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Abstract: We calculate the phase space volume Ω occupied by a nonextensive system of N 
classical particles described by an equilibrium (or steady-state, or long-term stationary state 
of a nonequilibrium system) distribution function, which slightly deviates from Maxwell-
Boltzmann (MB) distribution in the high energy tail. We explicitly require that the number 
of accessible microstates does not change respect to the extensive MB case. We also derive, 
within a classical scheme, an analytical expression of the elementary cell that can be seen as 
a macrocell, different from the third power of Planck constant. Thermodynamic quantities 
like entropy, chemical potential and free energy of a classical ideal gas, depending on 
elementary cell, are evaluated. Considering the fractional deviation from MB distribution 
we can deduce a physical meaning of the nonextensive parameter q of the Tsallis 
nonextensive thermostatistics in terms of particle correlation functions (valid at least in the 
case, discussed in this work, of small deviations from MB standard case). 
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1. Introduction 

Statistical description of a system of N particles requires the subdivision of the phase space into 
equidimensional elementary cells of phase volume ∆Ω, which can be determined by the laws of nature 
(comparison with quantum evaluation of energy state density) and experimentally measured, for 
instance, in the low temperature heat capacity of a crystal or in the Stefan-Boltzmann constant. 

In the phase space volume of a system of particles described by quantum distribution the smallest 
elementary cell is the third power of the Planck constant. For classical particles the elementary cell is, 
in principle, undetermined. This is true particularly in the limiting case of small occupation numbers 
(when MB distribution is valid) and the phase space volume of a cell acquires arbitrary values. The 
problem of dividing the phase space into finite cells was solved when a natural way to derive 
dimension of elementary cells within MB statistics using energy quantization was found. However, 
quantum discontinuity can be lost when dimension of the volume containing the gas increases and the 
quantum states become even and even more numerous [1]. Only the insertion of the Pauli exclusion 
principle enables us to solve this problem.  

Boltzmann’s request of a great number of particles into the cell is usually not verified (one particle 
every 30000 cells in normal conditions)[2]. However, if the number is small, it is possible to combine 
many cells and form a greater cell (macrocell) containing more particles [3]. 

This paper aims at examing first of all how, in the nonextensive thermostatistics (NETS), the 
elementary cell differs from the one of the extensive MB case, requiring explicitly that the number of 
accessible microstates be the same in both (extensive and nonextensive) phase spaces and obtain also, 
within a classical scheme and without quantum arguments, explicit expressions of the cells. Let us 
briefly recall that NETS has been developed in the last years mainly after the works of Tsallis [4, 5] 
which introduced a generalized entropy, featured by an entropic parameter q, whose meaning is not 
fully understood yet (more generally, it can be defined in terms of fluctuations of intensive quantities 
like temperature [6–8]; explicit analytical expressions of q in terms of physical quantities exist in few 
cases, like, for instance, in turbulence problems [9] and in the description of solar plasma [10, 11]). 

The value of q is not easily given a priori for a given particular system, without comparing 
calculations to available experimental results. The NETS is now applied to a great variety of problems, 
from genetics and biology to astrophysics (see ref.s [12] and [13] for a complete list of basic works 
and applications). 

The approach to NETS we are showing in this paper, is based on the analysis of deviations from 
standard phase space volume and on a new definition of elementary cell. This new approach will 
probabily provide, in the near future, a better understanding of the meaning of the parameter q. The 
validity of our treatment can be extended to statistics different from the Tsallis version of NETS, when 
complete deformed distribution functions are considered, and to large deviations from MB phase space 
volume. 

In Section 2, by comparing the number of allowed microstates W0 in the MB extensive phase space 
Ω0 and in the deformed phase space Ω, we derive the dimensions of both elementary cells ∆Ω0 and 
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∆Ω. The cell ∆Ω results to be smaller than ∆Ω0 (if q < 1) so that, in this case, the third power of Planck 
constant is not suitable as the value of ∆Ω0 because h3 is the smallest cell admissible due to the 
Heisenberg principle. Otherwise ∆Ω is larger than, ∆Ω0 if q > 1 (h is expressed in units [energy 
length]). 

By considering the nonextensive Tsallis equilibrium (or steady state, or long-term stationary state of 
a nonequilibrium system) distribution, we limit ourselves to small deviations, with the absolute value 
of the parameter ( ) 2/1 q−=δ  much smaller than one (we recall that for q → 1 all the MB results must 
be recovered). 

We must realize that deviations, although small, are not negligible in those energy islands of Ω 
where quantities like, for instance, nuclear reaction rates, rates of atomic processes and of chemical 
reactions, electron transport in semiconductors are very sensible to them [10, 14–16]. In Section 3, we 
discuss the case of nonextensive classical ideal gas. We compare our results with those recently 
derived by several authors, among them see ref.s [17–19], and we calculate the entropy, the chemical 
potential and free energy discussing the results. We deduce also in Section 4 an interpretation of the 
parameter q using the calculated phase volume Ω as a function of fractional deviation, occupied by a 
nonextensive system of N classical particles. The physical meaning is derived in terms of particle 
correlation function. Conclusions are reported in Section 5. 
 
2. Phase Space Volume and Elementary Cell 

The state of a system of N particles is specified in the 6 N dimensional phase space (Γ space). Its 
volume Ω[nr] can be divided into small cells of volume ∆Ω, so that coordinates do not vary sensibly 
within them.  

The volume contains the N particles distributed in a certain set of numbers (n1, n2, · · ·, nt) = [nr] and 
is given by: 

[ ] ( )N

tnnn
Nn ∆Ω=Ω

!,!!
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21
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L
.      (2.1) 

The number of accessible microstates is defined (including the factor 1/N!) by [20] 
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It is well known that ln Ω can be represented through the Stirling approximation 
∑−∆Ω+≈Ω

i
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Having Ω a maximum, its logarithm can be expanded in a series of powers of ∂ , where  

is the distribution function for which Ω has a maximum, indicated by Ω0 (the symbol ∂ means 
variation). After using the Lagrange method with the usual constraints and with negligible interactions 
the following is obtained: 
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The mass of the particles m is in energy units. The number of accessible microstates in Ω0 is of course 
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(let consider the following example: for a classical ideal gas, if N is large we have that 
NeW N π2/0 =  see Section 3). 

We are now interested in the volume in the Γ space corresponding to a NETS distribution having 
small deviations from the MB distribution. The deviations in the high energy tail are particularly 
interesting. Following the approach to general statistical problem in physics by Bohm and Schützer  
[21]  after expanding  up  to the second power in in∂  the  Lagrange equation, alternative definition of 

Ω is obtained: 
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with the fractional deviation from MB distribution given by 
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Let us introduce the non-Maxwellian distribution 
( )2exp iiTi yyAAn δδ −−=  .     (2.9) 

Eq.(2.9) represents a distribution, mainly differing from Maxwellian in the high energy tail, depending 
on the sign of δ [δ > 0, (q < 1): depleted tail; δ < 0, (q > 1): enhanced tail]; it can be derived, for 
instance, from the Tsallis distribution 
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when deviations from MB distribution are small, ( )*βqZ  is the generalized partition function and Uq 

the internal energy. Eq. (2.9) may represent an equilibrium distribution or a steady state, or a long-term 
stationary state of a nonequilibrium system. In Eq. (2.9) 
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∆Ω is the deformed elementary cell of the phase space Ω , β* is the Lagrange multiplier of the phase 
space Ω, different from β (the Lagrange multiplier in Ω0), defined below in (2.24). 
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We also have 
230

4
151 δδδ −+=A ,                (2.12) 

iiy ∈= *β .                (2.13) 

i∈  are the energies of the different microstates with the same values of those of the phase space Ω0. 

The constraints are 
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where the second one is the energy NETS average value when deviations are small. Other 
distributions, based on other statistics can be used [22, 23]; of course, when deformations are small, 
these distributions can be fitted with good approximation by Eq. (2.9). The use of exact distributions, 
derived from other generalized statistics is possible at least numerically; in this work, however, we 
limit ourselves to consider only the distribution of Eq. (2.9), in order to simplify the question.  

The volumes Ω0 and Ω are different in size. ∆Ω0 and ∆Ω are also different. We realize that the 
differences could be considered negligible, while their effects seem to be quite important for the 
evaluation of several physical quantities. Let us remark that the number of microstates or discrete 
events does not change from one space to the other one. Therefore, we set the equation W = W0, 
because we want to count the same number of microstates both in Ω and Ω0. Using the relations 
reported above in this Section, we can explicitate the expressions of Ω and ∆Ω after simple 
calculations. After using the following relations:                          
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noting that the explicit calculation of (2.17) requires the evaluation of the average value 
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finally, we obtain  Ω and ∆Ω as functions of Ω0 and ∆Ω0, respectively as follows: 
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The systems featured by ∆ > 0 (q < 1) have ∆Ω smaller than ∆Ω0. Therefore, we are not allowed in 
their classical extensive description to take ∆Ω0 = h3, because h3 should be the smallest elementary 
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permissible cell. On the other hand, we shall verify that ∆Ω0 must always be much larger than h3. It 
must be a macrocell. The equation of state calculated by means of the distribution (2.9) is given by 

βδδ /NCNkTCPV == ,              (2.21) 
where 

24651 δδδ +−=C ,                                                             (2.22) 

Let us anticipate that for a nonextensive classical ideal gas after exact calculations with the exact 
distribution (2.10), one can obtain the following relation, at any value of q [17, 18] 
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We compare (2.21) and (2.22) to (2.23) and (2.24) in the case of small deviations. With the 
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and we recover the correct formal expression of the equation of state reported in Eq. (2.21). This value 
of Ω0 imposes that 

                       AM = 1,             and             .
32

1221
2
31 2δδ +−=TA                          (2.26) 

Therefore, the requirements that W = W0 and that the equation of state for NETS classical systems be 
correctly expressed also in the small deviations limit imply that the standard phase space elementary 
cell be given by the expression (2.25) (we send to Sect. 3 for some more details). 

This elementary cell can indeed be considered a macrocell, particularly if compared to the value of 
h3, usually taken as elementary cell. However, this requirement is not a problem, because of the 
uncertainty of the classical elementary cell and because Darwin and Fowler [3] showed that macrocells 
should be used to satisfy Boltzmann requirements of a great average number of particles in each cell. 

To take ∆Ω0 of Eq. (2.25) means to have one particle in each macrocell and, posing ∆Ω0 = X h3, to 
have 1/X particles in each microcell h3, i.e. one particle in thousands of cells, where 
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which is not a pure number, but depends on β. The elementary cell in the deformed phase space is 
from (2.20) 

                      2/3
2323

*
22

δβ
π

β
π C

N
Vm

N
Vm









=








=∆Ω ,                                       (2.28) 

which is a macrocell. We can write ∆Ω = Y h3, each macrocell containing one of the N particles, where 
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is a quantity depending on β and q or on β*. The subdivision of the phase space volume Ω in 
microcells equal to h3 does not allow the conservation of the value of the number of permissible 
microstates, nor the subdivision in a fixed number of micro cells independent on β and q. 

Instead of having an elementary cell which does not depend on the Lagrange multiplier β and is the 
third power of a universal constant (Planck constant) and the number of elementary cells forming the 
total phase space volume depending on the Lagrange multiplier β, we have an elementary cell which 
depends on the Lagrange multiplier β (it is a macrocell). We also have the number of cells depending 
only on the number of particles N (with these positions we may satisfy the requirements to conserve 
the number of accessible microstates both in extensive and in nonextensive phase volumes Ω0 and  Ω 
and to preserve the correct form of the equation of state). 
 
3. Application to Classical Ideal Gas: Entropy, Chemical Potential, Free Energy 

Classical ideal gas model based on nonextensive thermostatistics relations has been the subject of 
several studies since the first applications of NETS [24, 25].Classical ideal gas is described by an 
unperturbed state of a system with long-range interaction and the model can be solved analytically 
[17]. In the past the equation of state has been derived within several schemes along the steps of 
evolution of NETS: non-normalized [24, 25], normalized [17], OLM (optimal Lagrange multiplier) 
[18], incomplete statistics [19, 26, 27], among others. 

In this Section we show synthetically that the formally correct equation of state (2.23) obtained by 
means of the exact expression of the distribution (2.10), can be deduced also in the small deviations 
case, by taking into account the distribution (2.9) if the macrocells of Eq. (2.25) and of Eq. (2.28) are 
taken as elementary cells. 

The equation of state specific for classical ideal gas remains form invariant under nonextensive 
generalization of thermodynamics. That is, it is valid for all . This means that the 
equation of state of a NETS classical ideal gas is formally equal to that of extensive statistical 
mechanics: 

*/: βNVPq =
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The Lagrange multiplier β* previously introduced, associated with the constraint in NETS, is 

defined by 
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kT is a constant depending on q which becomes the Boltzmann constant k for q → 1 [18, 28] and 
Tphys, the physical temperature, is 
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(  is the Tsallis entropy defined below in Eq.(3.10); in the first treatment of classical ideal gas based 

on OLM approach [28] the dependence on q was attributed only to kT and not to Tphys or β*). The 
partition function Zq(β) is defined by 
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where nT is the square bracket factor of Tsallis distribution [Eq.(2.10)]. Two other quantities that are 
useful for NETS classical ideal gas calculations are: the coefficient 
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and the internal energy 
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From the explicit expression of Zq, Cq and Uq (we do not report it here and we send the reader to ref.s 
[17, 18]), we may verify that the above three functions Zq, Cq and Uq depend (when q ≠1) on the 
elementary ∆Ω0 as 
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where Q = 3N (1 - q)/2. 
    As well known, when q → 1 we have that Z1≈(∆Ω0)-N and C1 and U1 do not depend on ∆Ω0. The 
above functions enter into the calculation of the equation of state, which can be derived by means of 
the usual thermodynamic relations. As we have already discussed in the previous Section, by 
considering a nonextensive classical ideal gas with distribution function ni of Eq. (2.9) (small 
deviations from MB distribution), we have calculated that the equation of state is given by  
P V = N k T (1 - 5 δ + 46 δ2) i.e., in the limit of small deviations we must have β * = β /Cδ as it can be 
easily verified.  
     In fact, within the treatment illustrated in the previous Section, we obtain that in the limit of small 
deviations and for 3Nδ > 1 the expression of Cq reduces to Cδ if the elementary cell (macrocell) ∆Ω0 of 
Eq. (2.25) is assumed. 

With the expression of ∆Ω given by (2.28) in place of ∆Ω0 given by (2.25) we obtain that Zq, Cq 
and Uq do not explicitly depend on the elementary cell. Zq and Cq do not depend on β  either: 
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and Cq and Uq can be calculated from the relations 
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(the functions Γ(x) can be calculated by means of the relation ( ) xx exx −−=Γ 212π ). 
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Let us note from Eq. (2.1) that space phase volumes Ω0 and  Ω depend on the elementary cells ∆Ω0 
and ∆Ω, respectively. If ∆Ω0 is a constant, like h3, Ω0 does not depend on β, but only on N and Ω 
depends on N and q. Instead, if ∆Ω0 has the expression of Eq. (2.25) and ∆Ω is given by Eq. (2.28), 
then Ω0 is also a function of β and Ω is also a function of β and q. 

Let us now derive one of the thermodynamics quantities depending on ∆Ω, the entropy. 
The Boltzmann entropy is defined by 
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where V(2πm/β)3/2/∆Ω0, is the single particle number of cells. 
Taking the elementary cell ∆Ω0 given by Eq. (2.25), we obtain SB = 5N k/2 because the single 

particle number of cells equals N and the value of the constant is zero. 
The nonextensive entropy is [4] 
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where the condition W = W0 has been used and therefore 
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This relation shows that  tends to change as  N2 with large N. The chemical potential µ of a 

classical ideal gas is an intensive quantity, defined by  
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where ∆Ω0 is the elementary cell taken usually equal to h3. The quantity µ can be negative or 
positive and is equal to zero only at the particular value of temperature 
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Considering an ideal classical gas, if we increase the number N of one unity adding, at constant 
energy and volume, one particle with kinetic energy zero and neglecting all interactions, the number of 
accessible microstates increases and entropy increases too. Considering the relation 

                                 NVPSTU ∆+∆−∆=∆ µ ,                                                                        (3.14) 
we obtain that µ must be negative. On the contrary, if repulsive interactions are active, the incoming  

particle increases both the energy of the system and the entropy; the system must spend some energy 
to return to the initial energy value. Then SB decreases and sometimes decreases more than the gained 
quantity because of one more particle in the system. In this case µ is positive. 

Let us now take for ∆Ω0 the definition of Eq. (2.25). We find that for an extensive ideal classical 
gas we have µ = 0. This result can be explained because adding one particle at constant energy and 
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volume the elementary cells decrease their single volumes and the total work done by the system to 
diminish the spatial volume of N + 1 cells is k T. Therefore,from Eq.(3.14) we have 

                               0
2
5

2
3

=+−= kTkTkTµ .                                                                          (3.15) 

When the ideal classical gas is nonextensive, using (3.11) the expression of µ is 

                              kTNkTkT 246
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which gives µ = 0 when q →1 (δ = 0) and is slightly positive or negative depending on the sign of δ. 
In this case the quantity µ is composed by intensive and extensive terms. Its behaviour versus kT 
depends on δ and on δN which can be finite or can approach zero or infinity depending on δ and N, 
separately. To complete our study let us discuss the free energy F. For an extensive ideal classical gas 
with elementary cell ∆Ω0 given by Eq. (2.25) at constant energy and total volume, the function F and 
its variation due to the addition of one particle to the system are given by the following relations: 

                                 F = U – T SB = –N k T ,                                                                            (3.17) 
                                ∆F = –k T .                                                                                                 (3.18) 

being µ = 0 and considering the work spent by the system to change the spatial volume of elementary 
cells. 
    The variation of free energy of a nonextensive ideal classical gas due to the addition of one particle 
to the system is, using (3.16) 
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25
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251 .                                    (3.19) 

This expression differs from that of the non normalized treatment of Ref. [25]. The NETS free 
energy (as also defined in Abe et al. [18] and with  of Eq.(3.10) is T

qS
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qq δ
β 4

251 ,                                                     (3.20) 

and ∆Fq equals the same quantity calculated above [Eq. (3.19)]. A new definition of free energy 
introduced by Abe et al. [18] which is 
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2
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 ,                                    (3.21) 

gives, by using the elementary cell we have proposed, the same result obtained in Eq. (3.20) and then 
∆Fq of Eq. (3.19). 
 

4. Interpretation of the Parameter q 

Let us consider again the square fractional deviation from a MB distribution 
( ) NN
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We have already discussed that appreciable fractional deviations are, in general, very small. 
Nevertheless, few islands of phase space can give a non negligible contribution to deviation of 
quantities calculated within the standard space, like, for instance, rates of nuclear reactions or atomic 
processes or rates of chemical reactions. We define, as usual, the radial correlation function 

∑
≠

−+=
ji

ji rrr
N
Vrg )()( δ ,      (4.2) 

(g(r) = 1: perfect gas). 
By using the relation 
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from Eq. (4.1) we can write the following relation: 
( ) [ ]∫ −+=
−

−
− drrg

VN
qq 1)(11

4
1

32
3799

2
118

2

.   (4.4) 

Disregarding, for simplicity, the term in (  we have 2)1 q−







 −+−= ∫ drrg

VN
q ]1)([11

9
11 .     (4.5) 

Therefore, q→ 1 if both the conditions g(r) → 1 and N→ ∞ are fulfilled. Otherwise, if N→ ∞ but the 
system is not a perfect gas [ : ]1)( ≠rg

[ ]∫ −−= drrg
V

q 1)(1
9
11 ,      (4.6) 

and if the system is a perfect gas (g = 1) but the number of particles is small and finite: 

N
q

9
11−= .       (4.7) 

Finally, in the limit of a gas/fluid of N particles, we have found a physical interpretation of the 
nonextensive parameter q in terms of the particle correlation function among others (see Wilk et al [6], 
Beck [7], Beck and Cohen [8] and Tsallis [29]). It can be considered valid at least for values of q not 
too different from unity, (small deviations from MB distribution). 
 
5. Conclusions 

We have calculated the phase space volume Ω and the corresponding elementary cell ∆Ω, occupied 
by N classical, identical particles composing a weakly nonextensive system, at equilibrium (or in a 
steady state, or long-term stationary state of a nonequilibrium system). Both quantities must differ 
from their extensive MB values Ω0 and ∆Ω0 because we require that the number W0 of available 
microstates in the MB extensive phase space Ω0 equals the number W in the deformed (nonextensive) 
space: W0 = W. This condition imposes particular analytical expressions of ∆Ω0 and ∆Ω. The number 
of elementary cells results equal to the number of particles N. 

The two elementary cells result to be macrocells if compared to the usually taken elementary cell 
volume, equal to the third power of the Planck constant , with consequences on the expression of 
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thermodynamic quantities depending on elementary cell, like, for instance, the partition function, 
constant of entropy, chemical potential and free energy. 

We have applied results on elementary cell to nonextensive classical gas, recovering known results 
(equation of state) in NETS literature where ∆Ω is usually taken equal to h3 or left undetermined. 

We have derived expressions of entropy, chemical potential and free energy and discussed more 
deeply the case of chemical potential. Applications to particular systems and physical cases like 
nuclear fusion reactions in plasmas and chemical reactions will be reported elsewhere. Through 
expressions of Ω and ∆Ω we have calculated fractional deviation from Maxwell-Boltzmann 
distribution. A physical meaning of the nonextensive Tsallis parameter q in terms of the correlation 
function has been derived. 
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