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Abstract: Due to the classifying theorems by Petz and Kubo–Ando, we know that there are bijective
correspondences between Quantum Fisher Information(s), operator means, and the class of symmet-
ric, normalized operator monotone functions on the positive half line; this last class is usually denoted
as Fop. This class of operator monotone function has a significant structure, which is worthy of study;
indeed, any step in understanding Fop, besides being interesting per se, immediately translates into a
property of the classes of operator means and therefore of Quantum Fisher Information(s). In recent
years, the f ↔ f correspondence has been introduced, which associates a non-regular element of
Fop to any regular element of the same set. In terms of operator means, this amounts to associating a
mean with multiplicative character to a mean that has an additive character. In this paper, we survey
a number of different settings where this technique has proven useful in Quantum Information
Geometry. In Sections 1–4, all the needed background is provided. In Sections 5–14, we describe the
main applications of the f ↔ f̃ correspondence.
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1. Introduction: The Chentsov Uniqueness Theorem and the Chentsov–Morozova Problem

The basic theorems of classical and quantum information geometry are categorical in
character: one is the Chentsov theorem and the other one is its quantum counterpart, the
Petz–Kubo–Ando (PKA) theorem.

Let us first describe the structure of the Chentsov theorem. The idea is as follows:
Imagine that we want to use a family of Riemannian metrics on the family of the simplexes
of probability vectors to distinguish the states (namely the probability vectors themselves).
It would be natural that these metrics should contract under the effect of noise, namely
under the effect of the morphisms of such structures, which are the stochastic maps; the
distance between states could shrink if we muddy the waters. Let us translate this into a
formal mathematical structure.

If N is a differential manifold, let us denote by TρN the tangent space to N in the point
ρ ∈ N. In the present commutative case, we define a Markov morphism as a stochastic
map, T : Rn → Rk. Let

P1
n := {ρ ∈ Rn|∑ ρi = 1, ρi > 0}. (1)

The tangent space of P1
n can be naturally represented as

TρP
1
n = {v ∈ Rn|∑

i
vi = 0}. (2)

A monotone metric will be any family of Riemannian metrics g = {gn} on {P1
n},

n ∈ N, such that
gm

T(ρ)(TX, TX) ≤ gn
ρ (X, X)

holds for every Markov morphism T : Rn → Rm, for every ρ ∈ P1
n and for every X ∈ TρP

1
n.

Entropy 2024, 26, 286. https://doi.org/10.3390/e26040286 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26040286
https://doi.org/10.3390/e26040286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e26040286
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26040286?type=check_update&version=1


Entropy 2024, 26, 286 2 of 15

Let us remember that Fisher Information is the Riemannian metric on P1
n, defined as

⟨u, v⟩ρ,F := ∑
i

uivi
ρi

, u, v ∈ TρP
1
n.

Rao was the first to realize that Fisher Information was indeed a Riemann metric on
statistical models. The surprising result, as proven by Chentsov (see [1]), is as follows:

Theorem 1. There exists a unique monotone metric onP1
n (up to scalars) given by the Fisher information.

How do we generalize this in the quantum setting? Chentsov himself and Morozova
were the ones to correctly formalize this new categorical problem (see [2]).

We denote by Mn (resp. Mn,sa), the space of complex (resp. self-adjoint) n × n matrices
and define D1

n as the space of the faithful states. This means

D1
n := {ρ ∈ Mn,sa|ρ > 0 , Tr(ρ) = 1}. (3)

Due to the needs of quantum dynamics in the non-commutative case, a Markov
morphism should be defined as a completely positive and trace-preserving operator T :
Mn → Mk. There exists a straightforward identification of TρD

1
n with the space of self-

adjoint traceless matrices; namely, for any ρ ∈ D1
n,

TρD
1
n = {A ∈ Mn,sa|Tr(A) = 0}. (4)

Emphasizing the perfect analogy with the classical case, a monotone metric or Quan-
tum Fisher Information in the non-commutative case is defined as a family of Riemannian
metrics g = {gn} on {D1

n}, n ∈ N, such that

gm
T(ρ)(TX, TX) ≤ gn

ρ (X, X)

holds for every Markov morphism T : Mn → Mm, for every ρ ∈ D1
n, and for every

X ∈ TρD
1
n.

Again, we see that distances becomes shorter under noise effect. It is now time to see if
non-commutative monotone metrics exist and how we can classify them. The Fisher metric
comes from division by ρ, but there is no natural division by ρ in the quantum setting.

To solve this problem, we need more complex mathematical instruments. This is the
argument contained in the following sections.

2. Means for Positive Numbers and the f̃ Function

A basic ingredient to answer the Chentsov–Morozova problem is the notion of operator
means. To introduce this, we first need to understand the notion of numerical means.

Definition 1. Let R+ = (0,+∞). A mean for pairs of positive numbers is a function m(·, ·) :
R+ ×R+ → R+ such that (see [3])

(1) m(x, x) = x ;
(2) m(x, y) = m(y, x) ;
(3) x < y =⇒ x < m(x, y) < y ;
(4) x < x′ y < y′ =⇒ m(x, y) < m(x′, y′) ;
(5) m(·, ·) is continuous;
(6) for t > 0 one has m(tx, ty) = t · m(x, y).

Definition 2.
Mnu := {m(·, ·) : R+ ×R+ → R+|m is a mean }

Definition 3. Fnu is the class of functions f (·) : R+ → R+ such that
(i) f is continuous;
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(ii) f is monotone increasing;
(iii) f (1) = 1;
(iv) t f (t−1) = f (t).

Proposition 1. There is a bijection between Mnu and Fnu given by the formulas

m f (x, y) := y f (xy−1)

fm(t) := m(1, t)

Proof. Straightforward.

Here we have some examples of means and of the associated representing function
(Table 1).

Table 1. Means and representing function.

Name of the mean f m f

Arithmetic 1+x
2

x+y
2

Heinz
1
2 (xβ + x1−β) 1

2 (xβy1−β + x1−βyβ)
β ∈ (0, 1/2) β ∈ (0, 1/2)

Geometric
√

x
√

xy

Logarithmic x−1
log x

x−y
log x−log y

Harmonic 2x
x+1

2
1
x +

1
y

Remark 1. It is possible to prove that, in the above table, the representing functions are concave
and more: they are all operator concave. However, in Fnu we also have convex functions, such as
this piecewise affine function (see [4]):

f (x) =

{
x+3

4 , if 0 ≤ x ≤ 1,
3x+1

4 , if x ≥ 1.

Setting f (0) = limx→0 f (x), it is straightforward to verify that each mean m f (·, ·) has a
continuous extension to [0,+∞)× [0,+∞), provided by

m f (0, y) = f (0) · y m f (x, 0) = f (0) · x m f (0, 0) = 0 x, y > 0.

We call the functions with f (0) > 0 regular and all the others non-regular. Indeed, the
associated regular means have an additive character; namely, if x, y > 0 then m f (x, 0) > 0 and
m f (0, y) > 0. On the contrary, if f (0) = 0 the mean appears multiplicative, that is, m f (x, 0) = 0
and m f (0, y) = 0.

Note that no negative connotation should be associated with the denomination non-regular.

Definition 4. For f ∈ Fnu such that f (0) > 0, we set

f̃ (x) =
1
2

[
(x + 1)− (x − 1)2 f (0)

f (x)

]
x > 0.

It is not difficult to see that this definition associates a non-regular element, f̃ , to a
regular one, f .
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3. Operator Means, Operator Monotone Functions, Quantum Fisher Information:
The Petz–Kubo–Ando Theorem

We are now ready to introduce operator means. As previously, let Mn := Mn(C) be
the set of all n × n complex matrices and Mn,sa be the set of all the self-adjoint elements of
Mn. We shall denote general matrices by X, Y, . . ., while letters A, B, . . . will be used for self-
adjoint matrices. The Hilbert–Schmidt scalar product will be denoted by ⟨X, Y⟩ = Tr(X∗Y),
where the adjoint of matrix X is denoted by X∗. Let Dn be the set of strictly positive
elements in Mn,sa and let D1

n ⊂ Dn be the set of strictly positive density matrices previously
introduced, namely D1

n = {ρ ∈ Mn,sa | Tr ρ = 1, ρ > 0}. If not otherwise specified, we
shall (from now on) only consider faithful states (ρ > 0).

A function f : (0,+∞) → R is said to be operator monotone (increasing) if, for any n ∈ N
and A, B ∈ Mn,sa such that 0 < A ≤ B, the inequality f (A) ≤ f (B) holds. A positive
operator monotone function, f , is said to be symmetric if f (x) = x f (x−1) and normalized if
f (1) = 1.

Definition 5. Fop is the class of functions f : (0,+∞) → (0,+∞) such that

(i) f (1) = 1,

(ii) x f (x−1) = f (x) for x > 0,

(iii) f is operator monotone.

Note that all the functions in Section 2 (except for the counterexample in Remark 1)
belong to Fop .

Proposition 2. All the functions in Fop are operator concave.

The Kubo–Ando theory of operator means [3,5,6] can be seen as the matrix version of
Section 2.

Definition 6. A bivariate mean for pairs of positive operators is a function

(A, B) → m(A, B)

defined in and with values in positive definite operators on a Hilbert space and satisfying mutatis
mutandis conditions (1) to (5) in Definition 1. In addition, the transformer inequality (see [6])

Cm(A, B)C∗ ≤ m(CAC∗, CBC∗)

holds for positive definite A,B, and arbitrary C.

Notice that the transformer inequality replaces (6) in Definition 1. We denote the set
of matrix means as Mop and let Qop be the set of the Quantum Fisher Information(s).

The fundamental result is as follows.

Theorem 2 (Petz, Kubo, Ando in [6,7]). There are two bijections linking Fop, Mop, and Qop,
provided by the following formulas:

f

↕

m f (A, B) = A1/2 f (A−1/2BA−1/2)A1/2.

↕

⟨A, B⟩ρ, f = Tr(A · m f (Lρ, Rρ)
−1(B))
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Let us rephrase the Petz–Kubo–Ando classification theorem: any operator monotone
function f ∈ Fop generates an operator mean m f (A, B), which in turn produces Quantum
Fisher Information ⟨A, B⟩ρ, f using the above formulas. There are no other operator means
or QFIs; they all come from an f ∈ Fop, according to the above described procedure.

This explains why it is so interesting to study the structure of Fop: any understanding
in this field necessarily provides us with more insight into operator means and Quantum
Fisher Information(s).

This is exactly what the f − f̃ correspondence will produce.

4. The f ↔ f̃ Bijection for Operator Monotone Functions

As in Section 2, we divide the representing functions for operator means into two parts.

Definition 7. For f ∈ Fop, we define f (0) = limx→0 f (x). We say that a function f ∈ Fop is
regular if f (0) ̸= 0 and non-regular if f (0) = 0, cf. [8,9].

We introduce the sets of regular and non-regular functions,

F r
op := { f ∈ Fop | f (0) ̸= 0}, F n

op := { f ∈ Fop | f (0) = 0},

and notice that, trivially, Fop is the disjoint union of F r
op and F n

op.

Definition 8. For f ∈ F r
op, we set

f̃ (x) =
1
2

[
(x + 1)− (x − 1)2 f (0)

f (x)

]
x > 0.

Set G( f ) = f̃ , cf. [5].

Theorem 3. The correspondence f → f̃ is a bijection between F r
op and F n

op.

5. The Inversion Formula and Wigner–Yanase–Dyson Information

Definition 9. For g ∈ F n
op, we set

ǧ(x) =

g′′(1) · (x − 1)2

2g(x)− (x + 1)
, x ∈ (0, 1) ∪ (1, ∞),

1, x = 1.
(5)

Define H(g) = ǧ.

Proposition 3. If g is non-regular then ǧ is regular; namely, ǧ ∈ F r
op. Moreover, if f ∈ F r

op and
g ∈ F n

op, then
H(G( f )) = f and G(H(g)) = g.

The correspondence between the WYD information (see [10]),

Iβ
ρ (A) = −1

2
Tr([ρβ, A][ρ1−β, A]), 0 < β < 1/2,

and the Quantum Fisher Information depends on the operator monotonicity of the functions

fβ(x) = β(1 − β)
(x − 1)2

(xβ − 1)(x1−β − 1)
0 < β < 1/2.

See [8,10,11] for the existing proofs. Indeed, Proposition 3 provides a new approach to
the above result.
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The function

gβ(x) =
xβ + x1−β

2
0 < β < 1/2

is operator monotone and, moreover, gβ ∈ Fop and gβ is non-regular. The calculations
show that f̃β = gβ. Therefore, the function fβ ∈ F r

op for 0 < β < 1/2.
Here we provide the first examples of the correspondence (Table 2).

Table 2. f ↔ f̃ Correspondence.

f f̃
1+x

2
2x

x+1(
1+

√
x

2

)2 √
x

β(1 − β) (x−1)2

(xβ−1)(x1−β−1)
xβ+x1−β

2

where β ∈ (0, 1/2).

6. Regular QFI in Terms of Covariance

Quantum covariance is usually defined as

Covρ(A, B) :=
1
2

Tr(ρ(AB + BA))− Tr(ρA) · Tr(ρB), (6)

where A = A∗ and B = B∗. The above formula can be written using the arithmetic mean of
the left and right multiplication operator as

Covρ(A, B) := Tr
((

Lρ + Rρ

2

)
(A0)B0

)
, (7)

where A0 = A − Tr(ρA) · I. This simple remark led Petz to the following definition
(see [12]):

Definition 10. For any f ∈ Fop, define the Quantum f -Covariance as

Cov f
ρ(A, B) := Tr(m f (Lρ, Rρ)(A0)B0). (8)

As usual, Var f
ρ(A) := Cov f

ρ(A, A). If f (x) = (1 + x)/2, then

Cov f
ρ(A, B) =

1
2

Tr(ρ(AB + BA))− Tr(ρA) · Tr(ρB) = Covρ(A, B), (9)

which is the above given standard definition for the quantum covariance.
With this generalized notion of Petz covariance, we show that there is an unexpected

relation between QFI and the covariance itself.

We stated previously that there exists a natural identification of TρD
1
n with the space

of self-adjoint traceless matrices; namely, for any ρ ∈ D1
n

TρD
1
n = {A ∈ Mn | A = A∗ , Tr A = 0}.

Moreover, the PKA theorem states that the Quantum Fisher Information(s) are given
by the formula

⟨A, B⟩ρ, f = Tr(A · m f (Lρ, Rρ)
−1(B))

for positive matrices A, B ∈ TρD
1
n, where f ∈ Fop.

Monotone metrics are usually normalized in such a way that [A, ρ] = 0 implies
gρ(A, A) = Tr(ρ−1 A2).
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Remark 2. Let us remember that Tρ := {A = A∗|Tr(ρA) = 0}; the tangent space in ρ to the
state space has a natural orthogonal decomposition in terms of “commuting” and “noncommuting”
parts as

Tρ = Tc
ρ ⊕ Tn

ρ , (10)

where

Tc
ρ = {A = A∗|[ρ, A] = 0}, Tn

ρ = {i[ρ, A]|A = A∗}. (11)

Due to the Chentsov uniqueness theorem, the different QFI(s) are characterized from what they
do on the noncommuting part of the tangent space; namely, on Tn

ρ that is on tangent vectors of the
form i[ρ, A].

We are now ready to state the QFI(s) in terms of covariances.

Theorem 4. Gibilisco, Imparato, and Isola (Proposition 6.3, page 11 in [13]).
If f ∈ F r

op, then

f (0)
2

· ⟨i[ρ, A], i[ρ, B]⟩ρ, f = Covρ(A, B)− Cov f̃
ρ(A, B). (12)

The above formula has many important consequences.

7. A Look at the Petz–Sudar Theorem

In the PKA classification theorem (Theorem 2 in Section 3), we see that the QFI is
defined only for faithful states (ρ > 0). It is Petz himself, in collaboration with Sudár,
who understood how to define a radial extension of a QFI to pure states and how to prove
that only regular QFIs possess such an extension (for all details, the reader can refer to [9]
or to [13]). The statement is as follows:

Theorem 5 (Petz and Sudár in [9]). A QFI admits a radial extension iff it is regular ( f (0) > 0).
In such a case

2 f (0)⟨·, ·⟩·, f → ⟨·, ·⟩·,FS (13)

where ⟨·, ·⟩·,FS is the Fubini-study metric on the space of pure states.

The fact that the radial limit of 2 f (0)⟨·, ·⟩·, f does not depend on f is an immediate
consequence of Theorem 4 in Section 6.

It is natural to ask, can the Petz–Sudár theorem be generalized and proven using
Formula (22)? Here, generalization means using Formula (22) for states that are neither
faithful nor pure.

8. Extension of Regular QFI and MASI for Non-Faithful States

A far-reaching generalization of the Wigner–Yanase Skew Information has been pro-
posed by Hansen in [8].

Definition 11. Metric Adjusted Skew Information (MASI).
For f ∈ F r

op and ρ > 0, set

I f
ρ (A) :=

f (0)
2

· ⟨i[ρ, A], i[ρ, A]⟩ρ, f . (14)
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In the case where f (x) = (1 +
√

x)2/4, we can see that the MASI coincides with the
Wigner–Yanase Skew Information:

Iρ(A) := I f
ρ (A) = −1

2
Tr([

√
ρ, A]2). (15)

Note that recently, using MASI, it has been proven that the Local Quantum Uncertainty
(LQU) and the Interferometric Power (IP), which are two important measures of quantum
discord, are instances of a family of quantum discords parametrized by the function f ∈ F r

op.
This allows a unified study of the properties of LQU and IP (see [14]). Due to Theorem 4,
we have the following:

Proposition 4.

I f
ρ (A) = Varρ(A)− Var f̃

ρ(A). (16)

It is important to note that the two sides of Equation (16) are somehow different in
nature. The MASI on the left side is defined only for faithful states (ρ > 0), while the
right-hand side always makes good sense since quantum covariance is defined for any
state. Therefore, one can look to Equation (16) as a “definition” of the LHS, which solves the
problem of extending the MASI with an approach that is different from the one proposed
by Hansen in Theorem 3.8 in [8]. Motivated by the above consideration, it is natural to
introduce the following sesquilinear form, which is the natural extension of MASI for
two observables.

Definition 12.
I f
ρ (A, B) := Covρ(A, B)− Cov f̃

ρ(A, B).

Another important remark is that, using the f − f̃ correspondence, it is possible to
establish a relation between MASI and the quasi-entropy SF(·, ·) introduced by Petz in [15];
SF(·, ·) can be seen as a quantum version of Csiszar F-entropy in classical statistics and
information theory (see [16]). Indeed, if Tr(ρA) = 0, Theorem 3.1 in [17] proves that

∂2

∂t∂s
S f̃ (ρ + ti[ρ, A], ρ + si[ρ, A])|t=s=0 = 2I f

ρ (A).

9. Inequalities for the MASI and the Bloch Sphere Case

In this section, we discuss some basic properties of MASI and we will see how the f̃
function appears, for example, as a calculation tool. What follows is the generalization of
the work in [18] that appears in [19].

(a) If a quantum evolution is given by a Hamiltonian H that commutes with the observ-
able A, then the MASI is a constant of motion. Namely, if we set ρH(t) := e−itHρeitH and
[A, H] = 0, then the function I f

ρH(t)(A) is constant. Since the Quantum Fisher Information
contracts under coarse graining, we can see that QFI is a unitary covariant, and this is the
crucial ingredient of the proof.

(b) For any MASI, we have:

I f
ρ (A) ≤ ISLD

ρ (A) ≤ 1
2 f (0)

I f
ρ (A). (17)

(c) The constant 1
2 f (0) is optimal in inequality (17). Namely, if 1 ≤ k < 1

2 f (0) , the inequality

ISLD
ρ (A) ≤ kI f

ρ (A)

is false and a counterexample can be found in the elementary 2 × 2 case, namely on the
Bloch sphere.
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Let us see how this can be proven by means of the f̃ function.
Let {φi} be a complete orthonormal base composed of eigenvectors of ρ, and {λi}

the corresponding eigenvalues. Set aij ≡ ⟨A0 φi|φj⟩, where A0 = A − Tr(ρA). Note that
aij ̸= Aij := the i, j entry of A.

Recall that the Pauli matrices are as follows:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

A generic 2 × 2 density matrix in the Stokes parameterization is written as

ρ =
1
2

(
1 + x y + iz
y − iz 1 − x

)
=

1
2
(I + xσ1 + yσ2 + zσ3),

where (x, y, z) ∈ R3 and x2 + y2 + z2 ≤ 1. Let r :=
√

x2 + y2 + z2 ∈ [0, 1]. The eigenvalues
of ρ are λ1 = 1−r

2 and λ2 = 1+r
2 .

Proposition 5.
I f
ρ (A) =

[
1 − m f̃ (1 − r, 1 + r)

]
· |a12|2.

Corollary 1. If r ̸= 0 then

ISLD
ρ (A) =

[
r2

1 − m f̃ (1 − r, 1 + r)

]
· I f

ρ (A).

Proposition 6. If f is regular, then

lim
r→0

r2

1 − m f̃ (1 − r, 1 + r)
= − 1

2 f̃ ′′(1)
=

1
2 f (0)

.

From this last result, the optimality of the constant follows.

10. The Dynamical Uncertainty Principle

From Equation (16), one has

Varρ(A) ≥ I f
ρ (A).

This is the case n = 1 of the Dynamical Uncertainty Principle, which reads

det{Covρ(Aj, Ak)} ≥ det{I f
ρ (Aj, Ak)}, (18)

or equivalency

det{Covρ(Aj, Ak)} ≥ det{ f (0) · 1
2
· ⟨i[ρ, Aj], i[ρ, Ak]⟩ρ, f }, (19)

where f ∈ F r
op. On the left-hand side, we have the Generalized Variance of the random

vector (A1, ..., An). Please note that, in this case, the right-hand side depends on the state-
observables’ non-commutativity, and this is strictly related to a non-trivial dynamic induced
by the observables according to the Schrödinger equation.

To understand the terminology, recall that the Standard Uncertainty Principle (SUP)
in the Robertson version reads

det{Covρ(Aj, Ak)} ≥ det{−i · 1
2
· Tr(ρ[Aj, Ak])}, (20)
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where A1, ..., An is an arbitrary number of observables (self-adjoint matrices) and ρ is
a state. For n = 2, one obtains the Schrödinger uncertainty principle from which the
Heisenberg uncertainty principle follows. The bound in the right-hand side depends on
the non-commutativity among the observables (see [20,21]).

Now, let n = 2m + 1 be odd; in this case the right-hand side is the determinant of an
antisymmetric matrix and therefore is zero; for an odd number of observables the SUP does
not say anything “quantum”.

Therefore, using the QFI and the f ↔ f̃ correspondence, a new uncertainty principle
has been proven, which is also not trivial for an odd number of observables. Moreover,
SUP and DUP have been generalized for an arbitrary g-covariance; see [22–24].

If we set
V( f ) := det{I f

ρ (Aj, Ak)},

one can see that (Theorem 4.4 in [22])

f̃ ≤ g̃ =⇒ V( f ) ≥ V(g).

This implies, for example, that we have the biggest bound in the DUP for
f (x) = (1 + x)/2. Indeed, in this case, f̃ (x) = 2x/(1 + x) ≤ g̃ for any regular g, and
this provides the conclusion.

11. Semplification of Kosaki’s Work

To see how the f − f̃ correspondence sheds light on certain subjects, consider the paper
by Kosaki [25]. In this paper, the author’s aim is to study how the RHS of the DUP (for
n = 2) depends on the function f . The main result by Kosaki is as follows. Remember that

fβ(x) = β(1 − β)
(x − 1)2

(xβ − 1)(x1−β − 1)
0 < β < 1/2,

f̃β(x) =
1
2
(xβ + x1−β)

Let ρ, A1, A2 be fixed and set

F( f ) := det{Covρ(Ai, Aj)} − det{I f
ρ (Ai, Aj)}.

F(β) := F( fβ).

The main result in [25] is Theorem 5, which reads as follows: F(β) is decreasing in
(0,1/2), F(1/2) ≥ 0 so that F(β) ≥ 0. The result was the final output of a rather complicated
tour de force of calculations.

Look how simple the approach is using the f ↔ f̃ correspondence. First of all, it is
straightforward that

f̃ ≤ g̃ =⇒ F( f̃ ) ≤ F(g̃).

For x fixed, the function

β → f̃β(x) =
1
2
(xβ + x1−β)

is decreasing in (0,1/2) so that

β1 ≤ β2 =⇒ f̃β1 ≥ f̃β2 =⇒ F(β1) ≥ F(β2),

and the Kosaki’s conclusion follows. One should read the complicated proof in [25] to fully
appreciate the efficiency and clarity of the f − f̃ correspondence.
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12. Refinements of Heisenberg Uncertainty Relations

In the literature, several quantities appear with the same aim: to measure quantum
uncertainty. We will discuss some examples in this paper. For example, to quantify such
uncertainty Luo introduced the following state-observable quantity,

Uρ(A) :=
√

Vρ(A)2 − (Vρ(A)− Iρ(A))2,

where Vρ(A) := Varρ(A). Furthermore, he was able to prove the following inequality:

Uρ(A) · Uρ(B) ≥ 1
4
|Tr(ρ[A, B])|2.

Clearly, this can be seen as a refinement of the Heisenberg uncertainty principle
because Varρ(A) ≥ Uρ(A).

After some failed attempt to generalize this result (see Kosaki [25], Remarks 3.2 and 3.3),
Yanagi (see [26]) was able to prove a generalization that makes sense for the WYD information.
He introduced the following quantity,

Uβ
ρ (A) :=

√
Vρ(A)2 − (Vρ(A)− Iβ

ρ (A))2,

and was able to prove this inequality:

Uβ
ρ (A) · Uβ

ρ (B) ≥ β(1 − β)|Tr(ρ[A, B])|2.

Note that β(1 − β) = fβ(0) where

fβ(x) = β(1 − β)
(x − 1)2

(xβ − 1)(x1−β − 1)
0 < β < 1/2,

which is the function associated with the WYD information. It is straightforward to propose
an f -depending quantity,

U f
ρ (A) :=

√
Vρ(A)2 − (Vρ(A)− I f

ρ (A))2,

as a measure of quantum uncertainty and try to prove the following inequality:

U f
ρ (A) · U f

ρ (B) ≥ f (0)|Tr(ρ[A, B])|2 f ∈ F r
op.

Unfortunately, this inequality, in general, is false. Yanagi proved that the theorem
holds true under a condition involving f̃ ; namely, we have the following:

Proposition 7. For f ∈ F r
op if

x + 1
2

+ f̃ (x) ≥ 2 f (x) x > 0

then it holds

U f
ρ (A) · U f

ρ (A) ≥ f (0) · Tr(ρ[A, B]) f ∈ F r
op

On the other hand, one can prove the following:

Proposition 8. For any f ∈ F r
op and x > 0

f̃ (x)2 ≤ 1
4
(x + 1)2 − f (0)2(x − 1)2.
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This has the following as a consequence:

Corollary 2.

f (0)2(x − y)2 ≤ 1
4
(x + y)2 − m f̃ (x, y)2

From this, an unconditional inequality follows: if we switch from the constant f (0) to
the constant f (0)2 (see [27]), we obtain the following:

Proposition 9. For f ∈ F r
op and A, B ∈ Mn,sa, it holds that

U f
ρ (A) · U f

ρ (A) ≥ f (0)2 · Tr(ρ[A, B]).

13. State Quantum Uncertainty Based on MASI

Luo proposed a notion of quantum uncertainty depending only on the state ρ. In the
paper [28], starting from the Wigner–Yanase information and from an orthonormal basis
{Hj}, he introduced the quantity

QWY(ρ) := ∑
j

IWY
ρ (Hj)

as a measure of such uncertainty. First, Luo proved that QWY(ρ) is basis independent, and
after that

QWY(ρ) = ∑
j<k

(√
λj −

√
λk

)2
,

where {λj} is the spectrum of ρ. Applications of the function QWY(ρ) also appear in
paper [29].

If we remember that the WY information is the QFI associated with the functions

fWY(x) :=
(

1 +
√

x
2

)2

, f̃WY =
√

x,

we obtain

QWY(ρ) = 2 ∑
j<k

[
λj + λk

2
−

√
λjλk

]
= 2 ∑

j<k

[
ma(λj, λk)− m f̃WY

(λj, λk)
]
.

The above considerations lead naturally to the following questions:
(i) For a regular f ∈ Fr

op, does the definition

Q f (ρ) := ∑
j

I f
ρ (Hj)

produce a basis-independent function of the state ρ?
(ii) Imagine that we obtain a positive answer for (i). We may also ask if

Q f (ρ) = 2 ∑
j<k

[
ma(λj, λk)− m f̃ (λj, λk)

]
.

These questions both received a positive answer from Cai in their paper [30]. Once
again, the f̃ function shows up when one has to look at a general scheme for Quantum
Fisher Information.
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14. The Average Coherence of A Quantum State

In a recent paper [31], Fan, Li, and Luo attempted to study quantum coherence (an
important feature of a quantum system) by eliminating the influence of a reference basis.
They introduced the average quantum coherence using three procedures: (1) average
over all orthonormal basis; (2) average over all elements of operator orthonormal basis;
(3) average over a complete family of MUBs (Mutually Unbiased Bases). The result of
the paper was that these three different procedures produce the same quantity. The basic
ingredient of the proof is the f − f̃ correspondence.

Indeed, if E is a quantum channel and {Ej} are the Kraus operators of E, the authors
define a channel-depending coherence as

C f (ρ,E) := ∑
j

I f
ρ (Ej).

In the first case, they consider the channel as induced by a von Neumann measurement
or equivalently by an orthonormal basis. Averaging on this reference basis is equivalent to
integrating over the unitary orbit of a fixed basis, which amounts to using the normalized
Haar measure over the unitary group, U, of the system Hilbert space. They set

CU
f (ρ) =

∫
U

C f (ρ|UΠU†)dU,

where UΠU† = {U|i⟩⟨i|U† : i = 1, 2, ..., d}. In the second case, they defined

Cob
f (ρ) =

1
d + 1

d2

∑
α=1

I f
ρ (Xα),

where {Xα : α = 1, 2, ..., d2} is a family of d2 operators that constitute an operator orthonor-
mal basis for L(H), the space of all bounded linear operators on H. This can be proven to
be independent of the chosen basis.

In the third case, they define the Cmub
f (ρ) coherence averaging on MUBs, which

surely exist if d is a power of a prime number.
Finally, they proved the following result:

Theorem 6. For any state ρ of any prime power dimensional system and for any regular operator
monotone function f , one has that

CU
f (ρ) = Cob

f (ρ) = Cmub
f (ρ) =

d − Tr[m f̃ (Lρ, Rρ)]

d + 1
.

Note that if λi are the eigenvalues of the state ρ, then Tr[m f̃ (Lρ, Rρ)] = ∑ij m f̃ (λi, λj).

15. Conclusions

The notion of means has its roots deeply situated in the history of Western mathematics;
the Greeks themselves knew eleven different types of means. Still, the subject is currently
undergoing strong developments. As an example, starting from the work of Rao [32,33]
and Prakasa–Rao [34,35], the Jensen inequality for numerical and operator means has been
proven, and more generalizations seem to be on their way [4,36,37].

The f ↔ f̃ correspondence is indeed a correspondence between means. From the
work by Petz, we know that two of the basic objects of Quantum Probability and Quantum
Statistics, namely Quantum Covariance and Quantum Fisher Information, are indeed
necessarily built on the notion of operator mean, and this explains why we find the
manifold of different applications of the f ↔ f̃ correspondence described in this paper.

It is rational to expect that this is not the end of the story and that many other applica-
tions will appear in the coming years.
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At the moment, the most promising area is that of the extension of the Petz–Kubo–
Ando theorem for states that are neither faithful nor pure. We expect this could be per-
formed using the formula

f (0)
2

· ⟨i[ρ, A], i[ρ, B]⟩ρ, f = Covρ(A, B)− Cov f̃
ρ(A, B) (21)

for regular f . The right-hand side makes sense for any state and, on the other hand, by a
continuity-approximation argument the formula is, somehow, forced to be unique; indeed,
we can approximate any state by faithful states. A fully satisfying theorem would certainly
deduce the scalar product

Covρ(A, B)− Cov f̃
ρ(A, B) (22)

from first principles, as in the Petz proof of the PKA theorem. At the moment, a similar
theorem has not yet been proven.
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