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Abstract: In recent years, several global events have severely disrupted economies and social struc-
tures, undermining confidence in the resilience of modern societies. Examples include the COVID-19
pandemic, which brought unprecedented health challenges and economic disruptions, and the emer-
gence of geopolitical tensions and conflicts that have further strained international relations and
economic stability. While empirical evidence on the dynamics and drivers of past societal collapse
is mounting, a process-based understanding of these dynamics is still in its infancy. Here, we aim
to identify and illustrate the underlying drivers of such societal instability or even collapse. The
inspiration for this work is Joseph Tainter’s theory of the “collapse of complex societies”, which
postulates that the complexity of societies increases as they solve problems, leading to diminishing
returns on complexity investments and ultimately to collapse. In this work, we abstract this theory
into a low-dimensional and stylized model of two classes of networked agents, hereafter referred
to as “laborers” and “administrators”. We numerically model the dynamics of societal complex-
ity, measured as the fraction of “administrators”, which was assumed to affect the productivity
of connected energy-producing “laborers”. We show that collapse becomes increasingly likely as
the complexity of the model society continuously increases in response to external stresses that
emulate Tainter’s abstract notion of problems that societies must solve. We also provide an analytical
approximation of the system’s dominant dynamics, which matches well with the numerical experi-
ments, and use it to study the influence on network link density, social mobility and productivity.
Our work advances the understanding of social-ecological collapse and illustrates its potentially
direct link to an ever-increasing societal complexity in response to external shocks or stresses via a
self-reinforcing feedback.

Keywords: societal complexity; social-ecological collapse; resilience; network model; agent-based
model

1. Introduction

Human societies have always faced a wide variety of challenges that have tested their
resilience and resulted in a median longevity of premodern societies of around 200 years [1].
These challenges include external stresses such as invasions and environmental catastrophes
as in the case of Mesopotamia [2] or internal pressures such as corruption, rebellion and
mismanagement, as in ancient Egypt [3]. Historically, both cases led to societal collapse.
Other classic and widely studied examples include the fall of the Western Roman Empire in
the 5th century CE, the collapse of the Maya in the 9th century CE or the fall of the Minoan
civilization of Crete in the 14th century BCE [4,5]. Many more historical civilizations and
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their trajectories have also been studied extensively in order to identify common factors of
collapse [6].

Modern societies face similarly severe challenges, such as global climate change,
pandemics, or financial instability. The estimated costs of climate change [7] alone will put
additional strain on already overindebted nation states [8]. While the 2008 housing crisis
was still reverberating in several countries, the COVID-19 pandemic has caused major
impacts on health systems and may have long-term consequences for economies, political
institutions and social structures [9].

The above examples illustrate the long-standing question of whether it is possible to
identify underlying principles that determine a society’s ability to cope with such large-
scale challenges and thus increase its resilience to collapse. As reviewed by Cumming and
Peterson [10], there are several explanatory models for collapse. Explanations focusing on
resource limitations such as the classical Malthusian trap [11] and limits to exponential
growth and overuse of resources have been widely discussed in the past [12–15]. But climate
change, extreme events, inequality, overpopulation, social tension, revolutions and wars
also point to collapse, e.g., [1,16,17]. These theories can be broadly divided into external
and internal drivers of collapse [1].

Tainter’s theory of the collapse of complex societies specifically emphasizes the notion of
societal complexity and its tendency to self-amplify in response to stress as the primary
cause of collapse [4,18]. Within this framework, complexity emerges continuously through
problem solving and is manifested in the differentiation and specialization of social roles,
hierarchies and control of behavior, growing population, technical abilities and increased
information flows. These investments in complexity have associated costs, such as calories,
natural resources, time or money, all of which can be reduced to an abstract form of energy.
Although increases in complexity can be beneficial to societies and contribute to well-being,
it is hypothesized that the surpluses generated by increases in complexity will diminish as
the “low-hanging fruits” become fewer. Thus, diminishing marginal returns to investments
in complexity (or simply returns on complexity ROC) ultimately drive a society into collapse
due to a loss of resilience to external perturbations or internal crises. In addition, the benefits
of complexity may be short-lived and quickly consumed by population growth or increased
living standards. In contrast, increased energy demand tends to be persistent [19], leading to
new problems once previously earned energy surpluses are used up. Within the framework
proposed in Tainter [4], this process is described as the energy–complexity spiral [18].

Contemporary evidence for complexity gains in specialization and differentiation of
social roles as well as technical abilities are the decline of labor in the agricultural sector
and increase of the financial and communications sectors in the 20th century, while pro-
ductivity in primary sectors has increased [20]. Further evidence of complexity increase is
the growing burden of bureaucracy. In the U.S., the number of administrative regulations
increased linearly from 1950 to 2000 by approximately 2500 pages per year [21]. For exam-
ple, in cancer research, complexity is introduced by formalities or regulations for opening
trials. Such complexity increments diminish the returns on investment (ROI) of research,
resulting in reduced innovativeness in the field [22]. Hall et al. [23] estimates the energy
return on investment (EROI) of a sustainable society to be well above 3:1, which can be
interpreted as a proxy for complexity. Despite these examples, overall empirical evidence
on societal complexity and its change over time is scarce, even though it seems ubiquitous
in our lives.

Mathematical models and simulations are important tools for exploring the implica-
tions of different theories of collapse and resilience and for testing competing hypotheses
about the processes underlying the dynamics of societal complexity and collapse. In the
archaeological domain, agent-based models are employed to understand the interaction
of water and land-use change [24] or to compare trajectories of biocultural evolution [25].
Dynamical systems models are frequently employed to model small-scale social-ecological
systems [26–28]. Examples include a resource economics model of the collapse of the Rapa
Nui population [29] or an exploration of vulnerabilities in forager–resource systems [30].
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More recently, Motesharrei et al. [31] developed a dynamical systems model to study trajec-
tories to collapse in a coupled hierarchical consumer–resource system. Similarly, stylized
models of coupled carbon, population and capital stocks have been used on a planetary
scale to identify preconditions for societal collapse and sustainability and their implications
for the world–Earth system resilience [32,33].

In the last decade, a new generation of models has been conceptualized turning to
larger and up to global scales and embracing social-ecological complexity by integrating
concepts from dynamic land-use models and agent-based models [34,35]. Building on this
framework, Brown et al. [36] identified societal breakdown as an emergent property of large-
scale behavioral models of land-use change under different climate-economic scenarios.
To strengthen the human side of the equation(s), much attention has been paid to in-
crease realism in modeling human decision-making in socio-economic and social-ecological
models [37–40] as well as modeling collective behavior and social tipping dynamics [41].
Recently, these efforts have culminated in a comprehensive modeling framework for so-
called World–Earth models [42]. The work of Tainter has been previously approached
from a system dynamics angle [43], focusing on complexity increase by the growth of
a nonbeneficial bureaucracy class and the overuse of a limited resource, which lead to
diminishing marginal returns and collapse.

In this work, we take an alternative approach and explore the theory of collapse of
complex societies in terms of the mechanisms that lead to increasing societal complexity,
diminishing resilience and ultimately collapse. To this end, we employ an agent-based
network model with worker and administrator nodes connected by edges. We introduce a
complexity-generating mechanism wherein added complexity through converting workers
to administrators yields positive feedback, enhancing the productivity of connected worker
nodes. This implementation successfully recaptures the theory’s postulated behavior of
collapse due to diminishing marginal returns to complexity. We then study its macroscopic
dynamics in detail and identify two escape mechanisms from collapse: increasing the
productivity of labor or allowing social mobility by stochastic transitions of nodes between
productive and administrative states. In order to approach the theory of societal collapse
from a conceptual angle, we propose here to reduce it to three key elements:

1. The basic currency of any society is energy, since labor and material goods can be
viewed as driven by or derived from energy.

2. Problems need to be solved when energy availability is deficient as a consequence
of stochastic events or shocks. According to the self-reinforcing process denoted as
energy–complexity spiral (see above), this process always increases societal complexity.

3. Increases in complexity can be modeled as increases in administrative capacity because
they encapsulate increases in specialization of social roles, hierarchies and control,
and information flow. Moreover, the size of an administrative body relative to the
overall size of the system is a very tangible example of complexity.

The remainder of this paper is organized as follows. We begin with a thorough de-
scription of our proposed network model in the next section. We first present the basic
model and then describe a model variant that includes a mechanism to counteract collapse.
In the results section, we first present the stochastic model by discussing exemplary tra-
jectories of the system followed by the derivation of an analytical approximation. Based
on this approximation we present a comprehensive ensemble analysis of all crucial model
parameters. The paper concludes with a discussion of all relevant results and an outlook
on future work.

2. Model Description
2.1. Tainter Inspired Network Model of a Hierarchical Society Steering into Diminishing Marginal
Returns and Collapse

In the following, we introduce the model that is used in this work to exemplify the
dynamics of collapse proposed in Tainter [4]. Its goal is to illustrate the increase in societal
complexity as a response to the solving of problems, here the sustaining of a certain level
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of energy supply E. We define complexity as an increase in the diversification of the
society (the creation of a new role) and the corresponding increase in control over the
behavior of others (an increasing administrative body). We show that by only including
these two processes, one already observes an increase in an appropriately defined measure
of complexity and hence, we do not need to specifically account for additional phenomena,
such as specialization or an increase in hierarchies.

In particular, we represent an artificial society by means of a complex network [44,45]
as complex networks have been successfully used in the past to model social systems with
respect to collapse [46], sustainability [47] and their ability to adapt to new conditions [48].
They are usually comprised of entities of two basic types, i.e., nodes and links. For our case
the nodes indicate (representative) small but long-lived entities that supply labor, such as
family lines, in a society. Links between the nodes or entities represent some comparatively
stable social tie, e.g., a professional relationship, between them. N counts the total number
of nodes in the network and remains fixed throughout the entire simulation (Figure 1).

Figure 1. Sketch of the model setup. Nodes/agents are either attributed to administrators A or
laborers L. laborers that are connected to at least one administrator are denoted as coordinated laborers
C that produce higher energy outputs due to an increased productivity. The influence of each
administrator is marked with green shading. In case the energy production falls below a critical value,
the coordinated laborer that is connected with most other nodes (here marked in orange) becomes an
administrator as well.

The sole goal of the society is to produce energy E at a certain level in order to sustain
its function. The corresponding per “capita” (actually, per node) energy requirement of
the society is denoted as ϵ. In order to produce this energy, certain nodes (denoted as
laborers L) harvest an individual energy source Rmax. Rmax is subject to external shocks
that represent an abstract form of a problem that needs to be solved. In order to increase
the energy that is produced from the resource, some laborers L can also be appointed to
become administrators A. The purpose of the administration is to increase the productivity
of the laborers L that are under its direct management.

To describe energy production in the present model we draw upon a commonly used
utility function in economic models, Equation (2). The equation considers the productivity
of labor, scaling linearly with the number of workers, and the output elasticity to scale, which
is a measure of the marginal change in energy production resulting from each additional
coordinated worker. Output elasticity to scale is typically used to describe scaling in
production process in economy and scales exponentially with increases in production
factors, e.g., the number of laborers. We assume each laborer L who is directly connected
with at least one administrator A becomes part of a more productive body of the labor force
which has a larger total factor productivity, expressed by a productivity factor c > 1 and
an output elasticity to scale of labor of b, where the rest of the labor force has an output
elasticity to scale of labor of a ≤ b. In line with common economic models, we assume
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overall decreasing returns to scale, i.e., a ≤ b < 1. We denote this class of more productive
laborers the coordinated laborers C (Figure 1). While they increase the productivity of their
immediate surroundings, the administrators A themselves do not produce energy any
longer (thus indicating a certain cost of maintaining an administrative body). Note that
being additionally connected with more than one administrator A does not further increase
the productivity c of the coordinated laborers C. Along the lines of Tainter [4], we measure
the resulting societal complexity S in terms of the size of the administration NA = |A| as it
represents the level of behavioral control in our model society.

We model the temporal dynamics within our artificial society according to the follow-
ing rules. At each time step t, the maximally available resource per node, Rmax, is reduced
by randomly drawn disturbances from a beta distribution with parameters α = 1 and
β = 15.

R = Rmax(1− B), with B ∼ Beta(α, β) (1)

The stochasticity of R represents the occurrence of shocks or problems to be solved by
the model society. Larger values of B represent larger shocks or problems. We have chosen
the parameters for the beta distribution such that drawing shocks mostly results in R close
to Rmax (i.e., no or small problems) with a rare chance of R≪ Rmax (i.e., large problems).
Depending on the number of laborers NL(t) (uncoordinated) and NC(t) (coordinated), the
total produced energy E(t) is computed as

E = R(Na
L + cNb

C), (2)

where a and b determine the output elasticity to scale of the nodes L and C, respectively,
and c is the productivity factor of coordinated workers C. Rmax is scaled by the output
elasticity of uncoordinated workers Rmax = N/Na to initialize the unperturbed per capita
energy production at Ecap = 1. If the energy per capita falls below a minimum value
representing the society’s vital needs, i.e., if E(t)/N < ϵ for some parameter ϵ, we assume
the society tries to solve this problem by appointing exactly one (additional) administrator
such that the productivity of some laborers is increased. The new administrator is selected
as follows:

(a) If currently, no administrators exist in the society (i.e., if NA = 0), the laborer L with
the most network connections becomes the sole administrator.

(b) If at least one administrator currently exists (i.e., if NA > 0), the coordinated laborer
who has the most network connections becomes an additional administrator.

The model then proceeds to the next time step and the availability of R as well as the
produced energy E(t) are again computed according to Equations (1) and (2).

Following [18], we define the potential onset of societal collapse, i.e., the vicinity
to a critical state, once the system approaches diminishing returns on complexity ROC.
We operationalize ROC into our model by computing the differences in energy E and
complexity S after the recruitment of one additional administrator A at time t,

ROC(t) =
E(t)− E(t− 1)
S(t)− S(t− 1)

. (3)

Note that ROC(t) depends on the specific structure of the underlying social network,
in particular, on whom the newly appointed administrator A is connected to and how
many laborers turn from L to C as a consequence. As outlined above, we measure societal
complexity S simply in terms of the size of the administration NA, i.e., S(t) = NA(t).
Since the size of the administration is increased by one due to the recruitment of a single
additional administrator at time t, we obtain NA(t) = NA(t− 1) + 1 such that S(t)− S(t−
1) = 1. Therefore, the return on complexity ROC reduces to ROC(t) = E(t)− E(t− 1).

Once ROC(t) becomes negative, our artificial society is expected to begin its decline
into collapse since the energy production E becomes smaller and approaches zero with
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increasing time t and a correspondingly ever-increasing size of the administration NA.
In the following section, we therefore directly display results for the energy production E(t)
over time and interpret a positive slope as increasing returns to complexity and a negative
slope as decreasing returns to complexity. In the scope of this model, we define collapse
as the state where E = 0. While this is unrealistic in a real-world scenario, it serves as a
reasonable endpoint for the abstract model proposed here, since qualitative differences are
not expected when using collapse signals between ROC ≤ 0 and E = 0.

For the initial model setup, we considered an Erdős–Rényi random network [49]. It
consisted of N (N = 400 for our case) nodes that were all initially assumed to be laborers
(NL(0) = N, NA(0) = NC(0) = 0). Additionally, we placed a link between each pair of
nodes with a fixed probability ρ (which we varied between ρ = 0 and ρ = 0.1 for our
analyses). Thus, ρ gives the expected density of links in the resulting network, while
N(N − 1)/2 is the maximum number of possible links. Starting from this setup, we
simulated the system for a maximum of tmax = 10,000 time steps following the model
logic that was given above. In the case when all nodes becomes administrators (i.e.,
if NA(t) = N), we stopped the simulation even though tmax may not have been reached.
In that case, no more energy is produced (E = 0 due to the lack of laborers L), and we
considered the society to be entirely collapsed.

The code of the entire model and the described analysis is publicly available at
https://github.com/flo-schu/tainter (accessed on 12 December 2023) including instruc-
tions for downloading pre-simulated datasets. Table 1 gives the parameters used in the
simulation unless otherwise given.

Table 1. Model parameters, their function in the model and their values used in the analysis unless
otherwise mentioned. The values in squared parentheses express the range scanned for the parameter
analysis shown in Figure 4.

Parameter Function Value

N Network size (number of nodes) 400
tmax Maximal runtime of the simulation (time steps) 10,000

α Parameter of shock regulating the Beta distribution 1
β Parameter of shock regulating the Beta distribution 15
ϵ Energy threshold for coordinating a new A 1.0
a Output elasticity to scale of uncoordinated workers L 0.75
b Output elasticity to scale of coordinated workers C 0.75
c Productivity of coordinated workers C 1.05 [1.0, . . . , 3.0]
ρ Link probability between nodes 0.02 [0.0, . . . , 0.1]
pe Exploration probability between node states 0.00 [0.0, . . . , 0.2]

2.2. Social Mobility as a Possible Countermeasure to Collapse

The basic model that we introduced in the previous section represents closely the
assumptions put forward in Tainter [4]. Here, a society may get caught in the energy–
complexity spiral as the increased or even flat demand for energy increases its complexity
(measured as the size of the administrative body NA(t)) when being faced with ever
new problems.

One obvious downside of the above model setup is that once selected, an administrator
A does not change its role back to become a laborer L (or C) again (ratchet effect). This
decision is motivated by findings that social mobility is predominantly stable or upward
rather than downward within [50] and across generations, e.g., [51]. Additionally, it is
only possible to become an administrator A if one is selected from the set of coordinated
laborers C, meaning that a spontaneous jump in hierarchy is not permitted within the logic
of the model.

In order to increase social mobility, we deviated from Tainter and aimed to investigate
a version of our model that allowed for the nodes to randomly change their state with
a fixed small probability. Such dynamics can be interpreted as the loss or gain in socio-
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economic status within or across generations. Within the logic of our model, such an
additional process was implemented as follows. At the beginning of each time step t, every
node changes its state with probability pe either from A to L or C (depending on whether it
is connected to another administrator), or from L or C to A. We expected that this would
allow us to regulate the complexity of the society and possibly avoid its unlimited growth
(as for this setting, the complexity may also decrease as the problems/shocks become
smaller again). Hence, such process should cause a sustainable ratio between the size of
the administration NA and the body of laborers NL + NC. Note that if we set pe = 0, we
again obtain the dynamics of the model setup outlined in the model description.

3. Results
3.1. Example Trajectories

Figure 2A shows the implementation of the original approach to Tainter’s theory of
societal collapse with dynamics described above in the model description. Initially, the
model society benefits from its response to external shocks. The reason is that initially, each
new administrator A has a much higher number of connections to laborers L, which are thus
turned into coordinated laborers C producing an energy output at increased productivity
(here, a = 1.05). As the number of laborers L decreases, the marginal returns on complexity
(ROC) of each new administrator A decreases until it becomes negative. Figure 2B displays
the energy output as a function of the administration, which resembles well the assumed
underlying principle of diminishing marginal returns on complexity in Tainter [18]. In our
first approximation to the theory of collapse, the model society can only react to shocks by
choosing the best possible administrator each time the energy requirements are not met.
We interpret the formation of an administrative body as an increase in societal complexity.
After a period of increased energy output, marginal returns decrease while correspondingly,
the share of administration rises, caught in an energy–complexity spiral until the society
collapses (here, E = 0) (Figure 2A).

Next, we studied whether a small adaptation mechanism of the model society en-
abled the model to overcome the fast collapse shown in Figure 2A. For this purpose, we
allowed for a random exploration of node states enabling the model agents to change their
state (A −→ L/C or vice versa) with a low probability (pe = 0.00275). For a network of
N = 400 individuals, this amounted to an average of 1.1 nodes changing their status at
random per time step.

As Figure 2C shows, an exploration rate of this low magnitude can already be sufficient
to delay the collapse that follows from the event-triggered selection of administrators
indicated by a higher survival time of the society; compare Figure 2A–C. However, the
energy output E was still very low at pe = 0.00275, due to the high degree of administration
in the network over sustained periods of time.

We also studied the case of larger rates of exploration, i.e, pe = 0.02 (Figure 2D). We
found an initially sharp increase in administration, facilitated by the high exploration
probability. The trajectory then converged to a stable administrator share slightly above
NA/N = 0.5, slightly increased by an additional effect-based promotion of nodes, be-
cause the energy production per capita was always below the threshold (ϵ = 1.0). Af-
ter reaching this (meta)stable state, the model society seemed to survive for a long time
(at least longer than t = 5000) while faced with a decreased mean energy production at
around E ≈ 0.5.

It is noteworthy that in each instance of the simulation (Figure 2A,C,D), the society
reached an energy production above the energy requirements, which was then however
quickly surpassed until the energy level either tended towards zero for zero or low explo-
ration rates in Figure 2A,C or converged to a stable regime for large exploration rates in
Figure 2D. Also note that in the standard “fast-collapse” scenario, the society initially fared
better with respect to energy production than under exploration scenarios (pe ≥ 0).
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Figure 2. Exemplary network simulations of a Tainter-like model society (N = 400) according to the
model description. The panels show only the first 5000 time steps to focus on the initial dynamic.
Blue curves show the share of the administration in the network (light blue: administration as
a result of decreased resource availability; dark blue: administration resulting from exploration
with rate pe). Orange curves show the average energy produced per node. (A) shows the typical
development of a network reacting to shocks by changing one node from coordinated laborer C
to administrator A. (B) displays a moving average of the energy measured in (A) against the size
of the administration. The black curve indicates stylized parabola-shaped diminishing marginal
returns as in [18]. (C) displays the network development at an intermediate exploration probability
(pe = 0.00275). (D) shows the development of a network with a high probability of exploration
(pe = 0.02).

3.2. Deterministic Macroscopic Approximation of the Stochastic Micromodel

We now derive a macroscopic approximation of the above stochastic micromodel
in terms of an ordinary differential equation describing the average time evolution of an
aggregate quantity (here, the total number NA of administrators). This time evolution
is governed by average transition rates between the three groups. The rates are based
on approximations of the probabilities with which individual agents switch between the
groups and the assumption that N is large so that the law of large numbers applies.

There are two processes which make the number of administrators change, exploration
and targeted recruiting in response to energy demands. Due to exploration, from the NA
administrators, on average, peNA many leave the administration per unit time, and from
the N − NA nonadministrators, on average, pe(N − NA) are hired as administrators per
unit time, making a balance of pe(N − 2NA) additional administrators on average per
unit time.

For targeted recruiting, we make the simplifying assumption that the density of
links inside and between the three groups remains approximately constant and can thus
be estimated by the overall link density ρ of the Erdös–Renyi network. Then, if NA is
the number of administrators, the probability that a nonadministrator is not linked to
any of the NA administrators (and is thus uncoordinated) is approximately (1 − ρ)NA ;
hence, the numbers of uncoordinated and coordinated laborers are approximately NL ≈
(N − NA)(1− ρ)NA and NC ≈ (N − NA)(1− (1− ρ)NA); hence, we have E = Re with
e = Na

L + cNb
C ≈ [(N − NA)(1− ρ)NA ]a + c[(N − NA)(1− (1− ρ)NA)]b.
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An additional administrator is recruited iff E/N < ϵ, i.e., iff R < Nϵ/e. We have
Equation (1) (R = Rmax(1− B) with B ∼ Beta(α, β)); hence, the condition R < Nϵ/e is
equivalent to 1− B < Nϵ/eRmax = Naϵ/e, as 1− B ∼ Beta(β, α). Hence, the probability
of E/N < ϵ is given by the cumulative probability function of the Beta distribution,
P = F(Naϵ/e, β, α).

The expected number of administrators hired additionally due to shocks per time unit
is then also equal to this probability P.

In all, we obtain the approximation

dNA
dt
≈ pe(N − 2NA) + F

(
Naϵ

[(N − NA)(1− ρ)NA ]a + c[(N − NA)(1− (1− ρ)NA)]b
, β, α

)
, (4)

NC ≈ (N − NA)(1− (1− ρ)NA), (5)

NL ≈ (N − NA)(1− ρ)NA (6)

as long as NA < N.
Simulation results were well predicted by the approximation, as shown in Figure 3A,B.

Particularly, at higher values of pe, the approximation yielded excellent results both for
the energy production and the administration share. Only at an exploration probability
of pe = 0 (dashed line and light colors in Figure 3) did the macroscopic approximation
slightly overestimate the velocity of collapse. This can be explained by one simplifying
assumption of the macroscopic approximation, namely, the network degree or local link
density is homogeneous, i.e., approach ρ, across the entire network. In contrast, due
to the links being put at random when setting up the network, this distribution in a
node’s number of connections becomes heterogeneous with some nodes showing an above-
average number of connections. Because those nodes are preferred over those with few
connections in the process of administration selection, initially selected administrators
will result in an above-average energy return. This produces the prolonged slow-growth
phase of the administration in the numerical simulation. In contrast, the macroscopic
approximation assumes that at a given point in time any new administrator would have
the same average effect.

To illustrate the probability of collapse under different exploration assumptions, his-
tograms of survival times from the stochastic model were computed (Figure 3C). At high
rates of social mobility pe, the model converged to a stable state where the society persisted
for infinite times due to its ability to absorb shocks. For lower pe ≈ 0, we also find isolated
cases of infinite survival even though the society mostly collapsed comparatively early
(Figure 3C). Such observations can be explained by a fragmentation of the network into
smaller worker networks that are mutually disconnected. This behavior cannot be cap-
tured by the macroscopic approximation and here, the results of the approximation can
differ from the numerical simulation. The scattered survival times along the time axis for
intermediate exploration rates illustrate the stochastic survival of the model society due to
a random sequence of shocks.
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Figure 3. Analytic approximation of the model dynamics with the share of administration NA/N
(A) and corresponding energy production per capita (B). Transparent solid lines show the results of
an ensemble of 100 simulations of the microscopic network model for different values of pe. Dashed
lines display the respective analytical approximation. (C) Histograms of collapse frequencies of the
model, i.e., frequency of times at which energy production approaches zeros, E = 0. Bars located at
time t ≥ 5000 show right-censored cases of the simulation.

3.3. Influence of Model Parameters on Survival Time

In the third step of our analysis, we used the approximation proposed in the previous
section to estimate model outcomes for a broad range of parameter values ρ, c and pe.
Note that the additional parameters of resource availability (α, β) and threshold (ϵ) had
a major influence on the outcome of the model as well. Specifically, a high probability
of low resource availability led to much shorter survival times and vice versa, while a
low threshold ϵ to appoint further administrators considerably increased survival times.
However, since these effects did not reveal any additionally remarkable results (not shown),
we focused our attention on the major drivers of survival time and energy output, i.e,
the exploration probability pe, link density ρ and productivity of labor c.

Figure 4(B1–B4) show the survival time as a function of link density ρ and labor
productivity c. Figure 4(B1) displays a parameter analysis for the case of no exploration,
pe = 0, and can hence be interpreted as showing the minimum requirements of a successful
administration, the most important requirement being a sufficiently large connectivity
of the social network (indicated by the increasingly gray area with increasing ρ). Also,
the extreme case of ρ = 0.0, i.e, a network with no connections, must be noted since in this
case, nodes cannot be converted at all to administrators and thus the model remains in its
initial state. As pe approaches 1

N (Figure 4(B2,B3)), the relevance of ρ diminishes and the
survival time becomes mainly a function of the productivity c.
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Figure 4. Survival-time analysis of the parameters exploration probability (pe), link density (ρ) and
productivity (c). (A) The effect of pe between zero and 1

N for some select values of c on median
survival time over all computed values of ρ. The vertical dashed line defines the exploration threshold
of 1

N . Lower panels (B1–B4) display the relation between c and ρ for different exploration probabilities.
Gray areas in the lower panels indicate a survival time ≥ 10,000, potentially going to infinity.

Figure 4A demonstrates the effect of exploration for selected values of a. For explo-
ration probabilities pe < 1/N, i.e., when less than one individual per time unit switches
their type, collapse is likely, which is indicated by reduced median survival times, Figure 4A.
Note that the per capita energy production of the macroscopic approximation is dependent
on N in so far as the link density and thus the number of connected nodes per A does not
scale linearly with N. Only if ρ is rescaled with N, i.e., we replace ρ with ρN = 1− σ1/N

for some fixed σ ∈ (0, 1), does the per capita energy production become effectively inde-
pendent of N. In fact, our macroscopic approximation shows that NA = N is a stable fixed
point of the approximate dynamics for pe < 1/N since the RHS of Equation (4) remains
strictly positive for NA → N. This means that the labor force will vanish in finite time,
thereby also resulting in a finite survival time. The optimal number of administrators
derived from Equation (4) is given in Appendix A. Additionally, in this “low exploration
regime”, a larger coordinated output productivity c tends to increase the median survival
time. Indeed, the term F(·) in Equation (4) is a decreasing function of c. This effect is
the more pronounced the larger NA is, because for a large NA, the energy production of
coordinated laborers C is dominant. Hence, a larger c slows down the collapse more and
more as we approach NA = N. The effect of a pe on survival time is more difficult to
understand because it is twofold, as can again be seen in Equation (4). Initially, when
NA < N/2, a larger pe increases dNA/dt and speeds up the process of recruiting admin-
istrators, as seen on the left of Figure 3A. As soon as NA > N/2, the reverse happens
and a larger pe slows down that process. For a small pe below some turning-point value
p0

e < 1/N, the first effect dominates, so that survival time decreases. For pe between p0
e and

1/N, however, the second effect dominates, so that survival time increases again. For some
values of c, the two effects are clearly distinguishable in different phases of the evolution,
as can be seen in the realization depicted in Figure 5, where the system stays a long time
close to NA = N/2 before reaching NA = A and thereby collapsing. As pe approaches
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the critical value of 1/N, this effect becomes ever stronger, and expected survival times
approach infinity.

Figure 5. Trajectories of administration share for c = 2.1 and ρ = 0.05 for two choices of pe below the
critical value pe =

1
N above which a collapse of the system is mitigated. The trajectories show how

the administration share is stabilized by exploration. This mechanism effectively slows the growth of
the administration until it reaches a critical size. At this point, the administration growth enters the
event-driven phase.

Of course, since the microscopic network model is of stochastic nature, individual
survival times still vary between realizations for the same set of parameters. As survival
time also depends on other parameters, we display only the central tendency of survival
time in Figure 3A. Since we terminated our simulations after t = 10,000 time steps, we
cannot distinguish higher survival times, which means we cannot use the arithmetic mean
of survival times as the measure of central tendency. This is why we display the median
instead, which has the additional advantage of being a more robust statistic than the mean.

For larger values of c, we see that some realizations survive for very long, even though
pe < 1/N. This is because for a large enough c, the approximate dynamics in Equation
(4) have a second stable fixed point despite NA = N. Indeed, for c → ∞, the F(·) term
vanishes, and dNA/dt = 0 for some value close to NA = N/2. In that case, realizations
of the stochastic model starting with a small NA are likely to stay close to NA = N/2 for
very long (which is thus a “metastable” state) before eventually escaping into the basin of
attraction of the “collapse” fixed point NA = N due to a large enough shock.

When pe crosses the critical value 1/N, the collapse fixed point NA = N of the
approximate dynamics becomes unstable, so that collapse can only occur due to a sequence
of large shocks, which becomes increasingly unlikely. The median survival time is then
very large. For a large pe, one can also see from Equation (4) which levels of NA occur
most likely over the course of the simulation. Since the F(. . . ) term is between zero and
one, dNA/dt = 0 implies N/2 ≤ NA ≤ N/2 + 1/2p. In other words, when either pe
or c are large enough, one can expect that after some transient phase, there will only be
slightly more administrators than laborers on average for a long time, before a large shock
eventually causes the system collapse after all.

4. Discussion

We constructed an agent-based network model to illustrate the emergent dynamics
of the theory of societal collapse as postulated in Tainter [4]. In our model, problem solving
increased complexity and ultimately led to system collapse by diminishing marginal re-
turns to investment. Problems were represented abstractly by random shocks to energy
production, which were countered by adding complexity to the networked social system
in the form of an increasing administration. We were able to derive a well-performing
macroscopic approximation of the proposed model, which provided a simple mathematical
description of the theory in the form of an ordinary differential equation. Using this ap-
proximation, we showed that increased social mobility through random status exploration
(A −→ L/C, A ←− L/C) of at least pe = 1/N was sufficient to mitigate a collapse at the
expense of skipping a phase of high energy returns on labor. A minimum network link
density ρ ≈ 0.02 was essential for long survival times but had no further effect beyond
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a threshold. Finally, the positive effect of complexity, expressed as the productivity c of
workers connected to administrators, was found to be the dominant factor increasing
survival time and also increasing energy returns.

Similar to Motesharrei et al. [31], we found that an unequal society in which the
elite consumed more (in their case) or produced less (in our case) than the commoners
was likely to run into collapse. In addition, we found that the absence of an elite (i.e.,
egalitarian society), which is comparable to the random status exploration mechanism
in our model, produced more pathways to avoid collapse than a hierarchical (complex)
society. In comparison, previously reported simulations of competing premodern societies
showed that collapse becomes less likely as societies grow more complex and develop
intensive agriculture at sufficiently large scale [52]. This finding contrasts with our result
for two specific reasons: First, in Guzmán et al. [52], complexity is a binary state and can-
not continue to increase once a society is denoted as being complex. Second, and more
importantly, Guzmán et al. [52] modeled a warrior class comparable to administrators in
our model, which was directly coupled to available food (energy). Therefore, complexity
in terms of hierarchies could not exceed the level of energy available and thereby grew to
an unsustainable size. A more detailed investigation into the interactions of complexity
and economic development in future work would certainly help in understanding the
importance of complexity in collapse. Butzer [3] points out that collapse itself should be
modeled by sophisticated social-ecological models that do not rely on simplifying assump-
tions. Nevertheless, Butzer [3] concludes that the preconditions for breakdown are typically
economic or fiscal decline (i.e., diminishing marginal returns). We agree and emphasize
that our model of the theory of collapse of complex societies offers a potential path leading to
exactly such preconditions. The model implemented in this work bears some resemblance
to the Peter Principle [53], which assumes that promoting workers based on their merits
leads to losses in productivity as workers are promoted away from the jobs they are most
qualified for. As in the present work, it was previously shown that performing random
status exploration can be an effective mechanism to evade the productivity-reducing effects
of the Peter principle [54]; however, in the present work, the mechanism mainly acts by
removing administrators and reassigning them to productive labor.

As in Watson and Lovelock [55] or Granovetter [56], the objective of our research was
not to derive operational guidelines for building resilient societies but to illustrate the
mechanism of collapse due to diminishing marginal returns of an increasingly complex
society. We acknowledge that our approach to modeling collapse is highly conceptual;
nevertheless, our results underline the relevance of understanding the emergence and
consequences of complexity in the resilience discourse.

One major critique of the model is the built-in ratchet effect, where administrators,
once recruited, cannot convert back into the productive labor force for pe = 0. This results in
a model where collapse is hardwired into the system. While this assumption is questionable
for real-world scenarios, it serves to exemplify the following statement, which we believe
encapsulates J. Tainter’s theory: If the energy available to a system is limited, if a system is
confronted with problems that occasionally require it to increase its complexity, and if these increases
in complexity have associated costs and the system’s complexity cannot be reduced, then given
enough time, the system will inevitably collapse. The general validity of assuming a persistent
complexity is supported by Tainter [4], who argues that the endogenous reduction in
complexity as a problem-solving strategy is not observed in historical cases, at least not as a
dominant process. Furthermore, the assumed persistence of complexity can be motivated by
persistent power structures [19], which come into existence much more easily than they are
removed. Finally, the administration depicted in this model can be compared to expanding
elite bureaucracies according to Parkinson and Lancaster [57] and Weber [58]. It would be
interesting to consider more complex dynamics of intragenerational and intergenerational
mobility of social status and wealth and their respective changes over time.
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Unlike more economically spirited models, our simple model does not include any
form of competition, economic externality, population growth or resource depletion, which
may be alternative or additional drivers of collapse in the real world.

Finally, we acknowledge that our proposed model represents only one feature of com-
plexity, i.e., the emergence of one additional layer of hierarchy, administration. Of course,
modeling efforts exist that consider much more intricate mechanisms, such as human be-
havior, shared-resource systems, interacting societies, etc., [31,32,34,35,37,38]. But keeping
Occam’s razor in mind, we believe that this very simple model (without population growth,
additional hierarchical layers, dynamic networks, etc.) is sufficient to make a case for the
direct influence of complexity with respect to social-ecological collapse.

With the availability of databases of collapse like Seashat [59] and the recently pub-
lished empirical survival analysis of states [1], the data are available to ground models on
real data. The complexity-generating mechanism proposed in this work can provide the
mechanistic basis to simulate the expected slowdown of recovery from perturbations [1],
as the marginal returns on complexity decrease with an increasing complexity of the society.
The logical next step is to use a survival analysis to combine empirical data with mecha-
nistic models by modeling hazards through advanced mechanistic models in order to test
specific hypotheses of societal collapse. For this, the presented model needs to overcome
its deficiencies and include resource acquisition and population dynamics not as abstract
quantities like energy E but physically based quantities. Therefore, our model should be
extended in future studies to analyze how complexity relates to collapse in potentially
more realistic scenarios, which could be represented by further social stratification or more
complex and adaptive network topologies. In this context, the complexity costs of social
connectivity should be considered. In addition, the impacts of innovations and energy
substitutes (coal, oil, etc.) on collapse could be studied to identify additional strategies
to slow down or avoid collapse [60]. Furthermore, the interrelation between energy and
complexity could also be studied in more elaborate World–Earth and Human–Earth system
models to study under which circumstances the results obtained in this work could be
transferred to less abstract applications. For this purpose, appropriate measures of energy,
complexity and resilience need to be defined depending on the specific model and research
question at hand [61].

With regard to the open research topics posed by Cumming and Peterson [10], such as
moving the debate from “whether” to “why” collapse occurred and possible strategies to
“avoid, slow or hasten collapse”, we wish to contribute our findings to the discourse on the
drivers of social-ecological resilience and collapse. Growing complexity has recently been
identified as a source of increased societal risk, e.g., due to high levels of socio(-ecological)
interconnectedness that can lead to cascading failures [62,63]. In this regard, complexity
is mainly considered as a facilitator of collapse by shaping systems to become more vul-
nerable. In our research, we show that complexity may be even more directly linked to
collapse, as societies may reach a point where the associated costs outweigh the benefits,
thereby directly causing their breakdown. This dimension is, to our understanding, an un-
derrepresented view of social-ecological collapse that should be strengthened by future
research efforts.

While increasing complexity has brought vast benefits to modern industrialized soci-
eties, our findings also raise the question of how far contemporary societies can increase
complexity without creating large-scale risks of collapse due to ever-increasing energy
demands. Along those lines, it is of great interest to further investigate whether increasing
complexity is always associated with increased risk, or whether certain forms of complexity
exist that do not necessarily increase the risk of societal collapse. Such an assessment would
allow the development of design principles for resilient infrastructures and social structures
that do not facilitate complexity in the understanding of Tainter [4].
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Appendix A. Optimal Number of Administrators

From the analytical approximation, we know that the expected energy input E is
proportional to

E0 := [(N − NA)(1− ρ)NA ]a + c[(N − NA)(1− (1− ρ)NA)]b, (A1)

which has a maximum in NA where

0 = ∂NA E0 = −a[(N − NA)(1− ρ)NA ]a−1[1− (N − NA) ln(1− ρ)](1− ρ)NA (A2)

+ bc[(N − NA)(1− (1− ρ)NA )]b−1[(1− ρ)NA [1− (N − NA) ln(1− ρ)]− 1]. (A3)

E.g., for N = 400, ρ = 0.02, a = b = 0.75 and c = 1.05, the optimal number of
administrators is NA ≈ 22 or ≈ 6%, leading to E ≈ 461 or E/N ≈ 1.15.

References
1. Scheffer, M.; Van Nes, E.H.; Kemp, L.; Kohler, T.A.; Lenton, T.M.; Xu, C. The Vulnerability of Aging States: A Survival Analysis

across Premodern Societies. Proc. Natl. Acad. Sci. USA 2023, 120, e2218834120. [CrossRef] [PubMed]
2. Weiss, H.; Courty, M.A.; Wetterstrom, W.; Guichard, F.; Senior, L.; Meadow, R.; Curnow, A. The genesis and collapse of third

millennium north mesopotamian civilization. Science 1993, 261, 995–1004. [CrossRef] [PubMed]
3. Butzer, K.W. Collapse, environment, and society. Proc. Natl. Acad. Sci. USA 2012, 109, 3632–3639. [CrossRef] [PubMed]

http://doi.org/10.1073/pnas.2218834120
http://www.ncbi.nlm.nih.gov/pubmed/37983501
http://dx.doi.org/10.1126/science.261.5124.995
http://www.ncbi.nlm.nih.gov/pubmed/17739617
http://dx.doi.org/10.1073/pnas.1114845109
http://www.ncbi.nlm.nih.gov/pubmed/22371579


Entropy 2024, 26, 98 16 of 17

4. Tainter, J.A. The Collapse of Complex Societies; New Studies in Archaeology; Cambridge University Press: Cambridge, UK, 1988.
5. Middleton, G.D. Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies. J. Archaeol. Res. 2012,

20, 257–307. [CrossRef]
6. Turchin, P. Historical Dynamics: Why States Rise and Fall, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2003. [CrossRef]
7. Tol, R.S.J. The Economic Impacts of Climate Change. Rev. Environ. Econ. Policy 2018, 12, 4–25. [CrossRef]
8. World Bank. Central Government Debt, Total (Current LCU); International Monetary Fund, Government Finance Statistics Yearbook

and Data Files; World Bank: Washington, DC, USA, 2020.
9. Trump, B.D.; Linkov, I.; Hynes, W. Combine resilience and efficiency in post-COVID societies. Nature 2020, 588, 220. [CrossRef]
10. Cumming, G.S.; Peterson, G.D. Unifying Research on Social-Ecological Resilience and Collapse. Trends Ecol. Evol. 2017,

32, 695–713. [CrossRef]
11. Malthus, T.R. An Essay on the Principle of Population, as It Affects the Future Improvement of Society with Remarks on the Speculations of

Mr. Godwin, M. Condorcet and Other Writers; J. Johnson: London, UK, 1798.
12. Meadows, D.H.; Meadows, D.L.; Jorgen, R.; Behrens, W.W. The Limits to Growth: A Report for the Club of Rome’s Project on the

Predicament of Mankind; Universe Books: New York, NY, USA, 1972.
13. Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber,

H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [CrossRef]
14. Diamond, J.M. Collapse: How Societies Choose to Fail or Survive/Jared Diamond; Penguin: New York, NY, USA, 2011.
15. Dixson-Declève, S.; Gaffney, O.; Ghosh, J.; Randers, J.; Rockstrom, J.; Stoknes, P.E. Earth for All: A Survival Guide for Humanity;

New Society Publishers: Gabriola Island, BC, Canada, 2022.
16. Kennett, D.J.; Breitenbach, S.F.M.; Aquino, V.V.; Asmerom, Y.; Awe, J.; Baldini, J.U.; Bartlein, P.; Culleton, B.J.; Ebert, C.; Jazwa, C.;

et al. Development and Disintegration of Maya Political Systems in Response to Climate Change. Science 2012, 338, 788–791.
[CrossRef]

17. Acemoglu, D.; Naidu, S.; Restrepo, P.; Robinson, J.A. (Eds.) Democracy, Redistribution, and Inequality. In Handbook of Income
Distribution; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 1885–1966. [CrossRef]

18. Tainter, J.A. Social complexity and sustainability. Ecol. Complex. 2006, 3, 91–103. [CrossRef]
19. Acemoglu, D.; Robinson, J.A. Persistence of Power, Elites, and Institutions. Am. Econ. Rev. 2008, 98, 267–293. [CrossRef]
20. Feinstein, C. Structural change in the developed countries during the twentieth century. Oxf. Rev. Econ. Policy 1999, 15, 35–55.

[CrossRef]
21. Coglianese, C. Empirical Analysis and Administrative Law. Univ. Ill. Law Rev. 2002, 2002, 1111–1138. [CrossRef]
22. Steensma, D.P.; Kantarjian, H.M. Impact of cancer research bureaucracy on innovation, costs, and patient care. J. Clin. Oncol. Off.

J. Am. Soc. Clin. Oncol. 2014, 32, 376–378. [CrossRef] [PubMed]
23. Hall, C.; Balogh, S.; Murphy, D. What is the Minimum EROI that a Sustainable Society Must Have? Energies 2009, 2, 25–47.

[CrossRef]
24. Barton, C.M.; Ullah, I.I.; Bergin, S. Land use, water and Mediterranean landscapes: Modelling long-term dynamics of complex

socio-ecological systems. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2010, 368, 5275–5297. [CrossRef]
25. Barton, C.M.; Riel-Salvatore, J. Agents of Change: Modelling Biocultural Evolution in Upper Pleistocene Western Eurasia. Adv.

Complex Syst. 2012, 15, 1150003. [CrossRef]
26. Kohler, T.A.; van der Leeuw, S.E. The Model-Based Archaeology of Socionatural Systems, 1st ed.; School for Advanced Research Press:

Santa Fe, NM, USA, 2007.
27. Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [CrossRef]
28. Schlueter, M.; Mcallister, R.R.; Arlinghaus, R.; Bunnefeld, N.; Eisenack, K.; Hoelker, F.; MILNER-GULLAND, E.J.; Müller, B.;

Nicholson, E.; Quaas, M.; et al. New horizons for managing the environment: A review of coupled social-ecological systems
modeling. Nat. Resour. Model. 2012, 25, 219–272. [CrossRef]

29. Brander, J.A.; Taylor, S.M. The Simple Economics of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use. Am.
Econ. Rev. 1998, 88, 119–138.

30. Freeman, J.; Anderies, J.M. Intensification, tipping points, and social change in a coupled forager-resource system. Hum. Nat.
2012, 23, 419–446. [CrossRef] [PubMed]

31. Motesharrei, S.; Rivas, J.; Kalnay, E. Human and nature dynamics (HANDY): Modeling inequality and use of resources in the
collapse or sustainability of societies. Ecol. Econ. 2014, 101, 90–102. [CrossRef]

32. Nitzbon, J.; Heitzig, J.; Parlitz, U. Sustainability, collapse and oscillations in a simple World-Earth model. Environ. Res. Lett. 2017,
12, 074020. [CrossRef]

33. Anderies, J.M.; Barfuss, W.; Donges, J.F.; Fetzer, I.; Heitzig, J.; Rockström, J. A modeling framework for World-Earth system
resilience: Exploring social inequality and Earth system tipping points. Environ. Res. Lett. 2023, 18, 095001. [CrossRef]

34. Rounsevell, M.D.; Arneth, A. Representing human behaviour and decisional processes in land system models as an integral
component of the earth system. Glob. Environ. Chang. 2011, 21, 840–843. [CrossRef]

35. Arneth, A.; Brown, C.; Rounsevell, M.D.A. Global models of human decision-making for land-based mitigation and adaptation
assessment. Nat. Clim. Chang. 2014, 4, 550–557. [CrossRef]

36. Brown, C.; Seo, B.; Rounsevell, M. Societal breakdown as an emergent property of large-scale behavioural models of land use
change. Earth Syst. Dyn. 2019, 10, 809–845. [CrossRef]

http://dx.doi.org/10.1007/s10814-011-9054-1
http://dx.doi.org/10.23943/princeton/9780691180779.001.0001
http://dx.doi.org/10.1093/reep/rex027
http://dx.doi.org/10.1038/d41586-020-03482-z
http://dx.doi.org/10.1016/j.tree.2017.06.014
http://dx.doi.org/10.1038/461472a
http://dx.doi.org/10.1126/science.1226299
http://dx.doi.org/10.1016/B978-0-444-59429-7.00022-4
http://dx.doi.org/10.1016/j.ecocom.2005.07.004
http://dx.doi.org/10.1257/aer.98.1.267
http://dx.doi.org/10.1093/oxrep/15.4.35
http://dx.doi.org/10.2139/ssrn.327520
http://dx.doi.org/10.1200/JCO.2013.54.2548
http://www.ncbi.nlm.nih.gov/pubmed/24395852
http://dx.doi.org/10.3390/en20100025
http://dx.doi.org/10.1098/rsta.2010.0193
http://dx.doi.org/10.1142/S0219525911003359
http://dx.doi.org/10.1126/science.1172133
http://dx.doi.org/10.1111/j.1939-7445.2011.00108.x
http://dx.doi.org/10.1007/s12110-012-9154-8
http://www.ncbi.nlm.nih.gov/pubmed/23054998
http://dx.doi.org/10.1016/j.ecolecon.2014.02.014
http://dx.doi.org/10.1088/1748-9326/aa7581
http://dx.doi.org/10.1088/1748-9326/ace91d
http://dx.doi.org/10.1016/j.gloenvcha.2011.04.010
http://dx.doi.org/10.1038/nclimate2250
http://dx.doi.org/10.5194/esd-10-809-2019


Entropy 2024, 26, 98 17 of 17

37. Schlüter, M.; Baeza, A.; Dressler, G.; Frank, K.; Groeneveld, J.; Jager, W.; Janssen, M.A.; McAllister, R.R.; Müller, B.; Orach, K.;
et al. A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecol. Econ. 2017,
131, 21–35. [CrossRef]

38. Schill, C.; Anderies, J.M.; Lindahl, T.; Folke, C.; Polasky, S.; Cárdenas, J.C.; Crépin, A.S.; Janssen, M.A.; Norberg, J.; Schlüter, M. A
more dynamic understanding of human behaviour for the Anthropocene. Nat. Sustain. 2019, 2, 1075–1082. [CrossRef]

39. Beckage, B.; Moore, F.C.; Lacasse, K. Incorporating human behaviour into Earth system modelling. Nat. Hum. Behav. 2022,
6, 1493–1502. [CrossRef]

40. Moore, F.C.; Lacasse, K.; Mach, K.J.; Shin, Y.A.; Gross, L.J.; Beckage, B. Determinants of emissions pathways in the coupled
climate–social system. Nature 2022, 603, 103–111. [CrossRef]

41. Wiedermann, M.; Smith, E.K.; Heitzig, J.; Donges, J.F. A network-based microfoundation of Granovetter’s threshold model for
social tipping. Sci. Rep. 2020, 10, 11202. [CrossRef] [PubMed]

42. Donges, J.F.; Heitzig, J.; Barfuss, W.; Wiedermann, M.; Kassel, J.A.; Kittel, T.; Kolb, J.J.; Kolster, T.; Müller-Hansen, F.; Otto, I.M.;
et al. Earth system modeling with endogenous and dynamic human societies: The copan:CORE open World–Earth modeling
framework. Earth Syst. Dyn. 2020, 11, 395–413. [CrossRef]

43. Bardi, U.; Falsini, S.; Perissi, I. Toward a General Theory of Societal Collapse: A Biophysical Examination of Tainter’s Model of
the Diminishing Returns of Complexity. Biophys. Econ. Resour. Qual. 2019, 4, 3. [CrossRef]

44. Newman, M. The Structure and Function of Complex Networks. SIAM Rev. 2003, 45, 167–256. [CrossRef]
45. Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591. [CrossRef]
46. Heckbert, S. MayaSim: An Agent-Based Model of the Ancient Maya Social-Ecological System. J. Artif. Soc. Soc. Simul. 2013,

16, 11. [CrossRef]
47. Wiedermann, M.; Donges, J.F.; Heitzig, J.; Lucht, W.; Kurths, J. Macroscopic description of complex adaptive networks coevolving

with dynamic node states. Phys. Rev. E 2015, 91, 052801. [CrossRef]
48. Schleussner, C.F.; Donges, J.F.; Engemann, D.A.; Levermann, A. Clustered marginalization of minorities during social transitions

induced by co-evolution of behaviour and network structure. Sci. Rep. 2016, 6, 30790. [CrossRef]
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