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Abstract: The intricate interplay between unitary evolution and projective measurements could
induce entanglement phase transitions in the nonequilibrium dynamics of quantum many-particle
systems. In this work, we uncover loss-induced entanglement transitions in non-Hermitian topologi-
cal superconductors. In prototypical Kitaev chains with onsite particle losses and varying hopping
and pairing ranges, the bipartite entanglement entropy of steady states is found to scale logarith-
mically versus the system size in topologically nontrivial phases and become independent of the
system size in the trivial phase. Notably, the scaling coefficients of log-law entangled phases are
distinguishable when the underlying system resides in different topological phases. Log-law to
log-law and log-law to area-law entanglement phase transitions are further identified when the
system switches between different topological phases and goes from a topologically nontrivial to
a trivial phase, respectively. These findings not only establish the relationships among spectral,
topological and entanglement properties in a class of non-Hermitian topological superconductors but
also provide an efficient means to dynamically reveal their distinctive topological features.

Keywords: entanglement entropy; quantum phase transition; non-Hermitian topological phase

1. Introduction

The entanglement dynamics of open quantum many-body systems undergoing nonuni-
tary evolution have attracted significant attention in recent years [1–3]. An intriguing
phenomena that could emerge in such contexts is the measurement-induced entanglement
transition [4–10]. It describes a nonequilibrium phase transition of entanglement structures
following a quantum quench. In usual situations, measurement-induced entanglement
phase transitions originate from the competition between unitary dynamics and quantum
measurements. With the increase in measurement rates, the bipartite entanglement en-
tropy (EE) of nonequilibrium steady states could undergo a transition from a volume-law
to an area-law scaling versus the system size. Despite great theoretical efforts [11–44],
measurement-induced entanglement transitions have also been explored experimentally
in setups including trapped ions and superconducting qubits [45–47], offering further
insights for understanding quantum information dynamics and simulating quantum many-
body systems.

Open quantum systems described by non-Hermitian Hamiltonians constitute an
important context for exploring entanglement phase transitions. Various types of non-
Hermiticity-induced entanglement transitions have been identified in gapped or critical
non-Hermitian systems made up of lattice fermions and quantum spin chains [48–64]. In a
non-Hermitian system with spatial nonreciprocity, the emergence of non-Hermitian skin
effects was found to accompany the transition from a volume-law entangled to an area-law
entangled phase in one spatial dimension [52]. The development of a dissipation gap in the
energy spectrum of a non-Hermitian Hamiltonian was also found to yield a volume-to-area
law entanglement phase transition in free-fermion chains [53]. Moreover, in non-Hermitian
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systems with spatially uniform or quasiperiodic randomness [55–58], entanglement phase
transitions beyond the conventional volume-law to area-law scheme could emerge due
to the interplay between disorder and non-Hermitian effects. In addition, alternated and
re-entrant entanglement transitions may be engineered and controlled by time-periodic
driving fields in non-Hermitian Floquet systems [59].

In this work, we continue the study of entanglement phase transitions in non-Hermitian
systems. We focus on one-dimensional (1D) topological superconductors with onsite par-
ticle losses, which have been found to possess rich topological phases and dynamical
phase transitions [65–73]. In Section 2, we introduce our model and outline the approaches
of characterizing its spectrum, topological properties and entanglement dynamics. In
Section 3, we explore entanglement phase transitions in representative non-Hermitian
Kitaev chains with varying ranges of single-particle hopping and superconducting pairing
terms. All-round connections are established among the spectral structures, topological
transitions and entanglement phase transitions in the considered system. Remarkably, each
loss-induced transition between topologically distinct superconducting phases is found
to go hand-in-hand with a transition in the scaling law of steady-state EE, i.e., an entan-
glement phase transition. In Section 4, we summarize our results and discuss potential
future directions. Some further calculation details about the non-Hermitian Hamiltonian
and entanglement dynamics are provided in the Appendices A and B.

2. Model and Methods

We start by considering a generalized Kitaev chain [74] with onsite particle losses,
whose Hamiltonian can be expressed as

Ĥ =
1
2 ∑

n

[
µ(2ĉ†

n ĉn − 1) + ∑
r
(Jr ĉ†

n ĉn+r + ∆r ĉn ĉn+r + H.c.)

]
. (1)

Here, H.c. denotes Hermitian conjugation, n ∈ Z represents the lattice index (with the
lattice constant a = 1), and r ∈ Z controls the ranges of hopping and pairing terms. ĉ†

n
(ĉn) creates (annihilates) a spin-polarized fermion on the nth lattice site. The chemical
potential µ = u − iv is chosen to be complex, where u = Reµ, and v = −Imµ > 0
describing the loss rate. Jr and ∆r denote hopping and pairing amplitudes of fermions
over r lattice sites [r = 1 for the nearest-neighbor (NN) coupling, r = 2 for the next-
nearest-neighbor (NNN) coupling, etc.]. The presence of long-range hopping and pairing
terms beyond nearest-neighbor (r > 1) allows the system to possess superconducting
phases with large topological invariants [72]. We will refer to the system described by Ĥ in
Equation (1) with v > 0 as the lossy Kitaev chain (LKC). Note in passing that the effective
non-Hermitian Hamiltonian in Equation (1) can be viewed as emerging from a stochastic
evolution followed by post-selecting null measurement outcomes. Some further derivation
details of Ĥ are provided in the Appendix A.

Taking the periodic boundary condition (PBC) ĉn = ĉn+L and applying the Fourier
transformation ĉn = 1√

L ∑k eikn ĉk, we can express Ĥ in the momentum space as

Ĥ = 1
2 ∑k Ψ̂†

k H(k)Ψ̂k, where L is the length of lattice, k ∈ [−π, π) is the quasimomen-
tum, Ψ̂†

k = (ĉ†
k , ĉ−k) is the Nambu spinor operator, and

H(k) = hy(k)σy + hz(k)σz, (2)

hy(k) = ∑
r

∆r sin(kr), (3)

hz(k) = µ + ∑
r

Jr cos(kr). (4)
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Here, σx,y,z are Pauli matrices in their usual representations. By diagonalizing H(k), we can
find the spectrum of the system as E±(k) = ±E(k), where

E(k) =
√

h2
y(k) + h2

z(k). (5)

With the loss rate v > 0 in the complex chemical potential µ = u − iv, E(k) becomes
complex in general. Meanwhile, H(k) possesses the chiral symmetry S = σx, in the sense
that SH(k)S = −H(k). The topological phases of the system could then be characterized
by a winding number w [72], which is defined as

w =
1

2π

∫ π

−π
dk∂kϕ(k), (6)

where ϕ(k) = arctan[hy(k)/hz(k)]. The value of 2πw is equal to the accumulated winding
angle ϕ(k) over the first Brillouin zone (BZ) of k. As the imaginary part of ϕ(k) has no
winding [75], w can only take real values. Moreover, when the energy spectrum is gapped,
w will take an integer (a half-integer) quantized value if the trajectory of vector [hy(k), hz(k)]
encircles an even (odd) number of exceptional points (EPs) of H(k) following the change
of k from −π to π [72]. The closing and reopening of spectrum gaps will also accompany
the quantized (or half quantized) changes of w. Therefore, we can characterize the non-
Hermitian topological phases and topological phase transitions of our LKC by the winding
number w in Equation (6).

In this work, we focus on the loss-induced entanglement phase transitions and their
connections with topological phases in non-Hermitian Kitaev chains. To deal with the
entanglement dynamics, we first prepare our system in a certain initial state |Ψ(0)⟩ at half-
filling and evolve it over a time duration t according to the Hamiltonian Ĥ [Equation (1)].
The resulting state of the system then takes the form (h̄ = 1)

|Ψ(t)⟩ = e−iĤt|Ψ(0)⟩
||e−iĤt|Ψ(0)⟩||

, (7)

where the normalization factor ||e−iĤt|Ψ(0)⟩|| could arise after taking the no-click limit of a
monitored evolution [52,53]. With the normalized state |Ψ(t)⟩, we could obtain the single-
particle correlator C(t) of the system in position representation. Due to the translational
symmetry of our system, the matrix elements Cm,n(t) (m, n = 1, . . . , L) of C(t) in real-space
can be further computed by performing the Fourier transformation of its related generator
in k-space, i.e.,

Cm,n(t) =
1
L ∑

k
eik(m−n)Ck(t), (8)

where the 2 × 2 matrix Ck(t) can be obtained as

Ck(t) =
1
2

(
1 + ⟨σz⟩t ⟨σx⟩t + i⟨σy⟩t

⟨σx⟩t − i⟨σy⟩t 1 − ⟨σz⟩t

)
. (9)

The average ⟨σj⟩t (j = x, y, z) is taken over the normalized state |ψk(t)⟩, which is evolved
by e−iH(k)t from the initial state vector |ψk(0)⟩ at each quasimomentum k (see Appendix B
for more details).

Finally, to obtain the bipartite EE, we decompose our 1D chain of length L into two
spatially connected subsystems A and B, whose number of lattice sites are l and L − l,
respectively. Restricting the lattice indices m and n to the A segment gives us the correlation
matrix CA

m,n(t) (m, n = 1, . . . , l) of subsystem A. Then, according to the relation between
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single-particle correlation matrix and bipartite EE of a Gaussian state [76], we can express
the EE between the two subsystems A and B as

S(t) = −
l

∑
j=1

[ζ j ln ζ j + (1 − ζ j) ln(1 − ζ j)], (10)

where {ζ j|j = 1, . . . , l} are the eigenvalues of the l × l correlation matrix CA(t). In numerical
calculations, we can obtain S(t) efficiently at any time t through Equations (7)–(9) together
with the diagonalization of CA(t). In the long-time limit, S(t) will reach a stationary value
S(L, l) ≡ limt→∞ S(t), which may depend on the total system size, the subsystem size
and other system parameters. We can numerically find the bipartite EE S(L, l) of steady
states by considering an evolution time duration t ∈ [0, T] that is long enough, so that any
variations of S(t) over time are negligible for t ≥ T.

In the next section, we explore entanglement phase transitions in two representative
LKC models with distinct topological properties. We will see clear changes in the scaling
behaviors of steady-state EE when the considered system undergoes topological phase
transitions. Moreover, qualitatively different scaling laws of EE in steady states will be un-
covered when the system resides in topological and trivial non-Hermitian superconducting
phases, respectively.

3. Results

In this section, we investigate entanglement phase transitions in two non-Hermitian
Kitaev chains with different ranges of hopping and pairing terms. We first reveal the
spectrum and topological properties of each model. This is followed by the demonstration
of their entanglement dynamics and the related scaling laws of steady-state EE. Finally, we
establish the entanglement phase diagrams and further unveil their connections with the
topological phases and transitions for both models.

3.1. LKC with Nearest-Neighbor Hopping and Pairing

We start with a “minimal” model of LKC by restricting the hopping and pairing terms
to NN sites. Referring to Equation (1), we choose r = 1, let (J1, ∆1) = (J, ∆), and set the
chemical potential µ = u − iv. The resulting system is described by the Hamiltonian

Ĥ1 =
1
2 ∑

n
[µ(ĉ†

n ĉn − 1/2) + Jĉ†
n ĉn+1 + ∆ĉn ĉn+1 + H.c.]. (11)

It has been identified that under PBC, the two energy bands E±(k) = ±E(k) [Equation (5)]
of this NN LKC model become gapless at E = 0 when the system parameters satisfy the
condition u2/J2 + v2/∆2 = 1 [72]. When u2/J2 + v2/∆2 < 1, there is a line gap lying
along the ReE axis between the two bands ±E(k) on the complex energy plane. Within
the gap, a pair of degenerate Majorana zero modes can be found at the edges of the chain
under the open boundary condition (OBC), and the system is topologically nontrivial in
this case [72]. When u2/J2 + v2/∆2 > 1, a line gap in the energy spectrum is opened along
the ImE axis, and there are no localized Majorana modes with zero energy at system edges
under the OBC. In this case, the system becomes topologically trivial and possesses a trivial
dissipation gap [72].

In Figure 1, we present typical energy spectra on the complex plane and the topological
phase diagram of the NN LKC model [Equation (11)]. In Figure 1a, the phase diagram
is obtained by computing the topological winding number w [Equation (6)] at different
system parameters (u, v). The results confirm that the NN LKC indeed belongs to the
topologically nontrivial (trivial) phase with w = 1 (w = 0) when u2/J2 + v2/∆2 < 1 (>1),
with the phase boundary u2/J2 + v2/∆2 = 1 given by the black solid line between the
yellow and green regions in Figure 1a. In Figure 1b,c, we illustrate the complex spectrum of
the system in the topological and trivial phases, respectively, under the OBC. A real energy
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gap carrying a pair of Majorana edge modes at E = 0 is observed in the topological phase,
while an imaginary energy gap with no Majorana zero modes is found in the trivial phase,
which validates our theoretical predictions [72].

w = 1

w = 0

Figure 1. Topological phase diagram and typical spectra of the LKC with NN hopping and pairing.
(a) shows the winding number w vs. the real and imaginary parts of chemical potential u and v. The
yellow and green regions have w = 1 and w = 0, respectively. The red solid dot in (a) resides at
(u, v) = (0.8, 0.1), with the associated spectrum of Ĥ1 shown in (b). The red solid triangle of (a) is
located at (u, v) = (0.8, 0.9), and the associated spectrum of Ĥ1 is given in (c) on the complex energy
plane. Other system parameters are J = ∆ = 1 for all panels.

With the above knowledge on the spectral and topological properties of the NN LKC,
it would be interesting to check whether the dynamics and scaling laws of its EE could
show distinct behaviors in different topological phases. Following Equations (7)–(10), we
compute the evolution of bipartite EE S(t) of the NN LKC under PBC with a large system
size L. A set of representative results versus different sizes l of the subsystem A and at
different loss rates are shown in Figure 2. In all of the calculations, we choose the initial
state at different quasimomenta as

|ψk(0)⟩ =
1√
2

(
1

eik/2

)
, (12)

where k = −π,−π + 2π/L, . . . , π − 2π/L. Other forms of pure and non-stationary initial
states generate consistent results regarding the entanglement dynamics. We find that when
the system parameters satisfy u2/J2 + v2/∆2 < 1, the bipartite EE will first experience
a transient time window with a non-monotonous behavior in time, and finally evolving
to a stationary value in the late time regime. After the steady state is reached, the EE
raises monotonically with the increase in subsystem size l (solid lines in Figure 2). On the
contrary, in the parameter regime with u2/J2 + v2/∆2 > 1, the bipartite EE will converge
to the same steady-state value for any subsystem size l after a transient time window,
which implies that limt→∞ S(t) ∼ l0 in this region (dashed lines in Figure 2). In summary,
these observations suggest that in the NN LKC, the scaling laws of steady-state EE vs. the
subsystem size could indeed be qualitatively different in the topological phase with a real
energy gap and the trivial phase with an imaginary energy gap. A loss-driven entanglement



Entropy 2024, 26, 272 6 of 18

phase transition may then occur and go hand-in-hand with the topological phase transition
of the system.

Figure 2. Bipartite EE vs. time t for the LKC with NN hopping and pairing for the loss rate v = 0.1
(solid lines) and 0.9 (dotted lines). Other system parameters are J = ∆ = 1 and u = 0.8. l denotes the
subsystem size and the total lattice size is L = 2 × 104.

To further confirm the existence of different entangling phases in the NN LKC, we
present in Figure 3 the steady-state EE S(L, l) versus the subsystem size l and loss rate v.
The steady-state is reached by evolving the initial state |Ψ(0)⟩ according to Equation (7)
[with Ĥ = Ĥ1 in Equation (11)] over a long time duration, which is set to T = 2000 in
our calculations. In Figure 3a, we identify the scaling-law of steady-state EE as S(L, l) ∼
ln[sin(πl/L)] for u2/J2 + v2/∆2 < 1 and S(L, l) ∼ l0 for u2/J2 + v2/∆2 > 1, respectively,
with v ̸= 0. In the thermodynamic limit (L → ∞), we obtain the following scaling laws for
the bipartite EE of steady states at half-filling, i.e.,

S(L, l) ∼
{

ln l, v ∈ (|∆|
√

1 − u2/J2, ∞),
l0, v ∈ (0, |∆|

√
1 − u2/J2).

(13)

Therefore, the EE satisfies a log-law (an area-law) vs. the subsystem size in the weak (strong)
dissipation regime of the system. These two distinct entangling phases are clearly illustrated
in the regions with v < 0.6 and v > 0.6 in Figure 3b. Remarkably, the separation point
[red dashed line at v = 0.6 in Figure 3b] between these two entangling phases is precisely
coincident with the topological transition point of the NN LKC at u2/J2 + v2/∆2 = 1.
There should thus be a transition from a log-law entangled topological superconducting
phase to an area-law entangled trivial phase in the NN LKC with the increase in the loss
rate v.

Based on the above analysis, we could identify the entanglement phase transition
and establish the entanglement phase diagram of the NN LKC, as reported in Figure 4. To
reveal the change in scaling behaviors in the steady-state EE, we fit S(L, l) with the function
g ln[sin(πl/L)] in different parameter regions and extract the coefficient g as the gradient
of the associated scaling laws. In Figure 4a, we take J = ∆ = 1 and the real part of chemical
potential u = 0.8. Referring to the topological phase boundary, v = |∆|

√
1 − u2/J2, we find

the topological transition point to be v = 0.6 in this case. It is clear that we have a finite g
when v < 0.6 and a vanishing g for v > 0.6 in Figure 4a, which verifies the presence of two
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different entangling phases (log-law vs. area-law) and an entanglement phase transition
driven by the change in loss rate v in the NN LKC.

(a) (b)

Figure 3. Bipartite EE of steady states vs. (a) the subsystem size l, and (b) the loss rate v for the LKC
with NN hopping and pairing. Other system parameters are J = ∆ = 1 and u = 0.8 for both panels.
The lattice size of the whole system is L = 2 × 104. The vertical dashed line in (b) highlights the
phase transition point at v = 0.6.

0

0.2

0.4

0.6

0.8

1

1.2

w = 1
log-law

w = 0
area-law

(a) (b)

Figure 4. Entanglement phase transitions in the LKC with NN hopping and pairing. System
parameters are J = ∆ = 1 and L = 2 × 104 for both panels. (a) Gradient g extracted from the data
fitting S(L, l) ∼ g ln[sin(πl/L)] of bipartite, steady-state EE vs. the subsystem size l at different loss
rates for u = 0.8. The vertical dashed line highlights the phase transition point at v = 0.6. (b) The
same gradient g as obtained in (a) vs. the real and imaginary parts of chemical potential µ = u − iv.
The values of g at different (u, v) can be read out from the color bar.
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Finally, we present the gradient g extracted from the fitting S(L, l) ∼ g ln[sin(πl/L)] at
different (u, v) in Figure 4b, generating the entanglement phase diagram of the system. We
observe two different regions with distinct entanglement features (g > 0 vs. g = 0), which
are separated by the boundary line v = |∆|

√
1 − u2/J2 for v ̸= 0 and |u| ≤ |J|. A direct

comparison with the topological phase diagram in Figure 1a leads to the conclusion that for
the NN LKC, the bipartite EE of steady states follows the log-law scaling vs. the subsystem
size in the topological phase (with winding number w = 1) and becomes independent
of the subsystem size in the trivial phase (with w = 0). At v ̸= 0, a log-law to area-law
entanglement phase transition could happen following the transition of the system from a
topologically nontrivial to a trivial phase. This entanglement transition could thus offer a
unique dynamical probe to topological phase transitions in non-Hermitian Kitaev chains.

A possible mechanism behind the loss-driven entanglement transition in the NN
LKC is as follows. With v > 0, the particles tend to populate the energy levels with
positive imaginary parts after being evolved over a long time duration. In the regime
with v > |∆|

√
1 − u2/J2, such energy levels are separated apart from those with negative

imaginary parts by a dissipation gap [see Figure 1c]. The particle distribution of late-
time steady state then mimics a 1D normal band insulator at half filling, whose bipartite
EE is expected to follow an area-law scaling versus the system size. In the regime with
v < |∆|

√
1 − u2/J2, there is no dissipation gap between the energy levels with positive

and negative imaginary parts [see Figure 1b]. After a long evolution time, the steady-state
population tends to form an effective Fermi surface at E = 0 along the ReE axis, which has
two crossing points with the bulk spectrum. Therefore, the particle distribution of steady
state is close to a critical metallic phase in 1D systems, whose bipartite EE is expected to
scale logarithmically with respect to the system size [77–79].

In the next subsection, we investigate entanglement transitions in an LKC with NNN
hopping and pairing terms, whose topological phases could possess larger winding num-
bers. We will see that the connections between topological and entanglement phase
transitions found in this subsection could be extended to more general situations for
non-Hermitian topological superconductors.

3.2. LKC with Next-Nearest-Neighbor Hopping and Pairing

We now consider an LKC with second-neighbor hopping and pairing terms. Referring
to Equation (1), we set the coupling range r = 2, and the resulting Hamiltonian of the
system reads

Ĥ2 =
1
2 ∑

n

[
µ(2ĉ†

n ĉn − 1) + ∑
r=1,2

(Jr ĉ†
n ĉn+r + ∆r ĉn ĉn+r + H.c.)

]
. (14)

The non-Hermitian effect is again introduced by setting the chemical potential µ = u − iv
with v > 0. In momentum space, it can be shown that there are four possible critical

quasimomenta ±k±0 = ± arccos{[−J1 ±
√

J2
1 + 8J2(J2 − u)]/(4J2)}, where the two bulk

energy bands of Ĥ2 could touch with each other at E = 0 [72]. The topological phase
boundaries of the system in parameter space can then be obtained by solving the equations
sin(k±0 )(∆1 + 2∆2 cos k±0 ) = ±v [72]. In Figure 5a, we plot these phase boundaries as black
lines in the u − v plane and compute the topological winding number w [Equation (6)]
in different parameter regions. The results show that there are three different topological
phases with winding numbers w = 0, 1, 2. The presence of NNN hopping and coupling
terms allows us to obtain a non-Hermitian topological superconducting phase with a larger
winding number w = 2.
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w = 2

w = 1

w = 0

Figure 5. Topological phase diagram and typical spectra of the LKC with NNN hopping and pairing.
(a) shows the winding number w vs. the real and imaginary parts of chemical potential u and v. The
yellow, green and blue regions have w = 2, 1 and 0, respectively. The red solid dot of (a) resides
at (u, v) = (1, 0.1), with the associated spectrum of Ĥ2 shown in (b). The red solid triangle of (a) is
located at (u, v) = (1, 1.1), and the associated spectrum of Ĥ2 is given in (c) on the complex energy
plane. The red solid square of (a) lies at (u, v) = (1, 2.5), and the associated spectrum of Ĥ2 is shown
in (d). Other system parameters are J1 = ∆1 = 1 and J2 = ∆2 = 1.5 for all panels.

In the topological phase with w = 2, the bulk energy spectrum of the system is gapped
along the ReE axis, and there are two pairs of Majorana edge modes at E = 0 under the
OBC [see Figure 5b]. With the increase in v, the system could undergo a phase transition
through level crossings at E = 0, after which it enters another topological phase with w = 1.
In this phase, the bulk spectrum of the system holds a line energy gap along a certain angle
θ ∈ (0, π/2) with respect to the ReE axis, and a single pair of Majorana edge modes can
be found inside the gap at E = 0 under the OBC [see Figure 5c]. Note in passing that this
non-Hermitian topological superconducting phase is different from the w = 1 phase of NN
LKC [see Figure 1], whose spectral gap lies instead along the ReE axis. With the further
increase in v, the system would experience a second phase transition and finally entering
a trivial phase with w = 0. In this phase, the spectrum of the system develops a line gap
along the ImE axis, and there are no zero-energy Majorana edge modes within the gap
under the OBC [see Figure 5d].

After unveiling the rich spectral and topological features of the NNN LKC, we are
ready to explore its entanglement dynamics. Referring again to Equations (7)–(10), we can
find the evolution of bipartite EE S(t) of the NNN LKC with a large system size L under
PBC. Exemplary results vs. different sizes l of the subsystem A and different loss rates are
presented in Figure 6. We have also considered a half-filled system and used Equation (12)
as the initial state at different quasimomenta throughout the calculations. The results
show that in the case with a large loss rate (v = 2.5 in Figure 6), the EE does not change
with the increase in subsystem size l after a long evolution time (dotted lines in Figure 6),
which implies an area-law scaling of the steady-state EE vs. l. This case corresponds to the
spectrum of NNN LKC in Figure 5d, where there exists a dissipation gap, and the system
resides in a topologically trivial phase. In the situation with a small loss rate (v = 0.1 in
Figure 6), the EE grows monotonically with the increase in the subsystem size l after a
long-time evolution (solid lines in Figure 6). It corresponds to the case with a line energy
gap along the ReE axis in the spectrum [Figure 5b], and the system resides in a topological
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phase with winding number w = 2. When the loss rate takes an intermediate value (v = 0.8
in Figure 6), the EE again rises with the increase in the subsystem size l in the late time
regime. Nevertheless, its growth rate vs. l is smaller compared to the case of v = 0.1.
The system also belongs to a topological phase with a smaller winding number w = 1
and possessing a gapped spectrum as shown in Figure 5c. These observations suggest
that for the NNN LKC, the bipartite EE in steady states may possess different scaling
properties when the system belongs to distinct topological superconducting phases with
distinguishable spectral features.

Figure 6. Bipartite EE vs. time t for the LKC with NNN hopping and pairing for the loss rate v = 0.1
(solid lines), 0.8 (dash-dotted lines) and 2.5 (dotted lines). Other system parameters are J1 = ∆1 = 1,
J2 = ∆2 = 1.5 and u = 1. l denotes the subsystem size and the total lattice size is L = 2 × 104.

To further decode the scaling laws of bipartite EE in steady states, we consider the
evolution of the system over a long time duration T = 2000 and obtain the final values of EE
S(L, l) at different subsystem sizes l and loss rates, as shown in Figure 7. The methodology
of computing S(L, l) here is in parallel with that employed in Section 3.1. We find that in
the weak and intermediate dissipation regions [v = 0.1, 0.5 and v = 1.1, 1.5 in Figure 7a],
the EE S(L, l) is proportional to ln[sin(πl/L)] for a fixed system size L. In the limit of large
L, this relation reduces to the log-law scaling S ∼ ln l. In the strong dissipation region
[v = 2.1, 2.5 in Figure 7a], the steady-state EE becomes independent of l, leading to an
area-law entangled phase with S ∼ l0. More precisely, under the condition v > 0, we
numerically find the following three parameter regions in which the bipartite EE of steady
states show distinguishable scaling behaviors in the limit L → ∞, i.e.,

S(L, l) ∼


g ln l, v < min |hy(k±0 )|,
g′ ln l, min |hy(k±0 )| < v < max |hy(k±0 )|,
l0, v > max |hy(k±0 )|.

(15)

Here, the coefficients g and g′ both depend on the system parameters, and we always have
g > g′. The expression of hy(k) is given by Equation (3) after setting r = 1, 2. k±0 ∈ [−π, π)
are the critical quasimomenta where the energy bands could touch when a topological
phase transition happens [72]. The three distinct scaling regions of S(L, l) are clearly visible
from the EE vs. loss rate v in Figure 7b. Notably, the separation points between these
entangling phases tend to be identical to the topological transition points of the NNN
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LKC [72]. Despite a transition from a log-law entangled topological phase to an area-law
entangled trivial phase, there should also be a possible entanglement transition between
two non-Hermitian topological superconducting phases with winding numbers w = 2 and
w = 1 following the variation in the loss rate v.

(a) (b)

Figure 7. Bipartite EE of steady states vs. (a) the subsystem size l, and (b) the loss rate v for the LKC
with NNN hopping and pairing. Other system parameters are J1 = ∆1 = 1, J2 = ∆2 = 1.5 and u = 1
for both panels. The lattice size of the whole system is L = 2 × 104. Vertical dashed lines in (b) denote
two topological transition points of the system.

To confirm the presence of entanglement transitions in the NNN LKC and build
their connections with topological phase transitions, we perform numerical fitting for the
bipartite EE of steady states as S(L, l) ∼ g ln[sin(πl/L)] and extract the coefficients g at
different system parameters. The results are shown in Figure 8. The two red dashed lines
in Figure 8a correspond to the loss rates where topological phase transitions happen in
the system [72]. We see that they separate the configuration of g into three distinguishable
regions. In the left and middle regions (with weak and intermediate dissipation), the values
of g are finite and decrease gradually with the increase in v. The system then belongs to
log-law entangled phases in these domains. In the right region, the gradient g becomes
pinned to zero, which implies that the system has entered an area-law entangled phase
with S(L, l) ∼ l0. It is noteworthy that the derivatives of g with respect to the loss rate v
undergo two discontinuous changes at the topological phase transition points. Therefore,
the loss-induced topological transitions in the NNN LKC also accompany entanglement
phase transitions characterized by different scaling laws in the bipartite EE of steady states.

Finally, we present the scaling coefficients g of S(L, l) vs. the real and imaginary parts
of chemical potential µ in Figure 8b, which forms the entanglement phase diagram of the
system. In comparison with the topological phase diagram in Figure 5a, we conclude
that the topological phases of NNN LKC with different winding numbers w = 2, 1 and 0
indeed exhibit different scaling laws in the EE vs. system sizes. Both the two topologically
nontrivial phases are log-law entangled, whereas the topologically trivial phase is area-
law entangled. Each topological phase transition further goes hand-in-hand with an
entanglement phase transition.

The physical mechanism behind these loss-driven entanglement transitions is similar
to that discussed for the NN LKC in Section 3.1. Starting with an initial state at half-
filling, the final population of the steady state tends to fill the energy levels with positive
imaginary parts after a long evolution time. The interface between filled and empty states
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then possesses four, two and no crossing points with the bulk energy spectrum of Ĥ2 in
the topological phases with winding numbers w = 2, 1 and 0, respectively, (see Figure 5),
yielding two critical-type, log-law entangled phases and a gapped, area-law entangled
phase. The entanglement phase transitions identified here may also provide us with
an alternative strategy to dynamically probe and distinguish non-Hermitian topological
superconducting phases with large winding numbers.

(a) (b)

w = 2
log-law

w = 1
log-law

w = 0
area-law

Figure 8. Entanglement phase transitions in the LKC with NNN hopping and pairing. System
parameters are J1 = ∆1 = 1, J2 = ∆2 = 1.5 and L = 2 × 104 for both panels. (a) Gradient g extracted
from the data fitting S(L, l) ∼ g ln[sin(πl/L)] of bipartite, steady-state EE vs. the subsystem size
l at different loss rate v for u = 1. Vertical dashed lines highlight topological transition points of
the system. (b) The same gradient g as obtained in (a) vs. the real and imaginary parts of chemical
potential µ = u − iv. The values of g at different (u, v) can be figured out from the color bar.

4. Conclusions

In this work, we unveiled entanglement phase transitions in 1D non-Hermitian topo-
logical superconductors. Our investigation focused on Kitaev chains exhibiting onsite par-
ticle losses, revealing distinct scaling laws of EE corresponding to different non-Hermitian
superconducting phases. Specifically, the bipartite EE of steady states demonstrated an
area-law scaling in the topologically trivial phase and a log-law scaling in the nontrivial
phase. Notably, the scaling coefficients of the log-law become distinguishable when the
system is situated in superconducting phases with distinct topological winding numbers.
Furthermore, we identified entanglement phase transitions coinciding with topological
phase transitions in non-Hermitian Kitaev chains at identical system parameters. Our study
established generic connections among spectral, topological, and entanglement phase
transitions in two distinct lossy Kitaev chains with varying hopping and pairing ranges.
These findings not only uncovered the richness and unique characteristics of entanglement
transitions in a class of non-Hermitian systems, but also introduced an efficient dynamical
probe for detecting and distinguishing different non-Hermitian superconducting phases
with diverse spectral and topological properties.

In future research, exploring entanglement phase transitions in non-Hermitian topo-
logical superconductors with disorder, subject to time-periodic driving, and extending
the investigation to higher spatial dimensions holds considerable interest. The critical
properties of entanglement transitions in non-Hermitian systems and their responses to
many-body interactions deserve more thorough explorations. Additionally, the experimental



Entropy 2024, 26, 272 13 of 18

realization of non-Hermitian Kitaev chains and the detection of entanglement and topological
phase transitions within these systems offer intriguing directions for future studies.
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Appendix A. Derivation of the Non-Hermitian Hamiltonian

In this Appendix, we obtain our LKC Hamiltonian in Equation (1) following the quan-
tum trajectory approach [52]. We consider a Markovian open quantum system described
by the Lindblad master Equation (h̄ = 1)

d
dt

ρ̂ = −i[Ĥ0, ρ̂] + ∑
n

(
L̂nρ̂L̂†

n −
1
2
{L̂†

n L̂n, ρ̂}
)

. (A1)

Here, ρ̂ is the density matrix of the system. Ĥ0 = Ĥ†
0 is the Hermitian Hamiltonian

that induces the coherent dynamics. {L̂n} is the jump operator depicting the coupling
of the system to the external environment. A re-organization of the terms in the master
equation yields

d
dt

ρ̂ = −i[Ĥρ̂ − ρ̂Ĥ†] + ∑
n

L̂nρ̂L̂†
n, (A2)

where the effective Hamiltonian is

Ĥ ≡ Ĥ0 −
i
2 ∑

n
L̂†

n L̂n. (A3)

The last term in Equation (A2) characterizes each quantum trajectory under stochastic loss
events.

√
dtL̂n might be regarded as a measurement operator for a signal n in the time

interval [t, t + dt]. 1 − iĤdt may be further viewed as a measurement operator for zero
signals. Under continuous monitoring and post-selection of null measurement outcomes,
the quantum jump terms ∑n L̂nρ̂L̂†

n are ignored (no-click limit). The dynamics are then
described by the effective non-Hermitian Hamiltonian in Equation (A3).

To arrive at our LKC Hamiltonian in Equation (1), we set the Ĥ0 and L̂n in Equation (A3)
to be

Ĥ0 =
1
2 ∑

n

[
u(2ĉ†

n ĉn − 1) + ∑
r
(Jr ĉ†

n ĉn+r + ∆r ĉn ĉn+r + H.c.)

]
(A4)

and
L̂n =

√
2vĉn. (A5)

Inserting them into Equation (A3) gives us the LKC Hamiltonian in Equation (1) (up to
a global constant term that does not affect the wavepacket dynamics), where the onsite
potential amplitude µ = u − iv.

Appendix B. Momentum-Space Generator of Correlation Matrix

In this Appendix, we discuss how to obtain the k-space generator [Equation (9)] of
the single-particle correlation matrix in real space. We first transform the Hamiltonian
in Equation (1) to another real-space fermionic basis through the Bogoliubov-de Gennes
(BdG) transformation [80]. Let us introduce creation and annihilation operators of normal
fermions f̂ †

j and f̂ j, which satisfy the anticommutation relations

{ f̂i, f̂ j} = { f̂ †
i , f̂ †

j } = 0, { f̂i, f̂ †
j } = δij. (A6)
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With these operators, we can expand the annihilation operator ĉn in Equation (9) as

ĉn =
L

∑
j=1

(φjn f̂ j + ϕjn f̂ †
j ). (A7)

Here, the coefficients φjn and ϕjn satisfy the normalization condition ∑L
j=1(φ2

jn + ϕ2
jn) = 1.

Assuming that the Hamiltonian Ĥ in Equation (1) is diagonalized on the basis
{ f̂1, . . . , f̂L, f̂ †

1 , . . . , f̂ †
L}, we can express Ĥ as

Ĥ = ∑
ℓ

Eℓ f̂ †
ℓ f̂ℓ. (A8)

Using the commutator formula [AB, C] = A{B, C} − {A, C}B together with Equations (A7)
and (A8), we find that

[Ĥ, f̂ j] = −Ej f̂ j, [Ĥ, f̂ †
j ] = Ej f̂ †

j , (A9)

[Ĥ, ĉn] = −∑
j

Ej(φjn f̂ j − ϕjn f̂ †
j ). (A10)

Meanwhile, from Equations (1) and (A7), we can equivalently express the commutator
[Ĥ, ĉn] as

[Ĥ, ĉn] =− ∑
j

µ(φjn f̂ j + ϕjn f̂ †
j )

− ∑
j

∑
r

Jr

2
(φjn+r + φjn−r) f̂ j

− ∑
j

∑
r

Jr

2
(ϕjn+r + ϕjn−r) f̂ †

j

+ ∑
j

∑
r

∆r

2
(ϕjn+r − ϕjn−r) f̂ j

+ ∑
j

∑
r

∆r

2
(φjn+r − φjn−r) f̂ †

j . (A11)

Equationating the right hand sides of Equations (A10) and (A11) and dropping the redun-
dant index j, we arrive at the following BdG self-consistent equations

+µφn + ∑
r

Jr

2
(φn−r + φn+r) + ∑

r

∆r

2
(ϕn−r − ϕn+r) = Eφn, (A12)

−µϕn −
Jr

2 ∑
r
(ϕn−r + ϕn+r)− ∑

r

∆r

2
(φn−r − φn+r) = Eϕn. (A13)

Next, it can be verified that Equations (A12) and (A13) can be generated by a fermionic
Hamiltonian Ĥ. It owns two internal degrees of freedom (α, β) in each unit cell but has no
superconducting pairing terms, i.e.,

Ĥ =
1
2 ∑

n

[
µĉ†

nσz ĉn + ∑
r

ĉ†
n(Jrσz − i∆rσy)ĉn+r + H.c.

]
, (A14)

where ĉ†
n = (ĉ†

n,α, ĉ†
n,β). Taking the PBC and applying the Fourier transformation ĉ†

n =
1√
L ∑k e−ikn ĉ†

k with the momentum-space creation operator ĉ†
k = (ĉ†

k,α, ĉ†
k,β), we arrive at

Ĥ = ∑k ĉ†
kH(k)ĉk. Here, the Bloch Hamiltonian is

H(k) = ∑
r

∆r sin(kr)σy + [µ + ∑
r

Jr cos(kr)]σz, (A15)
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which is formally identical to the H(k) in Equation (2). In the basis of ĉk and ĉ†
k , we can

now compute the k-space generator Ck(t) of correlation matrix in Equation (8) as [53]

Ck(t) =

(
⟨ĉ†

k,α ĉk,α⟩t ⟨ĉ†
k,α ĉk,β⟩t

⟨ĉ†
k,β ĉk,α⟩t ⟨ĉ†

k,β ĉk,β⟩t

)
. (A16)

Since the system is noninteracting, we can express the single particle operators in the first
quantized formalism as

ĉ†
k,α ĉk,α → |α⟩⟨α|, ĉ†

k,β ĉk,β → |β⟩⟨β|, (A17)

ĉ†
k,α ĉk,β → |α⟩⟨β|, ĉ†

k,β ĉk,α → |β⟩⟨α|, (A18)

where {|α⟩, |β⟩} forms the two by two internal subspace of the Bloch Hamiltonian H(k)
with the identity matrix σ0 ≡ |α⟩⟨α|+ |β⟩⟨β|. Finally, with the help of Pauli matrices, we
can identify

σx = |α⟩⟨β|+ |β⟩⟨α|, (A19)

σy = −i(|α⟩⟨β| − |β⟩⟨α|), (A20)

σz = |α⟩⟨α| − |β⟩⟨β|. (A21)

Therefore, the matrix elements of Ck(t) in Equation (A16) can be equivalently expressed
as ⟨ĉ†

k,α ĉk,α⟩t = ⟨σ0 + σz⟩t/2, ⟨ĉ†
k,β ĉk,β⟩t = ⟨σ0 − σz⟩t/2, ⟨ĉ†

k,α ĉk,β⟩t = ⟨σx + iσy⟩t/2 and

⟨ĉ†
k,β ĉk,α⟩t = ⟨σx − iσy⟩t/2, yielding the expression of Ck(t) in Equation (9).
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