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Abstract: In this work, we lay the foundations for computing the behavior of a quantum heat engine
whose working medium consists of an ensemble of non-harmonic quantum oscillators. In order to
enable this analysis, we develop a method based on the Schrödinger picture. We investigate different
possible choices on the basis of expanding the density operator, as it is crucial to select a basis that
will expedite the numerical integration of the time-evolution equation without compromising the
accuracy of the computed results. For this purpose, we developed an estimation technique that
allows us to quantify the error that is unavoidably introduced when time-evolving the density matrix
expansion over a finite-dimensional basis. Using this and other ways of evaluating a specific choice of
basis, we arrive at the conclusion that the basis of eigenstates of a harmonic Hamiltonian leads to the
best computational performance. Additionally, we present a method to quantify and reduce the error
that is introduced when extracting relevant physical information about the ensemble of oscillators.
The techniques presented here are specific to quantum heat cycles; the coexistence within a cycle
of time-dependent Hamiltonian and coupling with a thermal reservoir are particularly complex to
handle for the non-harmonic case. The present investigation is paving the way for numerical analysis
of non-harmonic quantum heat machines.

Keywords: Otto cycle; quantum engine; quartic oscillator; density matrix; Schrödinger picture

1. Introduction

We discuss the computational methods that we have developed for the simulation
of the behavior of a quantum heat engine whose working fluid is an ensemble of quartic
oscillators. The type of quantum systems composing the ensemble that acts as the working
medium is one of the distinguishing aspects between the many different works published
within this area. Various possibilities have been investigated, such as ensembles of pho-
tons [1], of individual spins [2], quadrupolar nuclear spins [3], fermions bound to a linear
chain with N sites [4], or oscillators [5].

The study of decoherence, dephasing, and dissipation phenomena requires simulation of
the time evolution of the state of a statistical ensemble of quantum systems. The state of the
ensemble can be represented through the use of the density operator formalism. Evolution in
the presence of dissipation is represented by a non-unitary equation of motion and therefore
cannot be reduced to the evolution of several independent single-particle wave functions
without including the dissipation mechanism in some way, as is conducted in, e.g., the
quantum jump formalism [6]. The numerical integration of the evolution equation for the
density matrix is not problematic for an ensemble of finite-dimensional systems, such as an
ensemble of pairs of interacting two-level spin-systems, extensively studied by Kosloff and
Feldmann [7–10] and also demonstrated experimentally [11]. When the dimension of the
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Hilbert space of the system is infinite, this procedure is not straightforward since it is necessary
to reduce the dimensionality, and an additional source of approximation is thus introduced.

However, in some particular cases, the analytical properties of the governing equations
lead to canonical invariance. When this condition is verified, the state of the ensemble of systems
can be represented by a finite number of parameters. This property significantly reduces
the computational cost of the simulations, since it is possible to avoid the integration of the
time-evolution equation for the matrix expansion of the full density operator. The harmonic
oscillator [12–15] is the prototypical example of an infinite-dimensional system exhibiting
canonical invariance. Many studies on this topic [16–19] adopt the Heisenberg formalism,
where the state of the ensemble is represented by the expectation values of a small set of
appropriately chosen operators using the dynamical symmetry group of the problem.

In this work, we address the problem of simulating the dissipative dynamics of an
ensemble of non-harmonic oscillators. As a model for non-harmonicity, we choose a potential
that includes not only the usual quadratic term but also a small quartic term. This term breaks
the symmetry properties of the harmonic case, thus negating canonical invariance. For this
reason, it is necessary to analyze the system in the Schrödinger picture, i.e., to compute the
evolution of the density matrix. Naturally, since the dimension of the underlying Hilbert
space is infinite, it is also necessary to perform some reduction in order to obtain a finite set of
numerically integrable equations.

We put particular effort into the selection of a computationally efficient basis on which
we expand the operators. The work is inspired by previous works on thermodynamic
cycles of quantum systems out of equilibrium, especially the studies by Rezek et al., such
as [16–18]. For this reason, we also have to consider the problem of how to determine the
limit cycle for the particular choice of parameters. Finally, we employ different methods
in order to verify whether the result produced by a simulation is reliable and satisfies the
required physical properties.

The algorithm that we constructed for simulating the quartic heat engine is sufficiently
efficient and accurate to be used for the thermodynamic study of this system. The purpose
of the thermodynamic analysis may vary widely. Many previous works set themselves
in the area of finite-time thermodynamics and adopt an optimization perspective. When
a refrigeration cycle is chosen, the objective could be the optimization of the cooling
power [7,20] or the refrigeration toward zero temperature [17]. For an engine-like cycle,
the objective is often the optimization of the power output [10,16]. In the latter reference in
particular, it is investigated how the dephasing phenomenon can be exploited to suppress
quantum friction and increase the power output. We choose an engine-like cycle and
focus on the optimization of the power output. We will report our results from this
thermodynamic analysis in an upcoming paper. Here, we focus on the numerical techniques
that can guarantee the reliability of our conclusions, and whereas the non-unitary evolution
of ensembles of non-harmonic quantum oscillators has been investigated before [21–24],
here we analyze the case of an ensemble undergoing an Otto thermodynamic cycle. The
computational and error-estimation techniques discussed in the present are specific to
the analysis of quantum heat cycles, due to the co-existence of dissipative dynamics and
time-dependent Hamiltonian within the same cycle. As will be discussed in detail, this
situation involves specific challenges and nuances that are addressed in the present work.

We believe that the methods explored in the present work may be used for the study
of a variety of systems with appropriate modifications since they do not rely on special
analytical properties of the chosen system.

2. System
2.1. Notation

In this paper, we employ the bra-ket notation, i.e., elements of the Hilbert space are
denoted by kets, as in |n⟩, and elements of the dual space by bras, as in ⟨n|. We denote
linear operators with the ˆ symbol, as in X̂. The expectation value of an operator X̂ is
denoted by ⟨X̂⟩ or simply by X. Super-operators, i.e., linear transformations acting on the
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vector space of operators, are denoted with the calligraphic font, as in L. If {|n⟩}n is a basis,
⟨n|X̂|m⟩ denotes one entry of the matrix expansion of X̂ over the basis. The trace of an
operator X̂ is denoted by Trace

[
X̂
]
:

Trace
[
X̂
]
= ∑

n
⟨n|X̂|n⟩ (1)

2.2. Hamiltonian

Each of the quantum systems that constitute the working medium of the engine is
governed by the Hamiltonian

Ĥα =
1

2m
P̂2 +

1
2

mω2
(

Q̂2 + αQ̂4
)

(2)

where Q̂ denotes the position operator, P̂ the momentum operator, ω the frequency of the
oscillator, m its mass, and α the strength of the quartic term. The cycle of operation of
the engine is composed of two adiabatic and two isochoric processes and is the quantum
analog of the classical Otto cycle, and whereas m and α are assumed to remain constant
throughout the cycle, ω is time dependent during the adiabatic processes.

2.3. Adiabatic Evolution

Because of the variation in the scalar parameter ω, the Hamiltonian is explicitly time
dependent during the adiabatic process, and therefore the energy ⟨H⟩ of the system is not
constant. The energy variation is interpreted as work exchanged between the working
medium and the surroundings. It is important to stress that for a finite-time process, the
quantum adiabatic theorem predicts that not only the eigen energies of the Hamiltonian
will be time dependant, but also the probabilities of occupation of the energy levels. In
the context of the quantum adiabatic theorem, the term “adiabatic” means that the time
evolution is quasistatic, i.e., the Hamiltonian is varied sufficiently slowly as not to alter the
probability distribution among the energy levels. Elsewhere in the manuscript, we use the
term “adiabatic evolution” with the conventional meaning adopted in thermodynamics,
i.e., a process during which the system is thermally insulated. When the evolution is not
quasistatic, there is a contribution to the energy exchange between system and surrounding
that is due to the variation in the probability distribution among the energy levels. This
energy exchange term is interpreted as quantum friction [9,10].

The parameter ω varies from an initial value to a final value in a specified time. A time
law for its time dependence, a driving protocol, has to be selected among all the possible
choices of ω(t). Three possibilities are frequently considered in the literature: constant rate
of variation ω̇, constant relative rate of variation λ = ω̇/ω (also known as the nonadiabatic
parameter [16]), and constant dimensionless adiabatic parameter [17] µ = ω̇/ω2. The particular
choice of the time dependence of ω is important when analytical methods are employed for
the solution of the relevant equations. In the harmonic case, i.e., α = 0, the choice for which
µ is time-independent leads to an analytically integrable set of equations; the details can be
found in [17]. In the present study, however, we will focus on numerical techniques and
therefore the particular choice of driving protocol does not affect the mathematical treatment
of the problem. We decided to follow the choice of the seminal work of Rezek [16] and select
the time law for which λ is constant such that ω(t) = exp(λt). It is important to stress that all
the methods and results presented in this paper would be completely equivalent if a different
driving protocol had been chosen.

The nonadiabatic parameter is not dependent on the mass m of the oscillator and it
completely characterizes the dynamics during the adiabatic process. The two opposite
limits, a quasi-static and a sudden process, are associated, respectively, with the limits
λ → 0+ and λ → +∞.
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The state of the system is represented by the density operator ρ̂ which evolves accord-
ing to the analog of the Schrödinger equation in the density operator formalism, called the
Liouville-von Neumann equation,

d
dt

ρ̂(t) = − i
h̄
[
Ĥ(t), ρ̂(t)

]
= LH(ρ̂) (3)

The symbol LH denotes the unitary Liouville super-operator [6].

2.4. Isochoric Evolution

During the isochoric processes, the Hamiltonian operator does not explicitly depend
on time. However, the energy ⟨H⟩ of the ensemble is not constant. The energy variation is
caused by the interaction of the working fluid with the thermal reservoirs and is included
as an additional non-unitary term in the Liouville-von Neumann equation

d
dt

ρ̂(t) = LH(ρ̂) + LD(ρ̂) (4)

Here, the symbol LD denotes the Lindblad dissipative super-operator [6,25], defined as:

LD(ρ̂) = ∑
σ=↑↓

kσ

(
Â†

σ ρ̂(t)Âσ −
1
2

{
Â†

σ Âσ, ρ̂(t)
})

(5)

Equation (5) is also referred to as the Lindblad equation. The two different terms, labeled
by the index σ, are associated with two different transition channels which correspond
to the two Lindblad operators, Â↑ and Â↓, and their transition rates k↑ and k↓. Since the
energy levels are equally spaced for the harmonic case, it is natural to select as Lindblad
operators the harmonic creation and annihilation operators, given by

Â↓ = â =
1√
2

((√
mω√

h̄

)
Q̂ + i

(
1√

mωh̄

)
P̂
)

(6)

Â↑ = â† =
1√
2

((√
mω√

h̄

)
Q̂ − i

(
1√

mωh̄

)
P̂
)

(7)

This choice automatically guarantees that the detailed balance condition is fulfilled as long

as the ratio between the transition rates respects the property k↑
k↓

= exp(−βh̄ω), where β

is the inverse temperature of the heat reservoir. For the non-harmonic case, the energy
levels are not equally spaced. For this reason, an exact treatment of the dissipation would
require an infinite number of transition channels. Fortunately, previous works [26,27] on
the dissipation with non-harmonic working fluids point out that an approximate treatment
is possible with two transition channels even if the position dependence of the Lindblad
operators is allowed to be a more general function of Q̂, not necessarily linear.

The value of the inverse temperature β of the heat reservoir determines the ratio
between the transition rates. However, it is possible to arbitrarily fix the value of the
difference Γ between them, Γ = k↓ − k↑. The parameter Γ is interpreted as the heat
conductance between the system and the thermal reservoir.

2.5. The Otto Cycle

The different processes combined in the following order give one complete thermody-
namic cycle:

• Hot Isochore—The system, whose frequency is equal to ωH , is coupled to the hot heat
reservoir whose inverse temperature is βH . The heat conductance is equal to ΓH .

• Expansion Adiabat—The frequency of the system changes from ωH to ωC.
• Cold Isochore—The system, whose frequency is equal to ωC, is coupled to the cold heat

reservoir whose inverse temperature is βC. The heat conductance is equal to ΓC.
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• Compression Adiabat—The frequency of the system changes from ωC to ωH .

The durations of the four processes are, respectively, denoted by τH , τHC, τC, and τCH .
The duration of a complete cycle is thus τ = τH + τHC + τC + τCH . For an engine-like cycle,
the following relations need to be satisfied: βC > βH and ωC < ωH .

2.6. Limit Cycle

It is possible to write a formal solution to the evolution equations for the density
operator ρ̂. All the equations involved are of the form d

dt ρ̂ = L(ρ̂) and all the solutions then
can be written as ρ̂(t) = Ut(ρ̂0), where Ut is the correct time evolution super-operator and
ρ̂0 is an arbitrary initial state.

We are interested only in the limit cycle solutions, the solutions for which, at the initial
and final instants of the thermodynamic cycle, the state of the system is represented by the
same density operator. We denote a solution belonging to this category with the symbol
ρ̂∞. We therefore have to impose the additional invariance condition Uτ(ρ̂∞) = ρ̂∞.

Similarly to the procedure described in Ref. [28], the limit cycle could be computed by
solving with respect to ρ̂∞ the linear equation (Uτ −I)ρ̂∞ = 0̂, where I denotes the identity
super-operator, and 0̂ the null operator. Due to the large number of variables required for
the non-harmonic problem, this direct inversion seems to be unfeasible. However, a useful
property may help, namely that in many cases the limit cycle is attractive, i.e., stable. This
property can be expressed by the equation

lim
N→∞

UN
τ (ρ̂0) = ρ̂∞ ; ∀ ρ̂0 (8)

The implication, convenient from a computational point of view, is that a repeated appli-
cation of the full cycle evolution super-operator Uτ will eventually lead to the limit cycle
solution ρ̂∞, regardless of the choice of the initial state ρ̂0.

3. The Evolution Algorithm
3.1. Expansion Equations

In some cases, the most studied being the harmonic case, there exists a useful property
that allows one to represent the state of the system with a finite number of scalar parame-
ters [16]. A finite set of Hermitian operators X̂k has to be found so that the two following
properties are fulfilled:

• The set forms a Lie algebra, i.e., is closed under the application of the commutator
between any pair of operators:

[
iX̂h, iX̂j

]
= i

K

∑
k=1

ΓhjkX̂k, with Γhjk ∈ R ∀ h, j, k (9)

• The algebra is closed under the application of LH and LD. For LH , this requirement
means that it is possible to write the Hamiltonian operator Ĥ as a linear combination
with real coefficients of the operators in the set,

Ĥ =
K

∑
k=1

ckX̂k, with ck ∈ R ∀ k (10)

For LD, the closure requirement leads to additional conditions on the Lindblad opera-
tors Â↓ and Â↑ [16].

When these conditions are met, canonical invariance holds and it is possible to represent
the state of the system with a finite number of parameters for the whole evolution [16].
This representation is different for the Schrödinger and Heisenberg formalisms.

In the Schrödinger formalism, the density operator ρ̂ is time dependent. Because of
canonical invariance, an initial state of the form ρ̂ = 1

Z exp
(
∑k βkX̂k

)
remains in the same
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form for all previous and future instants of the evolution, i.e., ρ̂(t) = 1
Z(t) exp

(
∑k βk(t)X̂k

)
.

The value of the parameters βk will then completely determine the state of the system at
any given moment.

In the Heisenberg formalism, the set of operators is time dependent. Because of canonical
invariance, the equations of motion of the operators forming the Lie algebra assume the
closed form

d
dt

X̂k =
K

∑
j=1

akjX̂j, for k = 1, . . . , K (11)

The expectation values of these operators obey the same Equation (11). It is then
possible to describe the dynamics of the system with the time dependence of the expectation
values ⟨X̂k⟩(t). In this way, it is possible to calculate the time evolution of the energy
together with those observables unavoidably coupled to the Hamiltonian operator.

Since Lie algebras are vector spaces, the choice of a basis of operators, such as the set
{X̂k}, is not unique. It is possible to construct alternative sets by choosing linear combina-
tions of the operators in the original set. For the harmonic case, one possible choice [16] is
the Hamiltonian Ĥ, the Lagrangian L̂, and the correlation operator, D̂ = Q̂P̂ + P̂Q̂. Another
possibility [18] is the set {Q̂2, P̂2, D̂}. In both these cases, the identity operator 1̂ has to be
included when considering the dissipative evolution.

Because of the Q̂4 term present in Equation (2), it is not possible to construct a finite-
dimensional Lie algebra that is closed under the application of LH and LD. In fact, it can
be shown that as long as the position-dependent potential includes terms of power greater
than 2, it is not possible to construct a finite-dimensional Lie algebra which is closed with
respect to LH [29]. Therefore, the conditions for canonical invariance are not satisfied for
the non-harmonic case, and it is thus necessary to consider a general density operator.
For this reason, we decided to expand ρ̂ on a basis, {|n⟩}, and numerically integrate the
resulting coupled equations of motion for all the matrix elements, ⟨n|ρ̂|m⟩, of the expansion

d
dt
⟨n|ρ̂|m⟩ = ⟨n|LH(ρ̂)|m⟩+ ⟨n|LD(ρ̂)|m⟩ (12)

For the calculation, it is necessary to compute also the matrix expansion in the same basis
of all the operators appearing in the unitary and dissipative super-operators, i.e., P̂, Q̂, P̂2,
Q̂2, and Q̂4.

3.2. Choice of Basis

The Hilbert space for the system under consideration is infinite-dimensional. There-
fore, in order to be able to perform numerical computations, it is necessary to reduce the
basis chosen for the expansion to a finite number of elements. The number of elements
in a basis set will be denoted by N. The equation of motion (12) is then reduced to a set
of N× N-coupled differential equations that have been numerically integrated using an
explicit Runge–Kutta (4,5) formula. In fact, this is the algorithm used by the most versatile
numerical solver available in Matlab [30], which is the computing environment we have
been using for the numerical simulations.

The results of the computation will be affected by two sources of error: (1) the numeri-
cal integration of the differential equation involving discretization of the time domain, and
(2) the reduction in the basis to a finite number of elements. The goodness of a particular
choice of basis and of the truncation criterion can be evaluated by comparing the accuracy
of the results with the computational cost required to complete it.

The most important parameter is the number of basis elements. An increase in this
number increases the accuracy but also increases the computational cost. However, among
all the possible choices corresponding to the same number of elements, there are two
important features to look for:

• It is advantageous to choose a basis with some relation to the Hamiltonian of the
system so that the basis elements that are discarded by the truncation are the ones
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corresponding to the higher energies. The energy scale of the system is determined
by the equilibrium energies corresponding to βH and βC. The levels whose energy
is much higher than the hot equilibrium energy have a low-occupancy probability
Pn → 0+ as n → +∞. For this reason, the states corresponding to higher energies
have a lower impact on the accuracy of the simulation.

• Some bases produce matrix expansions of the operators relevant to the evolution
which are mainly composed of empty matrix elements. Such bases carry a smaller
computational cost and should therefore be preferred. In order to take advantage of
this property, the implementation must resort to sparse matrices.

During the work, we compared two main choices of basis: the position basis and the
harmonic basis (i.e., the set of eigenstates of a harmonic oscillator with a given frequency).

The position basis is the set of eigenstates of the position operator Q̂. The correspond-
ing spectrum is continuous and spans the real axis. Therefore, the reduction to N elements
involves both a discretization and a truncation to a finite interval [−X,+X]. The differential
operators (associated with P̂ and P̂2) can be evaluated with a finite difference method and
are represented by matrices whose only non-zero entries lie on the two diagonal bands
above and below the main diagonal. The position-dependent operators are represented by
diagonal matrices. Moreover, for the potential under consideration, there is a strong rela-
tionship between energy and position. States with a lower energy occupy a small portion
of the real axis around the origin. Therefore, as long as X is sufficiently large, the error due
to the truncation is minimal. However, some test simulations suggested that the harmonic
basis may be able to achieve better computational performance. The reason for the superior
performance is probably the absence of discretization error. Since the harmonic basis is
already discrete, the only source of error is due to the truncation. Without the truncation,
the equation of motion expressed by Equation (12) over this infinite-dimensional discrete
basis would be exact.

The harmonic Hamiltonian whose eigenstates are used as basis is given by

ĤB =
1

2m
P̂2 +

1
2

mω2
BQ̂2 (13)

Figure 1 shows the absolute value of the first 40 × 40-element block of the change of basis
matrix between the normalized eigenstates of the Hamiltonian Ĥα and the ones of the
harmonic Hamiltonian ĤB with ωB = ω. The color corresponds to the absolute value of the
matrix element as indicated by the color bar on the right. The three panels correspond to
different values of the quartic parameter α. As is clearly visible in the figure, the harmonic
basis is characterized by a strong correlation with the eigenstates of the quartic Hamiltonian
Ĥα. For a small value of the quartic coefficient α, the change of basis matrix between the
two sets of energy eigenstates is almost diagonal, and therefore the error introduced by the
truncation is small.

Another important property guaranteed by this choice of basis is that all the operators
relevant for the dynamics, i.e., Q̂, P̂, Q̂2, P̂2, Q̂4 and their linear combinations, exhibit a
band structure. To be specific, matrix entries more than 4 elements away from the diagonal
are empty. Therefore, the number of operations for the integration of the evolution will
increase linearly instead of quadratically with the number of basis elements N. Because of
this property, the computational cost of the numerical integration of the equation of motion
will be relatively small.

As an initial density operator, we decided to generate a random matrix initially
populated only in the first M× M-elements block, with M < N. Moreover, the matrix is
built in such a way that the fundamental properties are automatically guaranteed: it has
to be a positive-definite Hermitian matrix with a trace equal to 1. As discussed in the
first bullet point of this section, the last blocks of the density matrix, which correspond to
higher energy levels, have a lower probability of occupation for thermal equilibrium states.
Therefore, it would also be possible to represent with high accuracy the density operator
corresponding to thermal equilibrium states, as long as the temperature is not too high.
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However as explained in Section 2.6, when a stable limit cycle exists it does not depend on
the initial state. Therefore, the choice of the initial state of ρ̂ is irrelevant when the goal is to
analyze the behavior of the system at a steady state.
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Figure 1. The absolute value of the first 40 × 40-element block of the change of basis matrix between
the Hamiltonian Ĥα and the harmonic Hamiltonian ĤB . For these computations, the value of the
frequency ω is set to the value of the basis frequency ωB and is equal to 25. The results are shown
for different values of the coefficient α of the quartic term Q̂4. It is evident that a small value of
α, corresponding to a small difference from the harmonic case, results in a change of basis matrix
of almost diagonal form. Note that since the vector columns of these matrices are normalized, the
maximum possible value of a matrix element is 1.

3.3. Selection of Harmonic Basis Frequency

We need to select the frequency ωB corresponding to the harmonic Hamiltonian
ĤB whose eigenstates are used as the basis. When considering one complete cycle, the
frequency ω appearing in the Hamiltonian Ĥα can assume all values between ωC and
ωH . The values of frequencies outside this interval are not a convenient basis choice,
since the resulting eigenstates form a change of basis matrix that has more non-diagonal
entries than necessary. This would increase the numerical imprecision introduced by the
expansion. However, it is not obvious which frequency ωB ∈ [ωC, ωH ] to choose for the
basis Hamiltonian ĤB . The main options that have been tested are the cold frequency ωC
and the hot frequency ωH themselves, as well as an intermediate frequency, 1

2 (ωC + ωH).
We have developed a method for the estimation of the error introduced by the trunca-

tion when the harmonic basis is used. Let the truncated matrix used in the calculation of
the evolution be N× N. Part of the calculation is actually performed on a larger matrix, say
N′× N′, where N′ = N+∆N. The extra elements of the augmented matrix, i.e., those for which
at least one of the indices is greater than N, are used only to compute an error-estimation
quantity which we denote by ρ̇(err),

ρ̇(err) =
1

2 · ∆N · N+ ∆N · ∆N

N′

∑
n,m: n∨m>N

∣∣∣∣
d
dt
⟨n|ρ̂|m⟩

∣∣∣∣ (14)

where the denominator of the fraction is the number of those extra elements that are
included in the previous summation, i.e., the ones shown as light-gray tiles in Figure 2.
The rationale behind this method relies on the fact that the dynamical equations connect
only elements of the density matrix not too far from each other. Figure 2 shows a schematic
illustration of the density matrix with the initially populated M× M block, the N× N matrix
actually used for the computation, and the augmented N′ × N′ used for error estimation.
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Figure 2. Density operator matrix expansion. The matrix used for the computation is N× N, but
initially it is only populated in the first (low-energy) M× M block (blue), with M < N. The augmented
N′ × N′, with N′ = N+ ∆N, has only been used to calculate the error estimation quantity ρ̇(err) defined
in Equation (14).

Suppose that the density matrix is at the beginning of the calculation populated only
in the first M× M-elements block,

⟨n|ρ̂(t)|m⟩ = 0 for m or n > M (15)

As explained in Section 3.2, all the operators involved in the dynamics, once expanded on
the harmonic basis, exhibit a band structure. For this reason, when the evolution equation
is applied to the density matrix, the resulting matrix will fulfill a similar property,

d
dt
⟨n|ρ̂(t)|m⟩ = 0 for m or n > M+ 4 (16)

The populated block, initially composed of M× M elements, may then grow with the evolution
until it reaches the borders of the N× N matrix. It is only then that the truncation starts to
perturb the evolution. The quantity ρ̇(err) can be interpreted as a rate of population flow
outside the “main" part of the matrix (i.e., the N× N matrix). This quantity allows us to make
some comparisons between the possible choices of the frequency ωB of the harmonic basis.

Figure 3 shows the time dependence of this error rate for different cases. The number
of basis elements used is always the same, i.e., N = 50. The result is pictured after four
cycles of evolution from the initial density matrix. In this way it is possible to see what
happens when the density matrix is sufficiently near to the limit cycle regime. On the left
panel, the Hamiltonian is harmonic, on the right panel it contains a small non-harmonic
component, α = 0.05. The three different choices of harmonic basis, i.e., ωB equal to the
hot, cold, or intermediate frequency, are plotted in different colors.

The qualitative behavior is similar between the harmonic and non-harmonic cases.
The error tends to be larger for the non-harmonic case because of the worst correspondence
between the eigenstates of the system Hamiltonian Ĥα and those of the basis Hamiltonian
ĤB , as shown by Figure 1. The value of ρ̇(err) is increasing during the hot isochore and
decreasing during the cold isochore. This is related to the fact that the heating process
increases the energy of the system, which thus requires a larger number of basis elements
to be represented correctly. The cooling process has the opposite effect.
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Figure 3. Comparison of different choices of frequency ωB of the harmonic basis. The amount of
error introduced by the truncation is evaluated with the quantity ρ̇(err). This value can be interpreted
as a rate of population flow outside the represented part of the density matrix. It is interesting to
notice how the heating (cooling) process increases (decreases) this error rate because a larger (smaller)
number of basis elements is required. It is also important to observe that different bases perform
better in different parts of the cycle, i.e., whenever the (time-dependent) Hamiltonian frequency is
closer to the basis frequency. The right panel shows the non-harmonic case. ρ̇(err) is slightly larger in
this case, but the trend of the curves is the same.

Each choice of the basis performs better when the frequency of the Hamiltonian is
the same as the one of the basis: the hot basis performs better during the hot isochore, the
cold basis during the cold isochore, and the intermediate basis in the middle points of the
adiabatic strokes, when the frequency ω(t) is closer to the intermediate frequency ωB .

This observation suggests that the best computational strategy could be to use each of
the hot and cold bases on the part of the cycle for which its performance is better and to
make a change of basis for the density matrix at two different moments of the cycle: once
from the hot basis to the cold one and once from the cold to the hot basis. We tested this
approach with a change of basis after each of the adiabatic processes.

The different choices of basis can be compared by analyzing the results and comparing
them to a reference solution. For this purpose, we consider the harmonic case. In fact,
as explained in Section 3.1, for the harmonic oscillator it is possible to write the evolu-
tion equation for the expectation values of a finite set of operators X̂k in a closed form,
d
dt ⟨X̂k⟩ = ∑j akj⟨X̂j⟩. This set of coupled equations can always be integrated numerically
and the result is very accurate due to the small number of variables involved. The same
expectation values can be computed starting from the density operator expansion on the
basis sets mentioned above,

⟨X̂k⟩ = Trace
[
ρ̂X̂k

]
=

N

∑
nm

⟨n|ρ̂|m⟩⟨m|X̂k|n⟩ (17)

The difference between the results obtained with these two methods will be due mainly
to the error introduced by the evolution of the expansion of ρ̂ on a truncated basis.
The error decreases for increasing number N of elements in the basis set. Following
the works of Rezek [16,18] on the harmonic quantum engine, we choose the operators
{X̂k} = {Ĥ, L̂, D̂, 1̂} as basis for the Lie algebra. From the expectation values of these
operators, we can compute the expectation values of Q̂2 and P̂2. The expectation val-
ues computed from the density matrix are denoted by the ρ subscript. As a quantitative
measure of the error ∆, the following expression is used

∆ =
1
2

(
|Q2

ρ − Q2|
|Q2| +

|P2
ρ − P2|
|P2|

)
. (18)
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Note that, because of the denominators appearing in the definition, ∆ can be interpreted
as a relative error and its value has to be compared to unity. The value of ∆ is calculated
separately for each of the four strokes of the cycle and then averaged to obtain ∆.

Figure 4 shows the plot of the value of ∆ as a function of the number N of basis elements
used. The different choices of basis are represented with different colors. The method that
involves a change of basis between the hot and the cold frequencies is labeled as “Both
bases”. The results corresponding to the position basis are not shown in the figure. The
performance of this basis is significantly worse than that of the other choices. Moreover,
apart from having to choose a value of N, the position basis involves the additional difficulty
of selecting the size of the interval [−X,+X] spanned by the grid points. It must be stressed
that this plot can be used only as an indication and does not constitute a precise limit for
the error since the result is dependent on the particular choice of the different parameters
used for the computation.

All the bases give an accurate result if the number of basis elements is sufficiently large.
The intermediate frequency basis seems to perform better than the others and therefore has
been used extensively. The performance of the “Both Bases” method is superior during
all the four processes of the cycle individually. However, the additional error introduced
during the basis change is greater than the advantage, making its performance overall
worse than that of the intermediate basis. Section 4 discusses in more detail the error
introduced by the change of basis.

The number N of basis elements which is required to reach a given accuracy depends on
the physical parameters of the model such as frequencies and temperatures. The following
criterion can be used to determine the value of N: a threshold value ∆max is decided for
the relative error ∆ and the smallest value of N for which the error is smaller than the
threshold value ∆ < ∆max is chosen. For the parameters used in the simulation of Figure 4,
N = 60 elements is enough to stay below a maximum relative error of 10−2 which is a good
compromise between precision and computational speed.

25 30 35 40 45 50 55 60
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Number of basis elements

R
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at
iv
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Relative error vs number of basis elements

Hot basis
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Both bases

Figure 4. The relative error ∆ as a function of the number of basis elements N can be used to compare
the performances of the different choices. The different choices of basis are represented with different
colors. All the bases give an accurate result if the number of basis elements, N, is sufficiently large.
However, the one that shows the best performance is the intermediate frequency basis.

3.4. Properties of the Density Matrix

It must be checked that the fundamental properties of the density operator are satisfied.
For each of the three fundamental properties, a quantity to measure the violation of that
property has been defined. The values of these control quantities can be evaluated from
the expansion of the operator on a basis. Clearly, since we are numerically integrating the
equations of motion and we are truncating our basis to a finite number of elements, we
expect numerical approximations to be present in our results. Despite the fact that the
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governing equations formally guarantee that the fundamental properties of the density
operator are preserved throughout the evolution, in reality, we expect to observe a small
violation. As long as this is small, it will not affect the reliability of the results.

• The trace of ρ̂ is equal to one: Trace[ρ̂] = 1. A violation of this property occurs when
the number of basis elements is too small to represent the evolving density operator.

• ρ̂ is a Hermitian operator: ρ̂ = ρ̂†. The difference between the density matrix and its
Hermitian conjugate has been checked to be almost zero for all the tests.

• ρ̂ is a positive-semidefinite operator and thus all the eigenvalues Pn are non-negative:
Pn ≥ 0 ∀ n. The fraction of negative eigenvalues is a measure of the violation of
this property. The initial randomly generated density matrix fulfills this property (as
well as all the others). However, we noticed that in the first steps of the simulation, it
may depart slightly from the correct value. The evolution will restore permanently
the correct values after a few more steps of the computation. The same phenomenon
is observed immediately after a change of basis.

3.5. Limit Cycle: Convergence and Uniqueness

As discussed in Ref. [31], a system whose underlying Hilbert space is infinite-dimensional
is not guaranteed to ever converge to a limit cycle. For some choices of parameters, the
internal energy of the ensemble increases cycle after cycle instead of reaching a periodic
behavior. The criterion used to establish whether the system has converged to a limit
cycle is based on the element-by-element difference between the density matrix at the
initial instant of a cycle and at the final instant, denoted, respectively, with the (i) and ( f )

superscripts. It is quantified as ∆(ρ) defined as

∆(ρ) =

√
∑N

nm |⟨n|ρ̂( f )|m⟩ − ⟨n|ρ̂(i)|m⟩|2
√

∑N
nm |⟨n|ρ̂(i)|m⟩|2

(19)

If the limit cycle is attractive, ∆(ρ) is expected to converge to 0 with increasing number
of cycles. Because of the denominator, ∆(ρ) is a relative difference. The difference ∆(ρ) is
computed cycle after cycle until it is lower than a certain threshold. This could be, e.g.,
10−2 or 10−3 depending on the required precision. When ∆(ρ) reaches the prescribed
threshold, the evolution is carried on for one more cycle and all the necessary quantities
can be extracted from the value of the density matrix at every instant of this last cycle. All
the observables computed in this way exhibit a periodic behavior.

Some tests have been conducted in order to check the uniqueness of the limit cycle. The
same set of parameters, including the set of allocated times on the four strokes of the cycle,
is used to compute the evolution of S different randomly generated initial density matrices
⟨n|ρ̂(s)|m⟩ with s = 1 . . . S. In order to verify that the different initial states converge to
the same common limit cycle, a measure of the dispersion between the different density
matrices is necessary. The quantity σ(ρ) has been evaluated for this purpose,

σ(ρ) =
∑S

s ∑N
nm |⟨n|ρ̂(s)|m⟩ − ⟨n|ρ̂|m⟩|

∑N
nm |⟨n|ρ̂|m⟩|

where ⟨n|ρ̂|m⟩ = 1
S

S

∑
s=1

⟨n|ρ̂(s)|m⟩ (20)

Because of the denominator, σ, like ∆, can be interpreted as a relative dispersion. If the
different initial states converge to a common limit, the value of σ(ρ) is expected to converge
to 0. Even though for some choices of parameters a limit cycle does not exist, we never
observed the occurrence of multiple distinct limit cycles for a given set of parameters,
i.e., violating the uniqueness property. The relative dispersion σ(ρ) converged to 0 in all
cases where a limit cycle has been found.
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3.6. Non-Linear Coupling with the Heat Bath

The energy levels of the harmonic oscillator are equally spaced by ∆ϵ = h̄ω. For
this reason, it is possible to represent all transitions between adjacent energy levels with
just two operators, the harmonic creation â† and annihilation â operators. The situation
for a more general system, such as the oscillator with a quartic term, is very different.
The infinitely many energy levels are not equally spaced and an exact treatment of all the
transitions between adjacent energy levels would require an infinite number of pairs of
ladder operators, â ↓n+1

n and â ↑n+1
n . Analogously, it would also be possible to include

transition channels between non-adjacent energy levels.
Some authors, e.g., [32,33], make use of the two ladder operators from the harmonic

case also for weak anharmonicity. Since the harmonic ladder operators depend linearly
on Q̂, this is called linear coupling of the system with the heat bath. In different papers,
such as [26,27], it is suggested that when the potential is not harmonic, a single pair of
approximate ladder operators, âϕ and â†

ϕ, may be constructed by letting the coupling
contain a more general, non-linear, function ϕ of Q̂:

â =
1√
2

((√
mω√

h̄

)
Q̂ + i

(
1√

mωh̄

)
P̂
)

→ âϕ =
1√
2

((√
mω√

h̄

)
ϕ(Q̂) + i

(
1√

mωh̄

)
P̂
)

(21)

The function ϕ can be computed by requiring that the Hamiltonian Ĥ satisfy a relation anal-
ogous to the one between the harmonic Hamiltonian and the harmonic ladder operators,

Ĥ = ∆ϵ
(

â†
ϕ âϕ

)
+ ϵ0 (22)

where ϵ0 is the ground state energy and ∆ϵ is a suitable factor with the dimension of energy.
As can be seen in [26], in order to compute the approximate ladder operators, it is

first necessary to compute the ground state wave function. Let ψn(x) = ⟨x|n⟩ denote
the position expansion of the nth eigenstate of the Hamiltonian. Since the wave functions
cannot be derived analytically for the quartic case, ψ0(x) must be computed by numerical
means. Once ψ0(x) is known, the generalized coupling function ϕ is defined by

ϕ(x) = − 1
ωm

1
ψ0(x)

d
dx

ψ0(x) (23)

Now, it would be straightforward to build the matrix expansion of âϕ and â†
ϕ on the

(discretized) position basis since the operator ϕ(Q̂) would be diagonal and its diagonal
matrix entries, ϕk = ϕ(xk), could be computed numerically. However, the harmonic
basis has been found to perform better, and building the approximate ladder operators
on this basis is more effectively conducted with a different approach. Therefore, we have
decided to extract the coefficients, cn, of the polynomial expansion of ϕ(x) = ∑

p
n=1 cn xn,

up to the term cp xp, and use these coefficients to build the approximate operators in the
harmonic basis, starting with the matrix expansion of the operators {Q̂, Q̂2, . . . , Q̂p} on the
harmonic basis.

Since the only new term in the Hamiltonian is the quartic term Q̂4, a natural choice for
the maximum polynomial degree p is p = 3, and in fact, the coefficients of degree greater
than 3 turned out to be approximately null for all the numerical simulations considered.
The two following constraints are known in advance, c0 = 0 and c1 = 1, since the coupling
should restore the harmonic result near the origin. Moreover, the ground state wave
function for the Hamiltonian of Equation (2) is an even function of x. The second-order
coefficient c2 and all the other even coefficients can thus be shown to be zero from parity
arguments, and c2 has been numerically verified to always be almost 0. In conclusion, the
only effect of the small quartic term is to introduce a small third-order term c3.

Replacing the harmonic ladder operators â and â† with the approximate generalized
ladder operators âϕ and â†

ϕ does not result in a significant difference in the results of the
evolution when the quartic parameter α is small. On the other hand, the computational cost
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required to complete a simulation is significantly increased because of the larger number
of non-null matrix elements in the expansion of the Lindblad operators. In conclusion,
depending on the value of α, the use of the harmonic ladder operators may be a sufficiently
realistic approximation. The dependence of the coefficient c3 on the parameter α could
provide an assessment on the validity of this assumption. It should be stressed that the
non-harmonic αQ̂4 term present in Ĥ still affects the evolution of ρ̂ due to the unitary
term LH .

4. Computation of Physical Observables

From the matrix expansion of the density operator on a basis {|n⟩}, it is possible to
extract any kind of physical information. The computation of the expectation value of
an operator from Equation (17) is straightforward: once the operator matrix expansion is
known, all that is required is a matrix multiplication and the computation of the trace.

On the other hand, the calculation of the probability distribution over the set of
eigenvalues of a given operator X̂ requires expanding ρ̂ over the set of eigenvectors of X̂.
This operation is performed by the corresponding change of basis matrix T, the matrix
whose columns are the normalized eigenvectors of X̂ expanded over the original basis
{|n⟩}. The eigenvectors can be computed using different algorithms. We decided to use a
routine based on the Schur decomposition algorithm [34].

It is important to remember that the algorithm is applied to a truncated expansion
of the operator X̂ and therefore the result will also be affected by boundary effects. The
accuracy of the result thus depends on the number N of basis elements. Naturally, it is
expected that the matrix entries experiencing the largest truncation error are in the vicinity
of the truncation border.

In order to quantify this error, we will consider the change of basis matrix between
two harmonic bases of eigenstates of Ĥ and ĤB with frequencies given by ω and ωB ,
respectively. The goal is to estimate how many basis elements are required to obtain an
accurate result for the first 40 × 40-element block of the change of basis matrix T. For this
purpose, we performed the following test: the Hamiltonian Ĥ, expanded with a different
number of basis elements (i.e., N = 40, 60, 80), is passed as input to the diagonalization
routine which computes T. The result is then truncated to the first M× M-element block with
M = 40. As long as N is sufficiently large, these computations should give the same result.

Figure 5 shows the absolute value of the entries on the first 40 × 40-element block of
the change of basis matrix T between two harmonic Hamiltonians with frequencies ω = 25
and ωB = 15. The three panels correspond to a different number of elements of the input
matrix, i.e., N = 40, 60, 80, respectively. One observes that the case N = 40 gives a result that
is clearly different from the other two in the lower right corner (the boundary region) and is
therefore incorrect. The computation with 60 elements gives a result that seems completely
identical to the one with 80 elements. In this case, 60 basis elements are enough to obtain
an accurate result for the first 40 elements.

This example shows that whenever the Hamiltonian operator expansion is truncated,
the high-energy eigenstates are the ones affected by the largest error. In order to obtain the
correct M× M matrix of change of basis with this method, it is necessary to initially perform
the computation using a larger number of elements N > M, and subsequently truncate the
result to M elements.

Using this technique, it is possible to compute the probability distribution over the
set of eigenvalues of an arbitrary operator as well as the eigenvalues themselves. For
example, the computation of the probability distribution {Pn} over the set of eigenvalues
{ϵn} of the time-dependent Hamiltonian Ĥα allows us to separate the frictional and external
contributions to the total power Ptot exchanged during an adiabatic process as

Ptot(t) =
d
dt ∑

n
Pn(t)ϵn(t) = ∑

n
Ṗn(t)ϵn(t)

︸ ︷︷ ︸
Frictional

+∑
n

Pn(t)ϵ̇n(t)
︸ ︷︷ ︸

External

(24)



Entropy 2024, 26, 359 15 of 18

We notice that the frictional contribution to the power has exactly the same expression as
the heat exchange rate. In fact, during the isochoric evolution, the energy levels are constant
and the first term on the right-hand side of Equation (24) is the only contribution to the
energy exchange. It is interpreted as heat transfer. For further details on this distinction
see [35] or [19].
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Figure 5. The absolute value of the first 40 × 40-element block of the matrix of change of basis
between two harmonic Hamiltonians with different frequencies. The basis is the set of eigenvectors
of the Hamiltonian ĤB with frequency ωB = 15. The frequency ω of the Hamiltonian Ĥ is equal
to 25. The expansion of Ĥ over an N-elements basis has been passed as input to a diagonalization
routine. The three panels correspond to N = 40, 60, 80, respectively. The result for the case N = 40,
i.e., the case for which the whole matrix is shown, appears at a glance to be different from the other
two cases, meaning that a number of basis elements larger than 40 is required.

The probability distribution {Pn} is also necessary for the computation of the energy
entropy, SĤ = −∑n Pn log(Pn). The same can be conducted for the entropy related to any
operator. It is interesting to notice that the computation of the energy entropy allows us to
deduce also the value of the internal temperature βint that can be generalized to states that
are not in thermal equilibrium according to the expression

βint =

(
∂SĤ
∂⟨Ĥ⟩

)
. (25)

This expression is relevant during an isochoric process for which the Hamiltonian does not
depend explicitly on the time.

Finally, the diagonalization of the density operator itself can be useful as well. Denot-
ing by {pn} the set of eigenvalues of ρ̂ and by |pn⟩ the corresponding eigenvectors, we can
express ρ̂ in diagonal form,

ρ̂ = ∑
n

pn|pn⟩⟨pn| (26)

From the eigenvalues, it is possible to check whether the positivity property is preserved through
the evolution and also to compute the von Neumann entropy SvN according to the formula

SvN[ρ̂] = −Trace[ρ̂ log(ρ̂)] = −∑
k

pk log(pk) (27)

where the last equality derives from the general property

log

(
∑
n

pn|pn⟩⟨pn|
)

= ∑
n

log(pn)|pn⟩⟨pn| (28)

which is verified because the operator ∑n pn|pn⟩⟨pn| is in its diagonal form. For the actual
computation of the von Neumann entropy, we had to be prepared that a slight violation
of the positivity condition may occur because of the numerical approximations. Some of
the eigenvalues of the density matrix may become slightly negative during the evolution.
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Hence, we discarded these unphysical eigenvalues before applying Equation (27). All the
tests performed to check the reliability of these methods produced results that are consistent
with the physical predictions. For example, the comparison between the evolution of SvN
and the evolution of SĤ showed all the expected physical properties.In fact, SvN ≤ SĤ ∀t,
whereas the difference between SvN and SĤ decreases during the isochoric processes, SvN
decreases during the cold isochore, increases during the hot isochore, and is constant during
the adiabatic process. Additional details can be found in Ref. [16].

5. Conclusions

We approached the problem of how to generalize the study of a quantum heat engine to
an ensemble of systems subject to a non-harmonic potential. As a model for non-harmonicity,
we considered a Hamiltonian that includes a small quartic term. When a quartic term is
introduced, the analytical methods usually employed for the harmonic case are no longer
applicable and the problem becomes considerably more difficult from a computational
point of view.

For this reason, we developed a different and more general approach. We chose to
expand the density operator of the ensemble on an appropriate basis and numerically
integrate the resulting equations of motion for its matrix entries. Since the dimension of
the Hilbert space under consideration is infinite, the basis must be truncated to a finite
number of basis elements. The performance of the method chosen must be evaluated by
considering both the precision of the results and the computational cost. The choice of basis
is critical for both these factors. We analyzed different choices of basis and characterized
their computational performance.

For this purpose, we quantified the error associated with the expansion of the density
matrix over a truncated basis, we compared the results of our approach for the special
case of a harmonic potential with those obtained with the Heisenberg method, and we
developed a method to avoid truncation errors when calculating probability distributions
over the spectra of physical observables. The density matrix evolution approach has thus
proven to be able to produce accurate results and can be used to extract the value of any
desired physical quantity since the density matrix carries all the available information
about the ensemble. Moreover, it is a very general method and it can also be employed for
analyzing systems governed by potentials having a different (i.e., non-quartic) position
dependence. For this purpose, the choice of basis has to be carefully studied for the
specific potential under consideration in order to obtain the best balance between accuracy
and computational cost. In fact, whereas the position basis could seem like the most
obvious choice, the error introduced by the discretization creates additional computational
challenges that can be avoided by selecting a basis that is already discrete. By choosing
the basis of eigenstates of a harmonic Hamiltonian, we are able to easily construct all the
operators required to perform the time evolution. As we demonstrate in the present work,
rather than using the frequency corresponding to the hot or the cold branches, the most
computationally efficient choice is to use an intermediate frequency.

The main limitation of the method is that the integration of the equations is computa-
tionally demanding because of the large number of variables involved. The same problem
could be addressed with different techniques [36]. A possible candidate is the quantum
jump approach, also called the stochastic wave function method or Monte Carlo wave
function method. This method consists of computing the unitary evolution governing indi-
vidual wave functions instead of evolving the density matrix. The dissipative mechanism is
simulated as a random process involving instantaneous transitions between states having
different energies. However, the quantum jump approach presents its own limitations. In
fact, being a Monte Carlo-type method, its solution will always be affected by sampling
noise, whereas it can never be completely eliminated, reducing it requires increasing the
number of seeds used in the simulation, thus actually limiting the computational efficiency
of the quantum jump approach as well.
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It is worth emphasizing that simulating quantum heat engines involves unique chal-
lenges when compared to (a) open quantum systems with a time-independent Hamiltonian
and (b) closed systems with a time-dependent Hamiltonian. In fact, quantum heat engines
involve both mechanisms. For case (a) the eigenvectors of the Hamiltonian provide a
natural choice of basis. For case (b) the equations of motion are unitary and the proba-
bilities pn appearing in Equation (26) are constant. Each pure state |pn⟩ in the ensemble
evolves independently. Even though in an Otto cycle the time variation of Ĥ and the
non-unitary evolution occur on separate branches of the thermodynamic cycle, neither of
the two convenient properties mentioned above is satisfied throughout the complete cycle.
Therefore, treating the case of a heat engine requires a special approach to balancing the
non-idealities such as the one discussed in the present work.

Employing the algorithm discussed in this work, we have been able to study the
thermodynamic behavior of a heat engine using a non-harmonic working fluid and compare
the results with the harmonic case. Such a comparison is the subject of an upcoming paper.
The present study describes the numerical techniques used in making the comparison.
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