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Abstract: Learning in neural networks with locally-tuned neuron models such as radial Basis Function
(RBF) networks is often seen as instable, in particular when multi-layered architectures are used.
Furthermore, universal approximation theorems for single-layered RBF networks are very well
established; therefore, deeper architectures are theoretically not required. Consequently, RBFs
are mostly used in a single-layered manner. However, deep neural networks have proven their
effectiveness on many different tasks. In this paper, we show that deeper RBF architectures with
multiple radial basis function layers can be designed together with efficient learning schemes. We
introduce an initialization scheme for deep RBF networks based on k-means clustering and covariance
estimation. We further show how to make use of convolutions to speed up the calculation of the
Mahalanobis distance in a partially connected way, which is similar to the convolutional neural
networks (CNNs). Finally, we evaluate our approach on image classification as well as speech
emotion recognition tasks. Our results show that deep RBF networks perform very well, with
comparable results to other deep neural network types, such as CNNs.

Keywords: radial basis function networks; function approximation; function interpolation; classifica-
tion; Mahalanobis distance; partially connected neural networks

1. Introduction

The reconstruction of an unknown function based on a finite set of data—typical
given as pairs of sensory input and target output—is a major goal in applications of
numerical analysis, such as function approximation or pattern classification. In real-world
applications, the unknown functions must be modeled using multivariate approximation
schemes. Several approaches can be applied for multivariate approximation, such as
finite elements techniques or spline functions together with triangulation, just to name
a few. Typically, the known dataset is scattered, where it is assumed that the dataset
does not have any special properties in terms of density or spacing or other regularities.
In [1] Franke discussed the problem of function interpolation given a set of scattered data,
and he introduced the basis function approach for such tasks of function interpolation
and approximation.

Radial Basis Functions (RBFs) are a special class of basis functions used for multivari-
ate interpolation of scattered data, where the final interpolating function is obtained by a
linear combination of multiple RBF kernel outputs. Kernel functions are of a fixed type, e.g.,
the Gaussian density function to mention the most common one. In this approach, each RBF
kernel calculates its output based on the distance between an input vector and the kernel
center by leveraging some pre-defined proximity measure. In terms of artificial neural
networks—this approximation scheme is a network with a single layer of RBF kernels,
followed by a linear weighting layer. Primary, the Euclidean norm is used for this distance
calculation, see Figure 1. More general distance measures such as the Mahalanobis distance
have been introduced as proximity measures. This allows for more complex contributions
of the input features to the kernel activation. Fundamental mathematical results on RBF
can be found in the books by Powell [2], Buhmann [3] or Fasshauer [4], and in the papers
authored by Micchelli [5], Dyn [6] or Schaback [7].
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Distance based activationInput Linear output 
Figure 1. RBF network consisting of a layer of k distance based RBF kernels as well as a linear weighted
output of the kernels activations. The network consists of n input neurons and m output neurons.

Neural network interpretation of RBF networks goes back to Broomhead and Lowe [8]
as well as to Moody and Darken [9]. Park and Sandberg [10] proved that RBF networks with
one hidden layer are universal approximators, theoretically rendering deeper architectures
irrelevant. Broomhead and Lowe uniformly sampled RBF centers from the training data or
input space if prior domain knowledge was absent [8]. They optimized the linear output
layer directly via the pseudo-inverse solution [8]. Due to the two-layered architecture,
the existence of a solution for the optimization problem was guaranteed [8]. Moody
and Darken [9] further refined the initialization process by using vector-quantization
approaches such as k-means clustering to determine data-based initial center locations [9].
Additionally, they introduced a p-nearest Neighbour (PNN) heuristic to calculate the
width parameters used in the Gaussian RBF [9]. The PNN heuristic was chosen to create
an overlap between neighboring RBF kernels in order to fully cover the input space [9].
Besides unsupervised clustering, supervised learning vector quantization (LVQ) [11] can be
applied to initialize the centers of the RBF centers [12]. Also, ensemble methods [13,14] and
semi-supervised learning techniques [15] can be be considered to pre-train an initial RBF
architecture. In order to improve the performance of the RBF network, a third optimization
phase can be introduced [16]. In this third phase, all network parameters are simultaneously
trained by supervised backpropagation training, see Schwenker et al. [16] for details.

Besides this general RBF training procedure a lot of different heuristics have been
developed over the years. See, for instance, [17] or [18]. Research was mostly focused on
parameter initialization and finding better radial basis functions [19]. However, the same
overall network architecture was maintained. More recently, in [19,20] RBF networks were
used as classifiers in deep convolutional neural networks while achieving comparable
performance to commonly used MLP classifiers on the considered benchmark tasks [19].
The success of deep learning shows that neural networks can benefit greatly from deeper
network architectures.

But still, besides the standard deep architectures (using inner product in connection
with an increasing nonlinear transformation) there are not many studies on deep networks
using distance-based kernels. Results relevant for our work can be found in [21–23]. Wenzel
et al. introduced the structured deep kernel networks approach in [21], which is similar to
the RBF network approach as discussed in our work. They proved analytical approximation
properties of the architecture, for instance, the so-called concatenated representer theorem
that is a modification of the deep kernel representer theorem given in Bohn et al. [23].
In [21], it is also claimed that their proposed architecture (with unbounded depth) can
be asymptotically better than standard neural networks using ReLU activation functions.
Furthermore, in [22], Wenzel et al. applied their method successfully to the turbulence
closure problem a three-dimensional regression problem.

In our work, we focus more on the problem of high-dimensional input domains for
classification problems, (for instance, an input dimension of 784 in case of the MNIST data).
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In this context, we applied the Cholesky decomposition for positive definite matrices to im-
plement a general learning scheme for the Mahalanobis distance in the RBF kernel approach.
All in all, we introduce a deep learning method to (fully and partially connected) radial
basis function networks by incorporating data-driven initialization techniques including
distance computation for high-dimensional input domains.

The main contributions of this paper can be summarized in the following statements:

1. This paper is not in the mainstream of deep neural network architectures. It is a paper
in which we want to describe a new perspective on RBF networks in the context
of modern deep learning. This is achieved by proposing an approach that allows
the construction and the training of deep networks consisting of RBF units—units
that are based on distance computation and kernel functions. In contrast to related
work on standard RBF networks, the idea of designing multilayered RBF architectures
is considered. Thus, this paper must be considered as an attempt to introduce RBF
networks into the field of modern deep learning, with the aim of initiating a discussion
on this type of deep and perhaps recurrent type of RBF networks.

2. Moreover, we present in our work a partially connected architecture based on such
distance-based RBF units, following the same idea of standard Convolutional Neural
Network (CNN) architectures. Thus, this type of architecture may be of interest in
applications where typically CNNs are used, for instance, to extract patterns from images.

3. From the implementation point of view we describe how such a distance computation
for partially connected units can be implemented in modern deep learning frameworks.

4. In a series of experiments, we investigated the use of RBF-based deep architectures
on benchmark applications.

5. This paper is a proof of concept to train deep RBF networks for high-dimensional
input domains. Of course, such deep RBF networks need more research. In particular,
research on different types of activation functions, distance functions, as well as
parameter initialization and parameter optimization is necessary—it is a very first
step and may lead to a new direction of research in deep RBF architectures.

The remainder of this work is structured as follows. In Section 2, we give a short
introduction to shallow RBF networks and describe the main components and methods
necessary to train deep RBF networks. Then, we briefly describe our experimental frame-
work as well as report the results of our experiments in Section 3. Finally, we discuss our
results in Section 4, followed by a conclusion and a proposal for possible future research in
Section 5.

2. Deep RBF Networks

In this work, we focus on multi-layer RBF networks, which we call deep RBF networks.
We keep the overall RBF architecture consisting of an input layer and a linear output layer.
In contrast to regular RBF networks we allow for multiple hidden layers with RBF kernels.
Finally, we distinguish between fully connected and partially connected RBF layers. In the
latter we follow a similar approach to CNNs, resulting in a patch-wise distance calculation
for the RBF kernels. We use partially connected layers to extract features, followed by a
regular (shallow) fully connected RBF network for classification.

2.1. Shallow RBF Networks

A typical shallow RBF network consists of a single layer of RBF kernels, followed by a
fully connected linear layer. The linear layer combines the output of the RBF kernels based
on the weight matrix W :

yj(x) =
k

∑
i=1

wij · hi(x) (1)

The overall architecture is shown in Figure 1. The kernel activation hi(x) of neuron i is
calculated by the squared Mahalanobis distance between center ci and the input vector x,
followed by an activation function f :
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hi(x) = f
(
∥x − ci∥2

Ri

)
(2)

The Mahalanobis distance is specified by a positive-definite matrix Ri with

∥x − ci∥Ri
=
√
(x − ci)T Ri(x − ci) (3)

We call Ri the Mahalanobis distance matrix in the following. In contrast to other neural
networks, RBF networks use a distance based activation provided by the RBF kernels. Com-
monly, the Gaussian function is used as activation function. A selection of activation functions
used for RBF networks is given below, where r is the squared Mahalanobis distance:

Gaussian h(r) = e−r (4)

Quadratic h(r) = 1 − r (5)

Multiquadric h(r) =
√

1 + r (6)

Inverse quadratic h(r) =
1

1 + r
(7)

Inverse multiquadric h(r) =
1√

1 + r
(8)

2.2. Partially Connected RBF Networks

We consider the context of image classification with 2D inputs. Given an input
image X ∈ RW×H×C where W and H denote the image width and height and C the
channel dimension. For partially connected layers we follow the idea of the weight sharing
approach as used in CNNs. The activation map h(X) ∈ RW×H×1 of a single RBF neuron
can be calculated as follows:

h(X) = f

(
1
C

C

∑
c=1

∥Xc ⊖ cc∥2
Rc

)
(9)

with center c ∈ RN×N×C and Mahalanobis distance matrix Rc ∈ RN2×N2×C. The ⊖
operation denotes patch-wise subtraction in a sliding window similar to a convolution
operation. Figure 2 illustrates the general idea. A more detailed mathematical description
is given below.

Note that in the above formula padding and strides are omitted. As higher numbers
of input channels increase the sum, we normalize the sum by 1

C before applying the RBF.
Otherwise the output activations tend to zero with increasing number of channels.

Patch-wise distanceInput OutputRBF

Figure 2. Patch-wise distance calculation, followed by a RBF.

2.3. Cholesky Decomposition

We use the Mahalanobis distance as distance metric between centers and data points
in the RBF kernel. This metric, represented by a Mahalanobis distance matrix, is adapted to
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the dataset at hand. To ensure at least positive semi-definiteness during training we use
the Cholesky decomposition on the Mahalanobis distance matrix Rj via a lower triangular
matrix Gj in the following way:

Rj = GjGT
j (10)

and then optimize only the triangular matrix Gj. This results in an alternative formulation
of the squared Mahalanobis distance between input x and center cj:∥∥x − cj

∥∥2
Gj

= (x − cj)
TGjGT

j (x − cj)

= [GT
j (x − cj)]

TGT
j (x − cj)

= ∥GT
j (x − cj)∥2

2 (11)

2.4. Patch-Wise Distance Calculation as Convolution

Calculating the Mahalanobis distance between image patches and centers is an expen-
sive operation. We reformulate the problem in terms of convolutions, which are efficiently
implemented in most machine learning frameworks. In the following equations, the indices
indicating individual neurons and channels are omitted. Additionally, the convolution
operator ∗ is used.

2.4.1. Euclidean Distance

The Euclidean distance between an image patch x and a center c can be reformulated
in the following way:

∥x − c∥2 =
N

∑
i=1

(xi − ci)
2 =

N

∑
i=1

x2
i − 2xici + c2

i

=
N

∑
i=1

x2
i +

N

∑
i=1

c2
i − 2⟨x, c⟩ (12)

The last dot product translates into a convolution when performing the calculation in a
sliding window fashion. This results in an efficient implementation of the scaled Euclidean
distance. In this case, we can assume that G is a diagonal matrix with diagonal elements σ
reshaped to a matrix σ ∈ RN×N :

∥X ⊖ c∥2
G = σ ⊙ ∥X ⊖ c∥2 = (X⊙2 ∗ σ)− 2(X ∗ (σ ⊙ c)) +

N

∑
i=1

N

∑
j=1

c2
ijσij (13)

where ⊙2 denotes element-wise squaring, ⊙ is the Hadamard product and ⊖ is the patch-
wise subtraction, performed over a sliding window.

2.4.2. Mahalanobis Distance

The calculation of the Euclidean distance is simple due to the decomposition into
a dot product and square terms. This is a direct result of the Euclidean distance being
characterized by a diagonal distance matrix. For the Mahalanobis distance with the arbi-
trary distance matrix, the covariance between feature dimensions has to be considered.
We derived the following simplification, consisting of multiple stages of convolution op-
erations. Let X ∈ RW×H denote a single-channel input image, G ∈ RN2×N2

the Cholesky
decomposed distance matrix and c ∈ RN×N the corresponding neuron center. An image
patch pij at location (i, j) is defined as follows:
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pij =

 xij . . . xi,j+N−1
...

. . .
...

xi+N−1,j . . . xi+N−1,j+N−1

 ∈ RN×N (14)

In the following, the centers and image patches are used in their flattened representa-
tion, where all rows of the corresponding matrix are concatenated. This is denoted as
c̄ =

[
c11, . . . , c1N , c21, . . . , cNN

]
. For the Mahalnobis distance to a single image patch it

holds that

GT(p̄ij − c̄) =

 g11(xij − c11) + · · ·+ g1,N2(xi+N−1,j+N−1 − cNN)
...

gN2,1(xij − c11) + · · ·+ gN2,N2(xi+N−1,j+N−1 − cNN)



=

 p̄ij
T g1∗ − c̄T g1∗

...
p̄ij

T gN2∗ − c̄T gN2∗

 (15)

For the whole image, the dot products are replaced by convolution operations, resulting in
the following patch-wise distance calculation:

∥X ⊖ c∥2
G =

N

∑
i=0

(
X ∗ ĝi∗ − c̄T gi∗

)⊙2
(16)

where ĝi∗ ∈ RN×N denotes the i-th row of G, viewed as a square matrix. Note that each
row of the Cholesky decomposed matrix G has to be convolved with the input image. With
the increasing kernel size N and larger input images, this calculation may be slow and
memory intensive.

2.5. Parameter Initialization

We follow commonly used strategies to initialize the centers and matrices. The centers
are initialized by k-means clustering while the distance matrices are initialized by a PNN
heuristic. To initialize subsequent layers we use a cascading scheme where we initialize the
parameters of a layer with the output of the previous layer. To initialize the whole network,
the input data are propagated through all layers. During initialization, the last classification
layer can be viewed as a single linear transformation with a fixed input. Thus, we can make
use of the pseudo-inverse solution to initialize the weights of the linear output layer.

2.5.1. k-Means Clustering

The centers cj of a single neuron j are initialized by k-means clustering on the cor-
responding input data. Clustering can be performed in an unsupervised manner, where
global statistics of the input are extracted as centers. In this case, non-labeled data can
be used to find good initial parameters. Additionally, class labels can be leveraged in the
clustering process by performing the clustering process on data of a given class. This results
in more class specific statistics as initial centers. We refer to this approach as class-specific
k-means clustering in contrast to global k-means clustering, where the centers are selected
by clustering the whole input data. An advantage of class-specific k-means may be that the
number of centers per class can be adjusted to, e.g., counteract underrepresented classes.
However, a heuristic is needed to determine the number of selected centers per class. For
very small datasets, the clustering approach is not possible when using more neurons
than distinct clusters, limiting the number of obtainable initial centers. To speed up the
clustering process we use mini-batch k-means clustering as proposed in [24].
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2.5.2. Patch-Wise k-Means Clustering

For the partially connected networks, we initialize the centers by extracting image
patches from all training samples and performing global or class-specific k-means clustering
on those patches. Patches are extracted by using a sliding window over the training
samples. Each input image generates several image patches, resulting in a large number of
image patches.

Additionally, processing of individual input channels has to be considered. One
possibility to address this issue is to perform clustering for each channel individually.
However, with the increasing number of input channels this approach is not feasible.
We propose to view an input image together with its channels as a volume and perform
clustering over this volume. This approach is fast but leads to correlated channels, which
may reduce model flexibility.

2.5.3. Mahalanobis Distance Matrix Initialization

Initially, the distance matrix is approximated by the following p nearest neighbour
PNN heuristic on the centers:

σj =
α

p
·
√

∑
i∈N

∥∥cj − ci
∥∥2 (17)

where N contains the p nearest neighbors of center cj, based on the Euclidean distance. The
parameter α is a scaling factor which has to be set heuristically. The goal of this heuristic is
to achieve a good coverage of the input space by adjusting the kernel widths σk as proposed
by [9]. This PNN heuristic is fast to calculate as it is solely based on the centers and does
not depend on the number of training samples. However, the heuristic fails for non-distinct
or too similar centers, where the distance approaches zero. In this case, we set σj = 1, which
results in an Euclidean distance matrix. This approach yields a diagonal matrix with width
parameters for each input dimension on the diagonal:

Gj =
1
σj

· I (18)

2.6. Training Procedure

After initialization, the full network is trained by back-propagation. We use a softmax
activation in the final linear layer in combination with the cross-entropy loss for classification.

For the Mahalanobis distance matrices, training can be carried out either on the
full Cholesky decomposed matrix, i.e., on the lower triangular matrix Gj, or to reduce
complexity only on the diagonal entries of the triangular distance matrix. The latter
implicitly forces the assumption that the feature dimensions are uncorrelated by ignoring
the covariance, resulting in a feature-wise scaled version of the Euclidean distance. The
number of parameters used for the Cholesky decomposed matrix (which is triangular)
and a single neuron with input dimensionality C is C(C+1)

2 . Using the diagonal entries of
the Mahalanobis distance matrix reduces the number of parameters to C, which improves
training speed.

Additionally, we propose a supervised approach to pre-train subsequent layers by
temporarily adding a fully connected softmax layer for classification and minimizing cross
entropy loss, virtually resulting in training a single layer RBF network for each layer.

To get an impression of how good individual classifiers perform, we further com-
bine the prediction of multiple classifiers as follows: Each classifier makes an individual
prediction, which is selected by its certainty. The certainty is based on the output of the
softmax layer. Predictions with a certainty above 95% are summed and the final prediction
is obtained by an argmax operation on the summed output distribution.
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3. Experimental Evaluation

Similar to CNNs, our architecture makes use of data which are strictly arranged on
a uniform grid like images. Thus, we evaluate our approach only on 2D structured data.
Namely, we use common image classification tasks as well as speech emotion recognition
tasks where we pre-process the speech data into MEL spectrograms of a fixed size.

For both types of tasks, we use the network architecture depicted in Figure 3, consisting
of partially as well as fully connected RBF kernels. The Gaussian kernel function is used
as an activation function in all experiments. We consider single classifiers and ensemble
classification of 5 classifiers trained on different parameter initializations. For the ensembles,
the best classifiers are selected according to low entropy in their prediction (i.e., maximum
class probability > 95%). The prediction of those classifiers is aggregated by summation
and finally the class with the highest value is selected. Note that the entropy selection
mechanism does not consider the correctness of the prediction.

2D RBF
Pooling
Flatten

1D RBF
Linear

Partially connected RBF + PoolingInput RBF classifier Legend

Figure 3. Full RBF architecture used for image classification and emotion recognition.

Task-dependent details and hyperparameters are given in the corresponding section.

3.1. Datasets

In the following, we describe the used datasets in more detail. For image classification,
we include the common benchmark datasets MNIST [25] and CIFAR10 [26]. For both
datasets, we first scale the images to the interval [0, 1]. Besides classic image classification
benchmarks, we also include the following two speech emotion recognition datasets for
evaluation: RAVDESS [27] and EmoDB [28].

MNIST is a gray-scale image dataset often used to evaluate machine learning models.
The dataset consists of 28 × 28 pixel-sized images of hand-written digits from zero to nine,
resulting in a 10-class classification problem. In total, there are 60,000 training samples and
10,000 test samples.

CIFAR10 consists of RGB images from ten different classes, containing different
objects and animals. Each image has 32 × 32 pixels, resulting in 3072 features per image.
The whole dataset is similarly sized to the MNIST dataset, containing 50,000 training
samples and 10,000 test samples.

EmoDB is a small emotion recognition dataset where neutral sentences are spoken by
ten different actors in seven different emotions. The following emotions are contained in
the data: anger, boredom, anxiety, happiness, sadness, disgust, and neutral. In total, the
dataset consists of 535 speech recordings. As the dataset is rather small, we also consider a
simpler binary classification task based on arousal. For this task we define anger, anxiety,
happiness, sadness, and disgust as emotions with high arousal. Boredom, sadness, and
neutral are defined as emotions with low arousal. We reserve 20% of the samples for testing
and split the remaining data into 20% validation and 80% training data.

RAVDESS is an acted emotion dataset consisting of speech, song, and videos with
speech. In total there are 24 actors which speak and sing sentences of the form “Kids are
talking by the door” in 8 different emotions. Additionally, portrait videos of the actors
speaking the same sentences are available. The following eight emotions are included:
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neutral, calm, happy, sad, angry, fearful, disgust, and surprised. Note that there are different
emotions than in the EmoDB dataset. More precisely, boredom and anxiety is missing in
the RAVDESS dataset, while calm and surprised occurs only in the RAVDESS dataset. In
total the dataset consists of 2452 sound files, where 1440 are spoken sentences files and the
remaining 1012 are sung sentences. The video files are omitted for our tasks as they contain
the same audio as the spoken sentences. We use 20% of the data for testing and split the
remaining data into 20% validation and 80% training data.

3.2. Image Classification

Architecture Our image classification architecture is composed as follows. First, we
build blocks of two partially connected layers each, followed by a max pooling operation
to reduce the spatial dimensions. In total, we use three such blocks with 20 RBF kernels
in each block. All kernels use the full Mahalanobis distance matrix and are initialized
with class-specific k-means clustering. Finally, a RBF network with 128 neurons is used
for classification. The classification network uses the Euclidean distance, which allows for
more individual neurons compared to the Mahalanobis distance, while keeping the number
of parameters low. This is necessary as the input dimension to the classifier is rather large,
resulting in a large number of parameters when using the Mahalanobis distance.

Training We use the Adam optimizer in its standard configuration for all of our
experiments. We train our models on augmented data, where we shift, scale, flip, and
rotate the input images to generate more training data. The whole network is trained for
200 epochs, individual layers are not pre-trained.

Results The results for the MNIST dataset are summarized in Table 1. In average, our
RBF architecture reaches a test accuracy of 99.5% with a low standard deviation. Using
5 classifiers as an ensemble further increases the test accuracy to 99.67%. Nonetheless,
the performance is not on-par with state-of-the art CNN architectures, achieving over 99.8%
with a similar number of parameters.

Table 1. Test accuracy comparison on MNIST.

Model Test Accuracy Parameters

DeepRBF 99.50 ± 0.07 229,160
Stochastic Pooling b [29] 99.53 -
DeepRBF Ensemble a 99.67 1,145,800
CNN + Vector Capsules b [30] 99.87 1,514,187

a Ensemble of five classifiers. b CNN architecture.

In Table 2, the results for the CIFAR10 dataset are summarized. Our RBF approach
reaches a mean test accuracy of 80.72% with a rather high standard deviation of 0.63%.
Performing an ensemble classification with again 5 classifiers improves the performance to
85.01%, similar to early CNN architectures like [29]. Note that more recent architectures
are able to reach test accuracies beyond 99% on CIFAR10 [31,32].

Table 2. Test accuracy comparison on CIFAR10.

Model Test Accuracy Parameters

DeepRBF 80.72 ± 0.63 268,600
Stochastic Pooling b [29] 84.87 -
DeepRBF Ensemble a 85.01 1,343,000
ResNet110 b [33] 93.57 17,000,000
EfficientNetV2 b [31] 99.10 121,000,000
ViT-H/14 c [32] 99.50 ± 0.06 632,000,000

a Ensemble of five classifiers. b CNN architecture. c Transformer architecture.
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3.3. Speech Emotion Recognition

Architecture Our emotion recognition RBF networks consist of 4 partially connected
layers with 8 neurons each, followed by a RBF classifier with 128 neurons. The centers are
initialized with global k-means clustering. We use global k-means clustering as we only
use 8 kernels, while distinguishing 7 different classes. Due to the high input dimensions,
more kernels would increase the number of parameters which we aim to keep low.

Training We first extract the MEL spectrogram-based features from the audio files for
both datasets. We limit the samples to a duration of three seconds and use use 128 filters for
the MEL spectrogram. In total, our pre-processing yields a 128 × 256 feature map for each
speech sample. As both emotion datasets are rather small, we augment the spectrograms by
randomly shifting the whole spectrogram in the time domain as well as masking random
parts of the frequency and time domain as proposed by [34]. The network is optimized
by using the Adam optimizer with default parameters. The whole network is trained for
200 epochs without pre-training individual layers.

Results In all three instances of the two multi-class emotion recognition tasks, we
observe a high standard deviation concerning the test accuracy. For the EmoDB dataset (see
Table 3), we achieve a mean test accuracy of 72.15% and 74.76% for a single classifier and
ensemble classification, respectively. Constraining the task to a binary problem gives more
consistent results with a mean test accuracy of over 96% and a lower standard deviation.
Those results seem consistent with a CNN approach on the same MEL spectrograms [35]
reaching 72.06% test accuracy. More sophisticated approaches like [36] are able to achieve
even better results. Regarding the RAVDESS dataset (see Table 4), we observe similar
performance as the considered CNN architectures [37,38] while using significantly fewer
trainable parameters. Namely, we reach a test accuracy of 71.41% and 74.30% for a single
classifier and ensemble classification, respectively.

Table 3. Test accuracy comparison on EmoDB.

Model Test Accuracy Parameters

CNN (MEL spectrograms) [35] 72.06 -
DeepRBF 72.15 ± 1.24 281,040
DeepRBF Ensemble a 74.76 1,405,200
GMM (MFCC) [36] 79.8 -

DeepRBF (binary) b 96.07 ± 0.11 280,400
DeepRBF Ensemble (binary) a,b 96.26 1,402,000

a Ensemble of five classifiers. b Problem reduced to binary classification task.

Table 4. Test accuracy comparison on RAVDESS.

Model Test Accuracy Parameters

DeepRBF (speech) 67.36 ± 0.91 281,168
DeepRBF (speech + song) 71.41 ± 1.09 281,168
CNN14 (speech) [37] 72.10 b 79,690,184
DeepRBF Ensemble (speech) a 74.30 1,405,840
ERANN (MEL spectrograms, speech) [38] 74.80 b 24,023,562
DeepRBF Ensemble (speech + song) a 78.82 1,405,840

a Ensemble of five classifiers. b Four-fold cross-validated results.

Including the song samples for the RAVDESS dataset further improves the testing
accuracy on the combined dataset to 78.82%.

4. Discussion

A common observation between all evaluated datasets is the increased performance
when considering ensemble classification of multiple RBF classifiers. This indicates that the
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full potential of our approach is not yet reached when considering single classifiers. This
assumption is also reinforced by the high variance in test accuracy of single classifiers.

For the emotion recognition datasets, the variance in test accuracy is higher than for
the image classification tasks. We attribute this behavior to the low number of training
samples in those datasets.

Note that for the emotion recognition tasks the comparison between different models
is complicated due to inconsistent feature selection and evaluation procedures. CNN14
and ERANN use four-fold cross-validated results [37,38] while we only report the mean
test accuracy over a fixed test set (containing 20% of the samples). Overall we observe a
similar performance between our approach and the well-established CNN architectures on
all considered datasets, which are promising.

5. Conclusions

In this paper, a new way of using Gaussian RBF kernels in deep neural networks is
discussed by introducing an initialization scheme suitable for multi-layered RBF archi-
tectures. In addition, a partially-connected RBF layer similar to CNN architectures was
studied. By utilizing the Cholesky decomposition, we guarantee positive semi-definiteness
of the learnable distance matrix used in the Mahalanobis distance calculation. We showed
that our proposed architecture performs well on 2D-structured data like images and MEL
spectrograms. In contrast to the CNN, the distance-based activation used in our RBF
kernels favors interpretability of the underlying calculation. Nonetheless, the flexibility of
the proposed deep RBF approach—for instance, due to the Mahalanobis distances offering
complex approximations of data densities—can be a disadvantage in other contexts, such
as limited scalability to larger network architectures.

All in all, the proposed deep RBF architecture is just the very first step in this direction
of research and several aspects of learning in deep RBF networks must be left to future
research, e.g., we focus on the Gaussian as a representative of the RBF kernels for several
reasons: Gaussians have been successfully applied in shallow learning architectures such
as the Support Vector Machine Approach; kernel parameters such as the mean and co-
variance matrix have a strong statistical meaning for the Gaussian kernel, and last but not
least because of their outstanding analytical properties. More detailed studies including
comparisons between other kernel functions and distance measures or detailed studies on
partially connected RBF networks, for instance, in comparison to CNN-like networks, must
be reserved for future work.
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