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Abstract: In this work, we consider the design of power-constrained networked control systems
(NCSs) and a differential entropy-based fault-detection mechanism. For the NCS design of the
control loop, we consider faults in the plant gain and unstable plant pole locations, either due to
natural causes or malicious intent. Since the power-constrained approach utilized in the NCS design
is a stationary approach, we then discuss the finite-time approximation of the power constraints
for the relevant control loop signals. The network under study is formed by two additive white
Gaussian noise (AWGN) channels located on the direct and feedback paths of the closed control loop.
The finite-time approximation of the controller output signal allows us to estimate its differential
entropy, which is used in our proposed fault-detection mechanism. After fault detection, we propose
a fault-identification mechanism that is capable of correctly discriminating faults. Finally, we discuss
the extension of the contributions developed here to future research directions, such as fault recovery
and control resilience.

Keywords: networked control systems; AWGN channel; power constraint; differential entropy; fault
detection; fault identification

1. Introduction

Control theory developed mainly after World War II. The ideas proposed in this
research area are typically related to proportional-integral-differential (PID) control design,
state feedback optimal control, optimal observers, and model predictive control (MPC);
see [1]. At the turn of the twenty-first century and soon thereafter, the next step was taken
under the networked control system (NCS) paradigm, which has evolved into multiagent
consensus control [2], cybersecurity [3,4], and data-driven control [5]. Since then, control
theorists and control practitioners have remained highly active in this research area, such
as by combining control and information theories [6,7] or linear optimal control and
communication theory; examples include [8–10]. The last few years have also seen an
increase in event-triggered NCS solutions [11–13], that is, asynchronous control closed-
loop solutions, which aim to increase the efficiency of specifically limited communication
resources while achieving a set of given objectives (stability, performance, robustness, or a
combination of these). These and other NCS results are the foundation of better control.

An approach to NCS introduced early on by [9] imposes a power constraint, P , on the
channel input power and then characterizes the channel model by its channel signal-to-
noise ratio (SNR). The proposed SNR approach is then used to study the design constraints
on closed-loop stability, especially for cases in which the controlled plant model under
analysis is unstable. The SNR limitations presented in [9], which are fundamental in nature,
deal with unstable single-input–single-output (SISO) LTI plant models, characterizing the
initial bound on the channel SNR required to achieve feedback-loop stability for a single-
channel model in the closed loop. A mean square analysis to address the probabilistic nature
of the communication network was also used, in a different context of synchronization,
in [14]. An NCS extension of the setup proposed in [9] is presented in Figure 1; in this
paper, we consider a memoryless additive white Gaussian noise (AWGN) communication
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channel for the communication network, which operates simultaneously over two paths:
the direct path between the controller and the plant and the feedback path between the
plant and the controller.

Figure 1. NCS SISO feedback loop with residual generator and fault-detection stages.

A vast amount of literature also exists on the topic of fault detection and diagnostics,
including many published books [15–19] and review articles [20,21]. A fault occurs when
there is an anomalous behavior, either by chance or maliciously induced, in a physical
plant; it is then important to detect, identify, and if possible recover from this fault. There
are different formulations for the problems of fault detection and fault identification for
linear time-invariant (LTI) models, which can be roughly categorized as approximate (such
as synthesizing fault-detection filters subject to noise) and exact formulations (such as the
null-space method).

The variability inherent in NCSs due to the inclusion of stochastic processes in the
communication of relevant closed-loop signals might also be caused by variations in the
plant model parameters. These parameter variations can be interpreted as faults; thus,
a fault mechanism is needed that can detect these changes, identify them, and, through
the residuals (see Figure 1), identify the new faulty parameter values to then adapt the
controller’s design to achieve fully fault-tolerant closed loop control. A two-part survey on
fault diagnosis and fault-tolerant techniques in control can be found in [22,23]. In contrast,
the author of [24] offers a complete survey on the topics of fault detection and fault-tolerant
control for NCSs. Another survey on fault diagnosis for NCSs can be found in [25], which
aims to reduce performance degradation due to communication features. In [26], a fault-
detection filter subject to limited transmission through a network with time-varying latency
and fading was successfully designed. A Bayesian approach was used instead in [27] for
NCS fault diagnosis in an irrigation canal application, while in [28] the authors used a
Markov jumping linear system (MJLS) approach for the design of a residual generator. NCS
robust fault-tolerant control is also an alternative, which was subsequently considered, for
example, in [29]; faults were modeled as MJLSs with incomplete transition probabilities,
and LMI-based sufficient conditions were then used to ensure stability. Task allocation in
a multiagent setting was presented in [30] to ensure fault tolerance through cooperation
between healthy and faulty agents instead of focusing on recovering nominal performance;
see also [31]. Finally, a nonlinear MPC solution subject to random network delays and
packet dropout was used for fault-tolerant design control in [32].

Our first contribution is the optimal design of the control loop for a first-order unstable
plant model, which applies generally due to the nature of the NCS setup. The optimal
controller minimizes the sum of the powers for the network input signals u(k) (also the
controller output) and y(k) (also the plant model output) in the steady state; see Figure 1.
Our second contribution is a fault-detection mechanism based on the estimation of the
differential entropy of the controller output signal u, as shown in Figure 1. Our third
contribution is a fault-identification mechanism for the value of the plant model gain and
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unstable poles, once a fault has been detected, based on the controller output signal u
and the received output signal yr. We present a simulated example to illustrate these
contributions.

This paper is organized as follows. Section 2 presents the general assumptions, intro-
ducing the plant and AWGN channel models. Here, we also present the definition of the
power of a signal in the steady state. In Section 3, we propose the optimal controller design
for the power-constrained NCS control loop. In Section 4, we define the finite-time power
estimation and the power constraint-based fault-detection criterion. Section 5 introduces
the proposed fault-identification mechanism. In Section 6, we demonstrate the use of both
the fault-detection and fault-identification mechanisms based on a simulation example.
Finally, in Section 7, we summarize the present work and possible future research avenues.

2. Preliminaries
2.1. Plant, Channel, and Network Models

We next give the descriptions of the plant, channel, and network models under study.

Plant Model : The plant model, G(z), can be described by a general model given by

G(z) = Gs(z)
Kp

z − ρ
(1)

where Kp ∈ R+, ρ > 1, and Gs(z) is a stable, minimum-phase transfer function (i.e.,
all its poles and zeros are inside the unit circle).
Channel Models: The AWGN channel model is described by a channel input power
constraint, P, and an identically independently distributed additive Gaussian noise
process, n, with zero mean and variance, σ2.
Network Model: We define the network as two AWGN channel models with an
encoder and decoders, one of which is on the direct path between the controller
and the plant models and one of which is on the feedback path between the plant
and the controller models; see Figure 2. Depending on the channel location, we
identify the additive noises as nu and ny, both of which are identically independently
distributed additive Gaussian noise processes with zero means and variances, σ2

nu
and σ2

ny, respectively. Finally, the powers of the channel input signals are denoted as
∥u∥2

Pow and ∥y∥2
Pow.

Furthermore , the setpoint signal, ro, in Figure 2 is assumed to be a constant known
value.

Figure 2. NCS SISO feedback loop with an AWGN network.

Remark 1. The decision to use AWGN channel models to characterize the proposed network model
implies that we are considering the channel input constraints and the channel additive noises as
the main network features. Other network features, such as transmission delays, quantization, and
packet losses, can also be considered, but this would require the use of channel models in addition to
the proposed AWGN channel model and would make the characterization of the differential entropy
of the control signal, u(k), which is the basis of the proposed fault-detection mechanism, more
involved due to the effect of the closed loop.
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2.2. Stationary Power of a Linear Time-Invariant System Output Signal

Definition 1. From [33], we denote the power spectral density of a signal s(k) as Ss
(
ejωTs

)
.

Definition 2. The H2 norm of a discrete-time linear time-invariant system H is defined as

∥H∥2 =

√
1

2π

∫ π

−π
|H(ejωTs)|2dω (2)

Lemma 1 (Stationary power of an LTI system output signal). For a discrete-time linear time-
invariant system H with a weakly stationary stochastic process n(k) at the input, mean µn, and
spectral density

Sn(ejωTs) = σ2
n (3)

the variance of the noise can be determined. Ref. [34] shows that if H is stable (here, it is assumed to
be stable if all its poles are inside the unit circle), then

µs = H(1)µn

Ss(ejωTs) = H(ejωTs)H(e−jωTs)Sn(ejωTs)
(4)

and the steady-state power of the output signal is then

∥s∥2
Pow := lim

k→∞
E
{

s2
}
= H2(1)µ2

n +
1

2π

∫ π

−π
Ss

(
ejωTs

)
dω

= H2(1)µ2
n + ∥H∥2

2σ2
n

(5)

Proof. Since n(k) is a weakly stationary stochastic process and H is stable, s is also a
weakly stationary stochastic process. If we define s = µs + s̄, where s̄ is a weakly stationary
stochastic process with zero mean, then we have

E
{

s2
}
= µ2

s + E
{

s̄2
}

Since, by its definition, the covariance function of s̄ is equal to the covariance function
of s, and because the power spectral density is the Fourier transform of the covariance
function, we have that Ss(ejωTs) = Ss̄(ejωTs). As we take the limit k → ∞, we obtain

∥s∥2
Pow = µ2

s + ∥s̄∥2
Pow

From [34], we have (4), which, when replaced with the above expression, yields (5),
which concludes this proof.

In the next section, we use the introduced assumptions and Lemma 1 to propose the
design of the NCS control loop in Figure 2.

3. Networked Control System Design

We start this section with the following lemma, which references a result from [35];
from this lemma, we begin to construct our optimal controller design proposal.

Lemma 2 (sum of convex functions). Let fi, i = 1, · · · , n be given convex functions and γi be
given positive scalars. Then, the function

F = γ1 f1 + · · ·+ γn fn (6)

is also a convex function.

Proof. See [35].
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We continue by establishing the working choices for the encoder and decoder blocks
in Figure 2. The presence of these blocks is intrinsic to the NCS setup, and it is one of
the reasons these types of systems require an extension, not just an application, of classic
control theory results.

Lemma 3 (Encoder and decoder design). The encoder and decoder blocks in Figure 2 for the
subsequent NCS design are selected as

Eu = 1, Du = G−1
s (z),

Ey = 1, Dy = 1
(7)

where Gs(z) is the stable, minimum-phase part of the proposed plant model; see Section 2.1.

Remark 2. We observe that, by using Lemma 3 in Figure 2, we can focus entirely on the first-order
unstable part of the plant model.

In the next lemma, we introduce some intermediate results that consider the controller,
C(z), to be a proportional controller; that is, C(z) = Kc for Kc ∈ R, which will be required
for the optimal controller design K∗

c .

Lemma 4 (Convexity of closed-loop squared norms). The following squared H2 norms are
convex functions of Kc, the proportional controller:

∥T∥2
2 =

K2
c K2

p

1 −
(
ρ − KcKp

)2

∥SC∥2
2 = K2

c +
K4

c K2
p

1 −
(
ρ − KcKp

)2

∥SG∥2
2 =

K2
p

1 −
(
ρ − KcKp

)2

(8)

where T = KcKp/(z − ρ + KcKp) is the closed-loop complementary sensitivity and S = 1 − T =
(z − ρ)/(z − ρ + KcKp) is the closed-loop sensitivity.

Proof. We start this proof with the squared H2 norm of T. For a proportional controller
and the simplified plant model, Kp/(z − ρ), the complementary sensitivity is

T(z) =
KcKp

z − ρ + KcKp

The squared H2 norm of the above transfer function is then

∥T∥2
2 =

K2
c K2

p

1 − (ρ − KcKp)2

To obtain its critical points, we take the derivative of Kc and solve

∂∥T∥2
2

∂Kc
=

2KcK2
p(1 − (1 − KcKp))2 − 2K2

c K3
p(ρ − KcKp)

(1 − (1 − KcKp)2)2 = 0

After grouping the powers of Kc in the numerator, we obtain

∂∥T∥2
2

∂Kc
=

2KcK2
p(1 − ρ2) + 2K2

c K3
pρ

(1 − (1 − KcKp)2)2 = 0
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One critical point is Kc = 0, but this solution is outside the region of Kc values
that ensures closed-loop stability and is thus not considered. The other critical point is
K∗

c = (ρ2 − 1)/(Kpρ). The second derivative is

∂2∥T∥2
2

∂K2
c

∣∣∣∣∣
Kc=K∗

c

=
(2Kp(1 − ρ2) + 4K∗

c K3
pρ)(1 − (1 − K∗

c Kp)2) + 0

(1 − (1 − K∗
c Kp)2)3 =

2K2
pρ2

(ρ2 − 1)2 > 0

Thus, K∗
c , the only valid critical point, is a minimum, proving that ∥T∥2

2 is a convex
function. Now, for ∥SC∥2

2, we have that

∥SC∥2
2 = ∥(1 − T)Kc∥2

2 = ∥Kc − TKc∥2
2 = K2

c + K2
c∥T∥2

2

Thus, since K2
c is a convex function of Kc, we focus on the remaining part, K2

c∥T∥2
2:

∂K2
c∥T∥2

2
∂Kc

=
−2K5

c K4
p + 6K4

c K3
pρ + 4K3

c K2
p(1 − ρ2)

(1 − (ρ − KcKp)2)2 = 0

The value Kc = 0 is a critical point with a multiplicity of three, but again, it is outside
the range of values required for closed-loop stability for Kc. The other two potential
solutions are

K∗
c1 =

ρ + ρ
2 −

√
ρ2 + 8

Kp
, K∗

c2 =
ρ + ρ

2 +
√

ρ2 + 8
Kp

but we observe that K∗
c2 is outside the stability region. The second derivative at Kc = Kc1 yields

∂2K2
c∥T∥2

2
∂K2

c

∣∣∣∣∣
Kc=K∗

c1

=

(
−10(K∗

c1)
4K4

p + 24(K∗
c1)

3K3
pρ + 12(K∗

c1)
2K2

p(1 − ρ2)
)
(1 − (ρ − K∗

c1Kp)2)

(1 − (ρ − K∗
c1Kp)2)3

Simplifying, we obtain

3ρ

2Kp
> K∗

c1

−2K∗
c1Kp + 3ρ > 0

−2(K∗
c1)

2K2
p + 3K∗

c1Kpρ > 0

−2(K∗
c1)

2K2
p + 3K∗

c1Kpρ + 3[−(K∗
c1)

2K2
p + 3K∗

c1Kpρ + 2(1 − ρ2)︸ ︷︷ ︸
=0

] > 0

−5(K∗
c1)

2K2
p + 12K∗

c1Kpρ + 6(1 − ρ2) > 0

−10(K∗
c1)

2K2
p + 24K∗

c1Kpρ + 12(1 − ρ2) > 0

Therefore, we determine that the numerator and thus the overall second partial
derivative ∂2K2

c∥T∥2
2/∂K2

c at Kc = K∗
c1 are positive and that the only critical point value, K∗

c1,
is a minimum, which proves that K2

c∥T∥2
2 is a convex function of Kc in the stability region;

through Lemma 2, ∥SC∥2
2 is also a convex function of Kc in the stability region. Finally, we

focus on the term ∥SG∥2
2. For the last squared H2 norm expression, ∥SG∥2

2, we have

∂∥SG∥2
2

∂Kc
=

−K3
p(ρ − KcKp)

(1 − (ρ − KcKp)2)2 = 0

The only critical point in this case is given by K∗
c = ρ/Kp, which lies inside the Kc

stability region for the closed loop; when replaced in the second partial derivative, it results
in

∂2∥SG∥2
2

∂K2
c

∣∣∣∣∣
Kc=K∗

c

= 2K4
p > 0
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Thus, the critical point, K∗
c , is a minimum, and the function ∥SG∥2

2 is convex in the Kc
stability region for the closed loop; this concludes the proof.

We next use the results just obtained to show the convexity, in terms of the proportional
controller, of the power expression for the NCS input signals u and y; see Figure 2.

Lemma 5 (Channel input powers). For the setup depicted in Figure 2 with Kr = T−1(1), the
channel input powers are

∥u∥2
Pow =

(1 − ρ)2

K2
p

r2
o + ∥T∥2

2σ2
nu + ∥SC∥2

2σ2
ny

∥y∥2
Pow = r2

o + ∥SG∥2
2σ2

nu + ∥T∥2
2σ2

ny

(9)

and they are both convex functions of Kc, the proportional controller.

We are now ready to use all the previous intermediate results to present the optimal
design of the proportional controller, which minimizes the sum of the channel input powers.

Proof. According to Figure 2 and Lemma 3, the signals at the respective channel inputs are

u =
z − ρ

Kp
ro − T(z)nu − S(z)C(z)ny

y = ro + S(z)G(z)nu − T(z)ny

We then apply Lemma 1 for z = u and for z = y and obtain the expressions in Equation
(9). Finally, since all the squared H2 elements of Equation (9) are convex functions of Kc
as in Lemma 4, together with Lemma 2, it is shown that the channel input powers in
Equation (9) are convex functions of Kc, which concludes this proof.

Theorem 1 (NCS controller design). The proportional controller, Kc, is designed so that

K∗
c = argmin

Kc

η∥u∥2
Pow + (1 − η)∥y∥2

Pow (10)

with 0 < η < 1, and its optimal value is the unique solution, in the Kc stability region[
(ρ − 1)/Kp, (ρ + 1)/Kp

]
for the closed loop, of the following polynomial:

a4K4
c + a3K3

c + a2K2
c + a1Kc + a0 = 0

a4 = −2K3
pρ

a3 = 9K2
pρ2ησ2

ny

a2 = 2K3
pρησ2

nu +
[
2K3

pρ(1 − η) + (8Kpρ − 8Kpρ3)η
]
σ2

ny

a1 = 2K2
p

[
(1 − ρ2)η + K2

p(1 − η)
]
σ2

nu + 2
[
K2

p(1 − ρ2)(1 − η) + (1 − ρ2)2η
]
σ2

ny

a0 = −2K3
pρ(1 − η)σ2

nu

(11)

Proof. From Lemma 5, we have that

η∥u∥2
Pow + (1 − η)∥y∥2

Pow = η

[
(1 − ρ)2

K2
p

r2
o + ∥T∥2

2σ2
nu + ∥SC∥2

2σ2
ny

]
+

(1 − η)
[
r2

o + ∥SG∥2
2σ2

nu + ∥T∥2
2σ2

ny

]
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According to Lemma 2, this is a convex function of Kc, thus characterizing the critical
point of the above functional results in obtaining the optimal K∗

c that minimizes the linear
combination of channel input powers. We then take the partial derivative of Kc, which
results in the polynomial a4K4

c + a3K3
c + a2K2

c + a1Kc + a0 = 0, with coefficients defined as
in (11). Since the proposed functional is convex in Kc, there is only one critical point in the
Kc stability region for the closed loop, which concludes this proof.

Remark 3. If the plant pole ρ (see (1)) is stable, that is, if |ρ| < 1, then the minimal channel input
powers ∥u∥2

Pow and ∥y∥2
Pow will be zero, and the optimal controller K∗

c from Theorem 1 will also
then be equal to zero, nevertheless resulting in a stable closed loop (although it is technically open
if the controller is zero). The fault-detection and fault-identification mechanisms described in the
next sections will be applicable as long as a non-zero suboptimal controller is in place for ρ < 1 to
effectively close the loop.

Remark 4. Due to the standing assumptions regarding ro, the choice of Kr in Figure 2, and the
relationship between stationary power and signal variance, we have that the NCS controller design
proposed in Theorem 1, which minimizes the network input power, can also be interpreted as a
minimal-input-entropy controller design.

The optimal controller design from Theorem 1 results in a stable closed loop, and
we now wish to extend its analysis to the case with faults on the two main parameters
involved in the optimal controller design, namely, the gain, Kp, and the plant unstable pole,
ρ. We obtain two contributions: a fault-detection mechanism and a fault-identification
mechanism. Therefore, we continue by presenting the proposed fault-detection mechanism
in the next section.

4. Fault-Detection Mechanism

The signal u is assumed to be available because it is the result of signal processing
through the controller, as shown in Figure 1. On the other hand, the availability of the
signal yr requires the assumption of an added sensor at the output of the AWGN channel
over the feedback path. Moreover, due to the presence of the channel additive processes nu
and ny, we cannot consider the instant values of the relevant signals u and yr, as shown
in Figure 1, as representative values. We therefore address this issue by using the average
estimates of u and yr instead, as shown in the next lemma.

Lemma 6 (Finite time estimate). The averaged signal is obtained as

u1(k) =
∑k

k−L+1 u(k)
L

(12)

where L satisfies
σ2

u1
(L) < ϵ (13)

for a user-defined tolerance value ϵ.

Proof. Lemma 5 shows that

µu = lim
k→∞

E{u} =
Kp

1 − ρ
ro

In a stationary state, we then have that u1, as defined in (12), will approach µu as
L → ∞ and σ2

u1
(L) → 0 since µu is a constant value, which shows that there will always

be a suitable finite value of L for any given choice of tolerance ϵ, which concludes this
proof.
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Remark 5. The use of the previous lemma extends in exactly the same way for signal yr, for which
yr1 represents the L average. However, such a signal is only required for the fault-identification
mechanism that we propose in the next section.

Remark 6. The application of Lemma 6 is based on a Monte Carlo simulation of the NCS-designed
control closed loop in steady state with no faults. The selected value of L, through the choice of ϵ,
will be a user-selected trade-off between the successful rejection of the noise processes (the larger the
L value is, the better) and the responsiveness to the presence of faults (the smaller the L value is,
the better).

We now present our proposed fault-detection mechanism in the following theorem.

Theorem 2 (fault-detection mechanism). Given the setup in Figure 2 for the NCS defined by
Lemma 3, with the controller designed as in Theorem 1, the fault flag signal, FF(k), is defined as

FF(k) =

 1 ,
∣∣∣ĥ(u)− h(u)

∣∣∣ > δ

0 ,
∣∣∣ĥ(u)− h(u)

∣∣∣ ≤ δ
(14)

where
ĥ(u) =

1
2

log2

[
2πe

(
u2 − u2

1

)]
(15)

is the estimated differential entropy of the signal u(k), with the time estimate u1 defined in Lemma 6
and u2 defined as

u2(k) =
∑k

k−L+1 u2(k)
L

(16)

Additionally,

h(u) =
1
2

log2

[
2πe

(
∥T∥2

2σ2
nu + ∥SC∥2

2σ2
ny

)]
(17)

is the theoretical differential entropy of the signal u(k) in the steady state when no fault is present.
The fault level, δ, is user defined, and it is selected as 2σĥ, which is twice the standard deviation of
the estimated differential entropy of u(k) when no fault is present.

Proof. From [36] and the fact that the signal u(k) in Figure 2 is a filtered sum of the driving
Gaussian processes nu and ny, we have

h(u) =
1
2

log2

[
2πeσ2

u

]
where σ2

u is the variance of the signal u. From Lemma 5, we have

σ2
u = E{u2} − µ2

u = ∥T∥2
2σ2

nu + ∥SC∥2
2σ2

ny

which results in the proposed expression for h(u) presented in (17).

Remark 7. We observe that the selection of δ in Theorem 2 is a compromise between false negative
errors (not detecting a fault when one is present) and false positive errors (detecting a fault when
one is not present). If the selected δ value is smaller, then more false positive errors will be detected.
If the selected δ value is greater, then more false negative errors will be detected.

Remark 8. The use of differential entropy for the proposed fault-detection mechanism is motivated
by the presence of the AWGN channel and is also a reasonable choice because it introduces a
logarithmic scale (base 2 in this case) for the channel input variance, which can otherwise report very
large excursions when subjected to faults, as we will observe in the following sections. Moreover, if
we select η = 1 in Theorem 1 for the NCS controller design, we can then address the minimal h(u)
in (17).
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After a fault has been detected by means of Theorem 2, the next step is to estimate its
value, that is, to identify it. The next section focuses on this goal.

5. Fault-Identification Mechanism

The faults that the control loop might be subject to are involved in the plant model
gain, Kp, or the unstable pole ρ. Additionally, due to the NCS nature of the proposed
closed control loop in Figure 2, for the fault-identification mechanism we only stipulate
that we have access to the signals u and yr. That is, we only stipulate access to signals
on the controller side of the network (otherwise, transmission through a communication
channel would be required); see Figure 1.

As a first step in identifying the detected faults, as described in the previous section,
we consider the online estimation of the plant parameters Kp and ρ.

Lemma 7 (Plant parameter estimation). From Figure 1, assuming the online availability of
signals u(k) and yr(k) and a selected value of L from Lemma 6, we obtain

α(k) =
yr1(k)
Krro

β(k) =
u2(k)− u1(k)2 − (K∗

c )
2σ2

ny

(σ2
nu + (K∗

c )
2σ2

ny)α(k)

(18)

and the plant parameter estimates are

K̂p(k) =
2α(k)β(k)

K∗
c (α

2(k) + β(k))
ρ̂(k) = 1 + 2

β(k)(α(k)− 1)
α2(k) + β(k)

(19)

Proof. We first observe that
yr1(k) ≈ T(1)Krro

where yr1(k) is the L-length finite-time estimation of the steady-state value of yr. From this,
we obtain

α(k) =
yr1(k)
Krro

On the other hand, we have

u2(k)− u2
1(k)− (K∗

c )
2σ2

ny

σ2
nu + (K∗

c )
2σ2

ny
≈ ∥T∥2

2

and thus
u2(k)− u2

1(k)− (K∗
c )

2σ2
ny

σ2
nu + (K∗

c )
2σ2

ny
≈

(K2
c )K2

p

1 − ρ2
c

= α(k)β(k)

With these two intermediate results, after algebraic manipulation we obtain the esti-
mate expressions in (19), which concludes this proof.

We now use Lemma 7, together with the fault-detection mechanism from the previous
section, to identify the fault. We provide this result in the next theorem.

Theorem 3 (fault-identification mechanism). The values of the plant fault parameters are
identified as

FKp(k) =


K̂p(k) , |Kp − K̂p(k)| ≥ 2σKp ∧ FF = 1
Kp , |Kp − K̂p(k)| < 2σKp ∧ FF = 1
Kp , FF = 0
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for the plant parameter, Kp, where σKp is the standard deviation of the plant gain estimation when
no fault is present and

Fρ(k) =


ρ̂(k) , |ρ − ρ̂(k)| ≥ 2σρ ∧ FF = 1
ρ , |ρ − ρ̂(k)| < 2σρ ∧ FF = 1
ρ , FF = 0

for the plant parameter ρ, where σρ is the standard deviation of the unstable plant pole estimation
when no fault is present.

Proof. Fault identification is the result of intersecting the estimated plant parameters K̂p

and ˆrho from Lemma 7 with the fault flag signal FF(k) from Theorem 2. Whether the fault
is due to Kp, ρ, or a change in the values of both Kp and ρ, the type of fault will be identified
as long as the excursion in the value of the faulty parameter exceeds twice the standard
deviation of the estimated parameter value when no fault is present. That is, we use the
same approach proposed in Theorem 2, but now we validate the fault on either or both
plant parameters.

We have now finalized the theoretical development of this work, and we proceed
in the next section to illustrate the proposed contributions through a simulation example
summarizing all the previous key points.

6. Example

In this section, we develop an example to illustrate the contributions developed in the
previous sections. We consider the plant model

G(z) =
2

z − 3
(20)

That is, we assume for simplicity here, without loss of generality, that Gs(z) = 1.
The setpoint signal is ro = 0.5, and the channel additive noise variances are selected as
σ2

nu = σ2
ny = 0.3. The NCS proportional controller design from Theorem 1, with an equal

weight η = 0.5 to equally weight the power contribution of each channel input, results in
K∗

c = 1.2921. The plant model parameters, and thus the closed control loop, are subject to
the following changes for Kp:

Kp f 1 =


−0.3 · 10−3k + 3.5 5001 ≤ k < 6000
1.7 6001 ≤ k < 11000
0.3 · 10−3k − 1.6 11001 ≤ k < 12000

Kp f 2 =


0.7 · 10−3k − 18.3 29001 ≤ k < 30000
2.7 30001 ≤ k < 35000
−0.7 · 10−3k + 27.2 35001 ≤ k < 36000

(21)

For ρ,

ρ f 1 =


−1.2 · 10−3k + 23.4 17001 ≤ k < 18000
1.8 18001 ≤ k < 23000
1.2 · 10−3k − 25.8 23001 ≤ k < 24000

ρ f 2 =


10−3k − 26 29001 ≤ k < 30000
4 30001 ≤ k < 35000
−10−3k + 39 35001 ≤ k < 36000

(22)
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We then propose a first fault on the value of Kp starting at k = 5001 and lasting until
k = 12,000, a second fault due to ρ starting at k = 17,001 and lasting until k = 24,000, and
a third and final fault due to a simultaneous change in the values of Kp and ρ starting at
k = 29,001 and ending at k = 36,000.

The first step is the selection of L as a compromise between the rejection of the two
noise processes and responsiveness to the faults. In Figure 3, we show a Monte Carlo
simulation of two hundred simulations of u1 at ko = 3000 for each value of L, in steps of
ten. The red dashed line is the steady-state predicted value, µu, and the black dash-dotted
lines are the variances of the two hundred simulations at each value of L around the mean
value. As predicted, the variance decreases as L increases. From Figure 3, the choice of
L = 300 is considered a good compromise, and it is the value used in the following steps.
The proposed selection is compatible with a tolerance value of ϵ = 0.04.

0 100 200 300 400 500 600 700 800 900 1000

L

-8

-7

-6

-5

-4

-3

-2

u
1
(k

o
)

Figure 3. Monte Carlo simulation of u1(ko) as a function of L for ko = 3000 (blue dots), predicted
mean value µu (red dashed line), and variance of u1(ko) as a function of L (black dash-dotted line).

As a second step, focusing on Theorem 2, we provide the estimate ĥ(u) (solid green
line) and propose from the same figure a choice of δ that is twice the standard deviation of
the observed ĥ(u), which in this case amounts to δ = 0.12. Therefore, any increase in the
estimated differential entropy, û, of more than 0.12 from the base value, h(u), represented
by the red dashed line in Figure 4, is registered as a fault.

We now test the proposed fault-detection mechanism for the designed NCS closed
control loop, with the faults described in (21) and (22). In Figure 5, the three proposed
faults can be clearly observed. With the selected value of δ, there will be small instances of
false negative errors for Kp f 1 around k = 8600 and for ρ f 1 around k = 19,600. However, no
false negative errors are present for simultaneous faults Kp f 2 and ρ f 2. The choice of δ also
triggers some instances of false positive errors around k = 1000, k = 16,000, k = 25,000, and
k = 39,000. This is the expected trade-off between false positive errors and false negative
errors for any fault-detection mechanism.

The next step is to couple the fault-detection mechanism of Theorem 2 with the fault-
identification mechanism from Theorem 3. The result for Kp, subject to the proposed faults,
is shown in Figure 6. We observe that the inclusion of further discrimination by means
of the estimated standard deviation σKp , represented by the black dashed line, reduces
the effect of false negative errors and false positive errors. Moreover, during the second
fault, starting at k = 17,001, which is due only to a change in ρ, the introduction of the
σKp -based discriminant in Theorem 3 allows the plant model gain to remain at the correct
value, Kp = 2.
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Figure 4. Estimated differential entropy of the signal u(k), when no faults are present, for the selected
value of L = 300 (green solid line), no-fault theoretical value (red dashed line), and no-fault theoretical
value plus two standard deviations (black dash-dotted lines).
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Figure 5. Estimated differential entropy of the signal u(k), when faults in (21) and (22) are present,
for the selected value of L = 300 (green solid line), no-fault theoretical value (red dashed line), and
no-fault theoretical value plus two standard deviations (black dash-dotted lines).
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Figure 6. Estimated value of the plant gain parameter Kp for the selected value of L = 300 (green
solid line), true parameter value (red dashed line), standard deviation σkp (black dash-dotted line),
and reported fault flag (black solid line at the bottom).

We conclude the example by reviewing the estimation of the unstable plant pole value,
ρ, subject to the faults in Figure 7 (green solid line). As we can see, the introduction of the
standard deviation discriminant, σρ, was not as successful as for the plant model gain in
avoiding a noisy estimation during the first fault starting at k = 5001, even though this first
fault is only due to a change in the value of kp. Moreover, during the second fault, due only
to a change in the value of the unstable plant pole, a false negative error is still present in
the proposed identification at approximately k = 20,000. Nevertheless, some instances of
false negative errors were suppressed between the first and second faults and at the end of
the simulation run.
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Figure 7. Estimated value of the plant gain parameter, ρ, for the selected value of L = 300 (green
solid line), true parameter value (red dashed line), standard deviation σρ (black dash-dotted line),
and reported fault flag (black solid line at the bottom).
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Finally, we observe that Figures 6 and 7 together demonstrate accurate detection and
identification of the faults we introduced into the closed control loop.

7. Conclusions

In this work, we propose an optimal NCS design subject to a network of simultaneous
power-constrained AWGN channels over direct and feedback paths. The optimal controller
design is then the foundation of a differential entropy estimation fault-detection mechanism.
The use of differential entropy is justified by the presence of the AWGN channel and is also
reasonable since it introduces a logarithmic scale on the channel over the direct-path input
variance, which can otherwise result in very large excursions when subjected to faults, as
observed in the provided example. The last contribution is a fault-identification mechanism
restricted to the signals available on the controller side of the network, namely, u and yr. A
limitation of the proposed fault-detection method is the trade-off imposed by the choice of
L. The smaller the value of L is, the larger the value of δ is because of u1 and u2, and vice
versa. Since the value of δ determines the sensitivity of the fault-detection mechanism, an
experienced user must strike the right compromise between these two design parameters.
Additionally, as a future research direction, the imposed side restriction signal availability,
due to the NCS nature of the closed control loop, can be explored to improve the use of
signals on the plant side of the network in the design of a fault-detection/identification
mechanism. Finally, once the faults are successfully identified, they should be used for
retuning the optimal controller in an adaptive scheme that allows for fault recovery.
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