlations, as non-causal features are present in both factual and counterfactual samples
with distinct classes [24]. Through counterfactual training, the model avoids relying on
spurious correlations for predictions, enhancing its ability for OOD generalization [24,25].
This approach effectively breaks the link between non-causal features and labels, con-
tributing to an improved OOD generalization capability. Nevertheless, counterfactual
learning may be considered less feasible, as generating meaningful counterfactual samples
requires sufficient and representative data, which may be challenging to obtain in some
cases, especially if the dataset is limited or biased.

The research in Shayovitz and Feder [26] proposed an active learning criterion for the
individual setting that takes into account a trained model, the unlabeled pool, and a small
set of unlabeled test features. This criterion, denoted IAL (Individual Active Learning), is
designed to select a sample to be labeled in such a way that, when added to the training set
with its worst-case label, it attains the minimal pNML regret for the test set. The algorithm
proposed by Shayovitz and Feder [26] for Gaussian Process Classification is based on an
Expectation Propagation approximation of the model posterior. This approximation is
both computationally expensive for large-scale deep neural networks (DNNs) and does
not provide good enough performance in empirical tests. The computational complexity
associated with the re-training for each candidate sample is extremely demanding.

Main Contributions

Our contributions can be succinctly outlined as follows:

• In this investigation, we address AL in the presence of OOD challenges by utilizing
a small unlabeled sample from the test distribution. We focus on the individual
data setting and leverage an existing active learning criterion [26]. However, the
computation of this criterion is deemed impractical for DNNs.

• Our primary contribution lies in the development of an efficient algorithm aimed at
mitigating the challenging computational complexity associated with approximating
the mentioned criterion for neural networks. Termed DIAL (Deep Individual Ac-
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tive Learning), this algorithm facilitates faster and more practical implementation of
Individual Active Learning (IAL) for DNNs.

• We demonstrate that, in the presence of OOD samples, our algorithm requires only
66.2%, 91.9%, and 77.2% of labeled samples compared to recent leading methods
for CIFAR10 [27], EMNIST [28], and MNIST [29] datasets, respectively, for the same
accuracy level. When considering only IND samples, our approach necessitates 64.9%,
99.0%, and 64.9% labeled samples on the aforementioned datasets.

• In OOD scenarios, DIAL does not rely on the annotator to provide semantic informa-
tion or counterfactual examples. The criterion is universally applicable across various
datasets and can be implemented immediately.

This paper is organized as follows. In Section 2, the individual learning setting is
introduced and the pNML is reviewed. In Section 3, IAL is presented and motivated by
the minimax regret problem discussed in the previous section. In Section 4, IAL is applied
to the DNN hypothesis class and a novel low-complexity algorithm denoted as DIAL is
presented. In Section 5, the performance of DIAL is analyzed in comparison with state-of-
the-art deep active learning algorithms. Throughout this paper, a sequence of samples will
be denoted xn = (x1, x2, . . . , xn). The variables x ∈ X and y ∈ Y will represent the features
and labels, respectively, with X and Y being the sets containing the features’ and labels’
alphabets, respectively.

2. The Individual Data Setting

In the supervised learning framework, a training set consisting of n pairs of examples
is provided to the learner:

zn = {(xi, yi)}n
i=1 (4)

where xi is the i-th data point and yi is its corresponding label. The goal of a learner is to
predict an unknown test label y given its test data, x, by assigning a probability distribution
q(·|x, zn) for each training set zn.

In the commonly used stochastic setting as defined in [13], the data follow a distri-
bution assumed to be part of some parametric family of hypotheses. A more general
framework, named individual setting [13], does not assume that there exists some proba-
bilistic relation between a feature x and a label y, and so the sequence zn = {xn, yn} is an
individual sequence where the relation can even be set by an adversary. Since there is no
distribution over the data, finding the optimal learner, q(·|x, zn), is an ill-posed problem. In
order to mitigate this problem, an alternative objective is proposed: find a learner q(·|x, zn)
which performs as well as a reference learner on the test set.

Denote Θ as a general index set. Let PΘ be a set of conditional probability distributions:

PΘ = {p(y|x, θ)|θ ∈ Θ} (5)

It is assumed that the reference learner knows the test label value y but is restricted to using
a model from the given hypothesis set PΘ. This reference learner then chooses a model,
θ̂(x, y, zn), that attains the minimum loss over the training set and the test sample:

θ̂ = arg max
θ∈Θ

[p(y|x, θ)w(θ)Πn
i=1 p(yi|xi, θ)] (6)

where performance is evaluated using the log-loss function, i.e., − log(q(·|x, zn)).
Note that, in this work, we extended the individual setting of [30] and allowed the

usage of some prior w(θ) over the parameter space, which may be useful for regularization
purposes. The learning problem is defined as the log-loss difference between a learner q
and the reference learner (genie):

Rn(q, y; x) = log
p
(
y|x, θ̂

)
q(y|x, zn)

. (7)



Entropy 2024, 26, 129 5 of 17

An important result for this setting is provided in Fogel and Feder [14] and provides a
closed-form expression for the minimax regret along with the optimal learner, qpNML:

Theorem 1 (Fogel and Feder [14]). The universal learner, denoted as the pNML, minimizes the
worst case regret:

Rn(x) = min
q

max
y∈Y

log

(
p
(
y|x, θ̂

)
q(y|x, zn)

)
The pNML probability assignment and regret are:

qpNML(y|x, zn) =
p
(
y|x, θ̂

)
∑y p

(
y|x, θ̂

)
Rn(x) = log ∑

y∈Y
p
(
y|x, θ̂

)
Since the main contribution of this work relies on this theorem, we provide a short

proof here:

Proof. We note that the regret, Rn(x), is equal for all choices of y. Now, if we consider
a different probability assignment, then it would assign a smaller probability for at least
one of the possible outcomes. In this case, choosing one of those outcomes will lead to a
higher regret and then the maximal regret will be higher, leading to a contradiction.

The pNML regret is associated with the stochastic complexity of a hypothesis class, as
discussed by Rosas et al. [31] and Zhou and Levine [16]. It is clear that for pNML, a model
that fits almost every data pattern would be much more complex than a model that provides
a relatively good fit to a small set of data. Thus, high pNML regret indicates that the model
class may be too expressive and overfit. The pNML learner is the min-max solution for
supervised batch learning in the individual setting [14]. For sequential prediction it is
termed the conditional normalized maximum likelihood [32,33].

Several methods deal with obtaining the pNML learner for different hypothesis sets.
The research in Bibas et al. [15] and Bibas and Feder [34] showed the pNML solution
for linear regression. The research in Rosas et al. [35] proposed an NML-based decision
strategy for supervised classification problems and showed that it attains heuristic PAC
learning. The research in Fu and Levine [36] used the pNML for model optimization based
on learning a density function by discretizing the space and fitting a distinct model for
each value. For the DNN hypothesis set, Bibas et al. [37] estimated the pNML distribution
with DNN by fine-tuning the last layers of the network for every test input and label
combination. This approach is computationally expensive since training is needed for every
test input. The research in Zhou and Levine [16] suggested a way to accelerate the pNML
computation in DNN by using approximate Bayesian inference techniques to produce a
tractable approximation to the pNML.

3. Active Learning for Individual Data

In active learning, the learner sequentially selects data instances xi based on some
criterion and produces n training examples: zn. The objective is to select a subset of the
unlabelled pool and derive a probabilistic learner q(y|x, zn) that attains the minimal predic-
tion error (on the test set) among all training sets of the same size. Most selection criteria
are based on uncertainty quantification of data instances to quantify their informativeness.
However, in the individual setting, there is no natural uncertainty measure, since there is
no distribution governing the data.

As proposed in [26], the min-max regret Rn as defined in Theorem 1 is used as an
active learning criterion, which essentially quantifies the prediction performance of the
training set zn for a given unlabeled test feature x. A “good” zn minimizes the min-max
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regret for any test feature and thus provides good test set performance. Since Rn is a
point-wise quantity, the average over all test data is taken:

Cn = min
xn

max
yn ∑

x
log

(
∑
y

p
(
y|x, θ̂

))
(8)

where θ̂ = θ̂(x, y, zn) is the Maximum Likelihood estimator, as defined in (6).
The idea is to find a set of training points, xn, that minimizes the averaged log normal-

ization factor (across unlabeled test points) for the worst possible labels yn. This criterion
looks for the worst-case scenario since there is no assumption on the data distribution.
Since (8) selects a batch of points xn, it is computationally prohibitive to solve for a general
hypothesis class. In order to reduce complexity, a greedy approach denoted Individual
Active Learning (IAL) is proposed in [26] which performs well empirically:

Cn|n−1 = min
xn

max
yn

∑
x

log

(
∑
y

p
(
y|x, θ̂

))
(9)

Note that when computing (9), the previously labeled training set, zn−1, is assumed to be
available for the learner and θ̂ = θ̂

(
x, y, xn, yn, zn−1). The objective in (9) is to find a single

point xn from the unlabelled pool as opposed to the objective in (8) that tries to find an
optimal batch xn.

4. Deep Individual Active Learning

The DNN (deep neural network) hypothesis class poses a challenging problem for
information-theoretic active learning since its parameter space is of very high dimension
and the weights’ posterior distribution (assuming a Bayesian setting) is analytically in-
tractable. Moreover, direct application of deep active learning schemes is unfeasible for
real-world large-scale data, since it requires training the entire model for each possible
training point. To make matters worse, for IAL, the network also needs to be trained for
every test point and every possible corresponding label.

In this section, we derive an approximation of IAL for DNNs which is based on
variational inference algorithms [4,38,39]. We define the hypothesis class in this case
as follows:

p(y|x, θ) = so f tmax( fθ(x)) (10)

where θ represents all the weights and biases of the network and fθ(x) is the model output
before the last softmax layer. Note that x, y, and p(θ) reresent the test feature, test label,
and prior on the weights, respectively.

The MAP estimation for θ is:

θ̂ = arg max
θ

p(yn, y|xn, x, θ)p(θ), (11)

where the prior p(θ) acts as a regularizer over the latent vector θ. It is common practice
to use some regularization mechanism to control the training error for DNNs. In order to
embed the regularization mechanism into the MAP, we introduced this prior p(θ).

Given a training set xn, yn and test couple x, y, the maximization in (11) is performed
by training the DNN with all the data and converging to a steady-state maximum. Note
that xn−1, yn−1 are assumed to be known, while xn, yn, x and y are not known, and all the
different possibilities need to be considered, resulting in multiple training sessions of the
network. In order to avoid re-training the entire network for all possible values of x, y, xn,
and yn, we utilize the independence between soft-max scores in the MAP estimation. Using
Bayes, we observe that (11) can be re-written as:

θ̂ = arg max
θ

p(y|x, θ)p(yn|xn, θ)p
(

θ|yn−1, xn−1
)

(12)
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where p
(
θ|yn−1, xn−1) is the posterior of θ given the available data zn−1 = (xn−1, yn−1).

The posterior p
(
θ|zn−1) is not dependent on the test data (x, y) and the evaluated

labeling candidate (xn, yn), and thus can be computed once per selection iteration and then
used throughout the IAL selection process. This is a very important point which needs to
be highlighted; there is no need to re-train the network for every (x, y) and (xn, yn). We
only need to train the network using xn−1, yn−1 and then, during the IAL selection process,
run forward passes on different θ with high p

(
θ|zn−1) values, to compute p(y|x, θ) and

p(yn|xn, θ). This fact represents a significant computational complexity reduction since
the number of possible points xn can be significant and we wish to avoid re-training the
network for each point.

In order to acquire the weight posterior for a DNN, some advanced techniques are
required [40–42]; these involve multiple training passes over the network. For a DNN,
the posterior, p

(
θ|yn−1, xn−1), is multi-modal and intractable to compute directly. There-

fore, we propose approximating it by some simpler distribution, which will allow easier
computation of the maximum likelihood θ̂.

4.1. Variational Inference

Variational inference is a technique used in probabilistic modeling to approximate
complex probability distributions that are difficult or impossible to calculate exactly [42–44].
Variational inference has been used in a wide range of applications, including in Bayesian
neural networks, latent Dirichlet allocation, and Gaussian processes. The goal of vari-
ational inference is to find an approximation, q∗(θ) from a parametric family Q, to the
true distribution, p(θ|zn−1), that is as close as possible to the true distribution, but is also
computationally tractable. This goal is formulated as minimizing the Kullback–Leibler (KL)
divergence between the two distributions (also called information projection):

q∗(θ) = argmin
q∈Q

DKL

(
q(θ)||p(θ|zn−1)

)
There are different algorithms for implementing variational inference; most involve

optimizing a lower bound on the log-likelihood of the data under the true distribution
(called evidence). The lower bound is defined as the difference between the true distri-
bution’s data log-likelihood and the Kullback–Leibler (KL) divergence between the true
distribution and the approximation. The KL divergence measures the distance between
the two distributions, and so optimizing the lower bound is equivalent to minimizing the
distance between the true distribution and the approximation.

One common algorithm for implementing variational inference is called mean field
variational inference [45]. In this approach, the approximation to the true distribution is
factorized into simpler distributions that are easier to work with, such as Gaussians or
Bernoullis. The parameters of these simpler distributions are then optimized to minimize
the KL divergence between the true distribution and the approximation. Another algorithm
for variational inference is called stochastic variational inference [46]. In this approach,
the optimization is performed using stochastic gradient descent, with a random subset of
the data used in each iteration. This allows the algorithm to scale to large datasets and
complex models.

4.2. Deep Individual Active Learning (DIAL)

In this work, we opted to use the method in Gal and Ghahramani [41], denoted as
MC dropout (Monte Carlo dropout), due to its computational simplicity and favorable
performance. MC dropout represents a sophisticated extension of the conventional dropout
regularization technique within the domain of machine learning, and it is particularly
associated with improving the robustness and uncertainty quantification of neural networks.
This concept finds its roots in the broader effort to address the challenge of overfitting, a
common concern in training deep learning models where the network becomes excessively
attuned to the training data, hindering its generalization to new, unseen data.
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Traditional dropout involves randomly deactivating, or “dropping out”, a fraction of
the neurons during the training phase. This stochastic process introduces a level of noise,
preventing the neural network from relying too heavily on specific features, thus enhancing
its ability to generalize to diverse datasets. However, dropout is typically applied solely
during the training phase, and the model’s predictions during the inference phase are based
on a single deterministic forward pass through the network.

Monte Carlo dropout introduces a novel approach to the inference phase by extending
the dropout mechanism beyond training. In this context, during inference, the model
performs multiple forward passes with different dropout masks applied each time. This
process generates a set of predictions, and the final output is obtained by averaging or
aggregating these predictions. The rationale behind this technique lies in its ability to
capture and quantify uncertainty associated with the model’s predictions.

By leveraging Monte Carlo dropout during inference, practitioners can gain valuable
insights into the uncertainty inherent in the model’s predictions. This uncertainty is crucial
in real-world applications where understanding the model’s confidence level is essential.
For instance, in autonomous vehicles, medical diagnostics, or financial predictions, know-
ing the uncertainty associated with a model’s output can inform decision making and
improve overall system reliability.

In Gal and Ghahramani [41], the authors argued that performing dropout during train-
ing on DNNs, with dropout applied before every weight layer, is mathematically equivalent
to minimizing the KL divergence between the weight posterior of the full network and a
parametric distribution which is controlled by a set of Bernoulli random variables defined
by the dropout probability. Therefore, p

(
θ|yn−1, xn−1) can be approximated in KL-sense by

a distribution which is controlled by the dropout parameter. We can use this idea in order
to approximate (12) and find an approximated weight distribution, q(θ). Therefore, we can
re-write (12) using the variational approximation q(θ):

θ̂ ≈ arg max
θ

p(y|x, θ)p(yn|xn, θ)q(θ) (13)

However, q(θ) as described in Gal and Ghahramani [41] is still complex to analytically
compute. In fact, in Gal and Ghahramani [41], the authors do not explicitly sample from
this distribution but compute integral quantities on this distribution (such as expectation
and variance) using averaging of multiple independent realizations and the Law of Large
Numbers (LLN). Since we focus on point-wise samples from q(θ), we cannot use the same
approach as in Gal and Ghahramani [41].

In this work, we propose to sample M weights from q(θ) and find θ̂ among all the
different samples. Since the weights are embedded in a high-dimensional space, the
probability of the sampled weights can be assumed to be relatively uniform. Therefore, we
propose approximating (13) as:

θ̂ ≈ arg max
{θm}M

m=1

p(y|x, θm)p(yn|xn, θm) (14)

As observed by Gal and Ghahramani [41], (14) can be computed by running multiple
forward passes on the network trained using dropout with zn−1 during inference with
x and xn. The resulting algorithm, denoted Deep Individual Active Learning (DIAL), is
shown in Algorithm 1 and follows these steps:

1. Train a model on the labeled training set zn−1 with dropout.
2. For each pair of x and xn, run M forward passes with different dropout masks and

compute the product of the softmax outputs.
3. Find the weight that maximizes DNN prediction of the test input and the unlabeled

candidate input as in (12).
4. Accumulate the pNML regret of the test point given these estimations.
5. Find the unlabeled candidate for which the worst-case averaged regret of the test set

is minimal, as in (9).
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For step 2, since the variational posterior associated with MC dropout is difficult to evaluate,
we assume that it is uniform for all the sampled weights.

We emphasize the significant complexity reduction provided by our approximation; a
naïve implementation of pNML computation would require training the network over all
possible training points xn and test points x with all possibilities of their respective labels
yn, y. This would render our criterion unfeasible for real-world applications. Our proposed
approach, DIAL, only requires performing training with dropout on zn−1 only once per
selection iteration and then performing forward passes (considerably faster than training
passes) to obtain multiple samples of the weights.

Algorithm 1: DIAL: Deep Individual Active Learning

Input Training set zn−1, unlabeled pool and test samples {xi}N
i=1 and {xk}K

k=1.
Output Next data point for labeling x̂i

Run MC-Dropout using zn−1 to get {θm}M
m=1

S = zeros(N, |Y|)
for i← 1 to N do

for yi ∈ Y do
for k← 1 to K do

Γ = 0
for yk ∈ Y do

θ̂ = argmaxθm
p(yk|xk, θm)p(yi|xi, θm)

Γ = Γ + p
(
yk|xk, θ̂

)
end for
S(i, yi) = S(i, yi) + log Γ

end for
end for

end for
x̂i = argminxi

maxyi S

5. Experiments

In this section, we analyze the performance of DIAL and compare its performance
to state-of-the-art active learning criteria. We tested the proposed DIAL strategy in
two scenarios:

• The initial training, unlabeled pool, and test data come from the same distribution
(IND scenario).

• There are OOD samples present in the unlabeled pool (OOD scenario).

The reason for using the individual setting and DIAL as its associated strategy in the
presence of OOD samples is that it does not make any assumptions about the data genera-
tion process, making the results applicable to a wide range of scenarios, including PAC [47],
stochastic [13], adversarial settings, as well as samples from unknown distributions.

We considered the following datasets for training and evaluation of the different active
learning methods:

• The MNIST dataset [29] consists of 28 × 28 grayscale images of handwritten digits,
with 60 K images for training and 10 K images for testing.

• The EMNIST dataset [28] is a variant of the MNIST dataset that includes a larger
variety of images (upper and lower case letters, digits, and symbols). It consists of
240 K images with 47 different labels.

• The CIFAR10 dataset [27] consists of 60 K 32 × 32 color images in 10 classes. The
classes include objects such as airplanes, cars, birds, and ships.

• Fashion MNIST [48] is a dataset of images of clothing and accessories, consisting of
70 K images. Each image is 28 × 28 grayscale pixels.
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• The SVHN dataset [49] contains 600 K real-world images with digits and numbers in
natural scene images collected from Google Street View.

We built upon Huang [50] and Smith et al. [11] open-source implementations of the
following methods:

The Random sampling algorithm is the most basic approach in learning. It selects
samples to label randomly, without considering any other criteria. This method can be
useful when the data are relatively homogeneous and easy to classify, but it can be less
efficient when the data are more complex or when there is a high degree of uncertainty.

The Bayesian Active Learning by Disagreement (BALD) method [4] utilizes an
acquisition function that calculates the mutual information between the model’s predictions
and the model’s parameters. This function measures how closely the predictions for a
specific data point are linked to the model’s parameters, indicating that determining the
true label of samples with high mutual information would also provide insight into the
true model parameters.

The Core-set algorithm [5] aims to find a small subset from a large labeled dataset
such that a model learned from this subset will perform well on the entire dataset. The
associated active learning algorithm chooses a subset that minimizes this bound, which is
equivalent to the k-center problem.

The Expected Predictive Information Gain (EPIG) method [11] was motivated by
BALD’s weakness in prediction-oriented settings. This acquisition function directly targets
a reduction in predictive uncertainty on inputs of interest by utilizing the unlabelled
test set. It is shown in Appendix A that this approach is similar to UAL [6], where the
main difference is that UAL assumes the stochastic setting, where the data follow some
parametric distribution.

5.1. Experimental Setup

The first setting we consider consists of an initial training set, an unlabeled pool (from
which the training examples are selected), and an unlabeled test set, all drawn from the
same distribution. The experiment includes the following four steps:

1. A model is trained on the small labeled dataset (initial training set).
2. One of the active learning strategies is utilized to select a small number of the most

informative examples from the unlabeled pool.
3. The labels of the selected samples are queried and added to the labeled dataset.
4. The model is retrained using the new training set.

Steps 2–4 are repeated multiple times, with the model becoming more accurate with
each iteration, as it is trained on a larger labeled dataset.

In addition to the standard setting, we evaluate the performance in the presence
of OOD samples. In this scenario, the initial training and test sets are drawn from the
same distribution, but the unlabeled pool contains a mix of OOD samples. When an OOD
unlabeled sample is selected for annotation, it is not used in training of the next iteration of
the model. Across all x-axis values in the subsequent test accuracy figures, the presented
metric is the count of Oracle calls, reflecting the instances when a selection strategy chose a
sample, whether it be IND or OOD. It is crucial to differentiate this metric from the training
set size, as the selection of an OOD sample leads to an increase in the number of Oracle
calls, while the training set size remains unaffected. An effective strategy would recognize
that OOD samples do not improve performance on the test set and avoid selecting them.

A visual representation of the scenario with OOD samples is illustrated in Figure 1a–c.
These figures show the unlabeled pool, which contains a mixture of both IND and OOD
samples. Figure 1d–f show the test set, which contains only IND samples. We argue that
this is a representative setting for active learning in real life. In the real world, unlabelled
pools are collected from many data sources and will most certainly contain OOD data. The
process of pruning the unlabelled pool is a costly process and involves human inspection
and labeling, which needs to be minimized. This is exactly the goal of active learning and
finding a criterion which implicitly filters OOD data is of significant interest.
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(a) MNIST and OOD images (b) EMNIST and OOD images (c) CIFAR10 and OOD images

(d) MNIST test images (e) EMNIST test images (f) CIFAR10 test images

Figure 1. Datasets that contain a mix of images with OOD samples. (Top) Unlabeled pool contains
OOD samples (Bottom). Test set includes only valid data.

5.2. MNIST Experimental Results

Following Gal et al. [4], we considered a model consisting of two blocks of convolution,
dropout, max-pooling, and ReLu, with 32 and 64 5 × 5 convolution filters. These blocks
are followed by two fully connected layers that include dropout between them. The layers
have 128 and 10 hidden units, respectively. The dropout probability was set to 0.5 in all
three locations. In each active learning round, a single sample was selected. We executed
all active learning methods six times with different random seeds. For BALD, EPIG, and
DIAL, we used 100 dropout iterations and employed the criterion on 512 random samples
from the unlabeled pool. MNIST results are shown in Figure 2a. The largest efficiency is at
a number of Oracle calls of 71, where DIAL attains an accuracy rate of 0.9, while EPIG and
BALD achieve an accuracy rate of 0.86.

50 100 150 200 250 300
Number of oracle calls

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 a
cc

ur
ac

y 
ra

te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(a) MNIST

50 100 150 200 250 300
Number of oracle calls

0.60

0.70

0.80

0.90

Te
st

 a
cc

ur
ac

y 
ra

te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(b) MNIST with OOD
Figure 2. Accuracy as function of number of Oracle calls on MNIST dataset. DIAL outperforms the
baselines for the two setups.

To simulate the presence of OOD samples, we added the Fashion MNIST to the
unlabeled pool such that the ratio of Fashion MNIST to MNIST was 1:1. In this setting,
DIAL outperforms all other baselines, as shown in Figure 2b. DIAL is the top-performing
method and has better accuracy than EPIG, BALD, Core-set, and Random. The largest
efficiency is an accuracy rate of 0.95, where DIAL uses 240 Oracle calls, while BALD needs
307 (−35.1%). EPIG never reaches this accuracy level. The number of Oracle calls for
additional accuracy rates is shown in Table 1.
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Table 1. MNIST with OOD number of Oracle calls at x% accuracy.

Methods 85% Acc. 75% Acc. 65% Acc.

Random 145 73 36
Core-set 117 61 33
BALD 83 51 32
EPIG 84 56 35
DIAL 73 (−12.1%) 48 (−5.9%) 30 (−6.2%)

5.3. EMNIST Experimental Results

We followed the same setting as the MNIST experiment with a slightly larger model
than MNIST consisting of three blocks of convolution, dropout, max-pooling, and ReLu.
The experimental results, shown in Figure 3a, indicate that DIAL is the top-performing
method. For an accuracy rate of 0.56, it requires 8.3% less Oracle calls when compared to
the second best method.

In the presence of OOD samples, the DIAL method outperforms all other baselines,
as shown in Figure 3b and Table 2. For 300 Oracle calls, DIAL achieves a test set accu-
racy rate of 0.52, while BALD, EPIG, Core-set, and Random attain 0.51, 0.5, 0.42, and
0.40, respectively. For an accuracy rate of 0.53, DIAL needs 308 Oracle calls, while BALD
and EPIG require 346 and 342, respectively (−11%). Moreover, Core-set and Random do
not achieve this accuracy.
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(b) EMNIST with OOD
Figure 3. Active learning performance on the EMNIST dataset. DIAL is more efficient than tested
baselines in the number of Oracle calls.

Table 2. EMNIST with OOD number of Oracle calls at x% accuracy.

Methods 40% Acc. 30% Acc. 25% Acc.

Random 281 140 80
Core-set 221 96 62
BALD 154 85 59
EPIG 157 84 59
DIAL 138 (−10.4%) 84 (−1.2%) 59 (0%)

5.4. Cifar10 Experimental Results

For the CIFAR10 dataset, we utilized ResNet-18 [51] with an acquisition size of
16 samples. We used 1K initial training set size and measured the performance of the
active learning strategies up to a training set size of 3K. The CIFAR10 results are shown in
Figure 4a. Overall, DIAL and Random perform the same and have a better test set accuracy
than the other baselines for Oracle calls greater than 2100.
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(b) CIFAR10 with OOD
Figure 4. The left figure illustrates the performance of CIFAR10 using only IND samples. The DIAL
method performs similarly to the Random method. The figure on the right shows the performance of
a combination of OOD samples, where DIAL outperforms all other methods.

When the presence of OOD samples in the unlabeled pool is considered, as shown in
Figure 4b, DIAL outperforms the other methods. Table 3 shows the number of Oracle calls
required for different accuracy levels. For the same accuracy rate of 0.65, DIAL needs up
to 15.4% less Oracle calls than the second best method. This can be explained by Figure 5,
which shows the ratio of OOD samples to the number of Oracle calls. The figure suggests
that DIAL outperforms other criteria by selecting fewer OOD samples, contributing to its
commendable performance. It is noteworthy that in all OOD scenarios, DIAL demonstrated
superior ability to identify in-distribution samples without explicit knowledge of the
distribution and solely utilizing unlabeled test features. This underscores the universality
of DIAL, showcasing its adaptability to various distribution shifts. Additionally, the second-
best performer, EPIG, also considers the unlabeled test set and performs better than other
baseline methods but falls short of DIAL. Notably, BALD and Core-set exhibit similar
behavior, possibly attributed to their emphasis on model estimation rather than leveraging
the test set for predictive focus.
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Figure 5. The amount of chosen OOD samples for CIFAR10 with the presence of OOD samples.

Table 3. CIFAR10: the presence of OOD samples: Number of Oracle calls at specific accuracy rate values.

Methods 66% Acc. 62% Acc. 58% Acc.

Random 3956 1828 1220
Core-set 4468 1844 1412
BALD 4020 1636 1202
EPIG 3636 1700 1108
DIAL 3076 (−15.4%) 1556 (−4.9%) 1060 (−4.3%)
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6. Limitations

The proposed DIAL algorithm is a min-max strategy for the individual settings.
However, DIAL may not be the most beneficial approach in scenarios where the unlabeled
pool is very similar to the test set, where different selection strategies may perform similarly
and with smaller complexity. This limitation of DIAL is supported by the experimental
results of Section 5.4, where the DIAL algorithm performed similarly to random selection
for the CIFAR10 dataset (but better than all the other baselines).

Another limitation of DIAL is that it has a higher overhead computation compared to
other active learning methods such as BALD. This is because DIAL involves computing the
regret on the test set, which requires additional computations and could become significant
when the unlabeled pool or the test set are very large.

7. Conclusions

In this study, we propose a min-max active learning criterion for the individual setting,
which does not rely on any distributional assumptions. We have also developed an efficient
method for computing this criterion for DNNs. Our experimental results demonstrate
that the proposed strategy, referred to as DIAL, is particularly effective in the presence of
OOD samples in the unlabeled pool. Specifically, our results show that DIAL requires 12%,
10.4%, and 15.4% fewer Oracle calls than the next best method to achieve a certain level of
accuracy on the MNIST, EMNIST, and CIFAR10 datasets, respectively.

As future work, we plan to investigate batch acquisition criteria that take into account
batch selection. This will allow us to consider the relationship between the selected samples
and the overall composition of the batch, which may lead to even further improvements
in performance.
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Appendix A. Equivalence between EPIG and UAL

In this section, we will prove that the criterion proposed by Smith et al. [11] is equiva-
lent to the criterion in Shayovitz and Feder [6].

Proof. Assuming some prior π(θ), the UAL criterion is:

x̂n = argmin
xn

I(θ; Y|X, xn, Yn, zn−1)

where X and Y are the test feature and label random variables.
The EPIG criterion [11] is:

x̂n = argmax
xn

I(Y; Yn|X, xn, zn−1)



Entropy 2024, 26, 129 15 of 17

In order to show the equivalence between the two acquisition functions (UAL and
EPIG), we can write the following mutual information equality using the mutual informa-
tion chain rule:

I(Y; Yn, θ|X, xn, zn−1) = I(Y; Yn|X, xn, zn−1) + I(Y; θ|X, Yn, xn, zn−1)

The same mutual information I(Y; Yn, θ|X, xn, zn−1) can also be expressed by the chain
rule using a different conditioning:

I(Y; Yn, θ|X, xn, zn−1) = I(Y; θ|X, xn, zn−1) + I(Y; Yn|X, xn, θ, zn−1)

Therefore,

I(Y; Yn|X, xn, zn−1) + I(Y; θ|X, Yn, xn, zn−1) = I(Y; θ|X, xn, zn−1) + I(Y; Yi|X, xn, θ, zn−1) (A1)

Given θ, the test and train are independent; therefore, I(Y; Yn|X, xn, θ, zn−1) = 0 and
(A1) becomes:

I(Y; θ|X, Yn, xn, zn−1) = I(Y; θ|X, xn, zn−1) + I(Y; Yn|X, xn, θ, zn−1) (A2)

It is assumed that θ is independent of xn (p(θ|xn) = p(θ) and that p(zn−1|xn) = p(zn−1).
These assumptions, coupled with Bayes, lead to the following conditional independence:
p(θ|xn, zn−1) = p(θ|zn−1). We can now remove the conditioning on xn and obtain I(Y; θ|X, xn, zn−1)

= I(Y; θ|X, zn−1). We note that I(Y; θ|X, zn−1) is not dependent on xn and is a fixed quantity.
Therefore, we can re-write (A3):

I(Y; θ|X, zn−1) = I(Y; θ|X, Yn, xn, zn−1)− I(Y; Yn|X, xn, θ, zn−1) (A3)

It is now clear that if we find xn which minimizes I(θ; Y|X, xn, Yn, zn−1) (UAL),
it will simultaneously maximize I(Y; Yn|X, xn, zn−1) (EPIG), since their difference is
a constant.
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