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Abstract: The direct aerobic coupling reaction of arenes with olefins was successfully 
achieved by the use of Pd(OAc)2/molybdovanadophosphoric acid (HPMoV) as a key 
catalyst under 1 atm of dioxygen. This catalytic system could be extended to the coupling 
reaction of various substituted benzenes with olefins such as acrylates, aclrolein, and 
ethylene through the direct aromatic C-H bond activation. 
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1. Introduction 

The transition-metal-catalyzed arylation of olefins with aryl halides or triflates, which referred to as 
the Mizoroki-Heck reaction, is an important and a highly versatile C-C bond transformation for the 
synthesis of arene derivatives [1,2]. However, this existing methodology does not avoid the formation 
of undesired waste salts arising from the use of aryl halides and bases. Therefore, the development of 
the direct oxidative couplings of arenes with olefins to afford alkenyl arenes without formation of any 
salts is highly desired, especially from the environmental and industrial point of view [3–7]. 

The first waste-free oxidative coupling of arenes was achieved by Fujiwara and Moritani by the 
stoichiometric reaction of benzene with styrene-palladium chloride dimer in AcOH to give stilbenes in 
24% yield [8]. Thereafter, the same group presented the catalytic aerobic oxidative Mizoroki-Heck 
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type reaction by using Pd(OAc)2 combined with Cu(OAc)2 under elevated oxygen pressure (50 atm) 
[9]. After several modified versions of this prototype reactions were reported [10–12], several practical 
advances in the development of the catalytic method was evident in recent years [13–15]. For instance, 
Kitamura and Fujiwara reported that the use of a stoichiometric amount of tert-butyl hydroperoxide as 
the oxidant in the Pd(OAc)2 combined with benzoquinone as catalysts led to a significant development 
in more active reoxidation system [13]. Furthermore, Jacobs and coworkers found that the addition of 
small amounts (4–20 mol %) of Mn(OAc)3 or benzoic acid are effective for the Pd(II)-catalyzed 
oxidative Mizoroki-Heck type reaction under 8 atm of O2 [14]. This methodology has been recently 
extended to the Pd (II)-catalyzed C-H bond alkenylation of anilides and heteroarenes such as pyrroles 
and indoles [15–17]. 

In this review, we summarize recent progress from our laboratory in terms of the aerobic oxidative 
coupling reaction of arenes with olefins such as acrylates [18,19], α,β-unsaturated aldehydes [20,21] 
as well as ethylene [22] under ambient dioxygen atmosphere by using Pd(OAc)2/molybdovanado-
phosphoric acid (HPMoV) as a key catalyst system.  

2. Results and Discussion 

2.1. Oxidative Mizoroki-Heck type coupling reaction of arenes with acrylates 

The reaction of benzene (1a) with ethyl acrylate was chosen as a model reaction and carried out 
under various reaction conditions (Equation 1). The results are shown in Table 1.  

 

(1) 

The coupling reaction of 1a (30 mmol) and 2a (1.5 mmol) catalyzed by Pd(OAc)2 (0.1 mmol, 
6.7 mol %) combined with H4PMo11VO40·30H2O (HPMo11V1, 0.02 mmol, 1.3 mol %) proceeded 
smoothly in the presence of small amounts of acetylacetone (0.1 mmol, 6.7 mol %) and NaOAc  
(0.08 mmol, 5.3 mol %) under 1 atm of O2 in propionic acid at 90 ºC for 2.5 h to give ethyl cinnamate 
(3a) and ethyl β-phenylcinnamate (4a) in 74% and 13% yields, respectively. In this reaction, ethyl 3-
propionyloxyacrylate (5) derived from 2a and propionic acid was obtained in 4% as by-products  
(entry 1). The product distribution of 3a and 4a was controlled by the reaction time. When the reaction 
time was prolonged to 5 h, 4a was formed in good yield (81%) as a major adduct (entry 2). Removing 
of NaOAc or acetylacetone from the present catalytic system resulted in the decrease of the coupling 
products, 3a and 4a (entries 3 to 4). It is considered that acetylacetone would be functioned as a ligand 
in the catalyst system, and the addition of acetylacetone is not necessary when Pd(acac)2 was 
employed in place of Pd(OAc)2 (entry 5). The use of excess amount of 1a is favorable and when the 
amount of 1a was reduced from 30 mmol to 6 mmol, the yield of 3a decreased to 51% and the yield of 
5 was increased from 4% to 16% (entry 6). As for a choice of a solvent in this reaction, the use of 
acetic acid instead of propionic acid resulted in considerable decrease of the yields of 3a and 4a  
(entry 7). The yield of coupling products, 3a and 4a, was markedly influenced by the combination of 
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Pd(OAc)2 with molybdovanadophosphoric acids (HPMoV) which serve as reoxidation catalysts of the 
reduced Pd(0) to Pd(II) during the reaction course. Thus, the reaction was sluggish in the absence of 
HPMoV (entry 8). The performance of various heteropoly acid including HPMoV as reoxidation 
catalysts was affected by the vanadium content in the heteropolyacid (entries 9 to 12). The reaction by 
the use of 12-molybdophosphoric acid (HPMo12) not involving V ion brought about 3a in low yield 
(52%) (entry 12). In addition, the effect of several alkali metal acetates as a base, was examined. As a 
result, NaOAc was found to be the best base in the present catalytic system (entry 1 vs. entries 13–16). 
One of the most important feature of this method is that the reaction smoothly proceeded under 1 atm 
of O2. Moreover, it is useful from the practical synthetic viewpoint that the reaction tolerated under air 
in place of pure O2, and 3a was obtained in 74% yield for 5 h (entry 17). However, the reaction in the 
absence of dixoygen, namely under Ar (1 atm), was difficult to take place (entry 18). 

Table 1. Oxidative coupling of benzene (1a) with ethyl acrylate (2a) catalyzed by Pd(II)/HPMoV. a 

Entry HPMoV Base 
Yield/% b 

3a 4a 5 
1 H4PMo11VO40·30H2O  NaOAc 74 13 4 
2c H4PMo11VO40·30H2O NaOAc 6 81 ndd 
3 H4PMo11VO40·30H2O None 6 ndd 4 
4 e H4PMo11VO40·30H2O NaOAc 53 2 8 
5 e,f H4PMo11VO40·30H2O NaOAc 75 16 1 
6g H4PMo11VO40·30H2O NaOAc 51 5 16 
7h H4PMo11VO40·30H2O NaOAc 20 nd d nd d 
8 None NaOAc 9 nd d 1 
9 H5PMo10V2O40·28H2O NaOAc 73 14 5 
10 H6PMo9V3O40·30H2O NaOAc 70 13 5 
11 H7PMo8V4O40·28H2O NaOAc 62 4 5 
12 H3PMo12O40·30H2O NaOAc 43 1 4 
13 H4PMo11VO40·30H2O LiOAc 66 5 7 
14 H4PMo11VO40·30H2O CsOAc 13 nd d 1 
15 H4PMo11VO40·30H2O KOAc 11 nd d nd d 
16 H4PMo11VO40·30H2O NH4OAc 12 nd d nd d 
17i H4PMo11VO40·30H2O NaOAc 74 8 6 
18j H4PMo11VO40·30H2O NaOAc 10 Nd d 3 

a A mixture of 1a (30 mmol) and 2a (1.5 mmol) was reacted in the presence of Pd-catalyst 
(0.1 mmol, 6.7 mol %), HPMoV (0.02 mmol, 1.3 mol %), base (0.08 mmol, 5.3 mol %) and 
acetylacetone (0.1 mmol, 6.7 mol %) in EtCOOH (5 mL) at 90 °C for 2.5 h. b GC yield based on 2a 
used. c Reaction time was 5 h. d Not detected by GC. e The reaction was performed in the absence of 
acetylacetone. f Pd(acac)2 was used as catalyst. g 1a (6 mmol) was used. h AcOH was used instead 
of EtCOOH. i The reaction was performed under air (1 atm) for 5 h. j The reaction was performed 
under argon (1 atm). 

 
Various arenes (1) were allowed to react with acrylates 2 under the optimized reaction conditions. 

These results are summarized in Table 2. Benzene (1a) reacted smoothly with several acrylates 2b-2e 
to give the corresponding cinnamates 3b-3d in 68–73% yields with concomitant formation of  
β-phenylcinnamate in 11–16% yields (entries 1 to 3). The arylation of 4-phenyl-2-butenone (2e) under 
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these reaction conditions gave 1,1-diphenyl-3-butenone (3e) in 93% yield (entry 4). Reaction of 
various arenes with ethyl acrylate (2a) was also carried out under optimized reaction conditions 
(entries 4-10). The reaction of toluene (1b) with 2a afforded the coupling products 3f in 70% total 
yield as a isomeric mixture consisting of o-3f : m-3f : p-3f = 15:41:44 (entry 5).  

Table 2. Oxidative coupling of various arenes 1 and acrylates 2 catalyzed by Pd(II)/HPMoV. a 

 
a A mixture of arene 1 (30 mmol) and olefins 2 (1.5 mmol) was reacted in the presence of Pd-
catalyst (0.1 mmol, 6.7 mol %), H4PMo11VO40·30H2O (0.02 mmol, 1.3 mol %), NaOAc (0.08 mmol, 
5.3 mol %) and acetylacetone (0.1 mmol, 6.7 mol %) in EtCOOH (5 mL). b β-methylcinnamates are 
formed in 11–16% yields as by-products. c Ratio of o:m:p. d Ethyl cinnamate was obtained in 5%.  
e Arene (5 mmol) was used. g Arene (3 mmol) was used. h 5 wt % Pd(OAc)2/C was used instead of 
Pd(OAc)2. 
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Anisole (1c) was subjected to react with 2a at 60 ºC to give a mixture of coupling products 3g in 
73% total yield (entry 6). The reaction of chlorobenzene (1d) and bromobenzene (1e) with 2a gave the 
corresponding oxidative coupling products, 3h and 3i exclusively, in 74% and 49% yields, 
respectively. It is noteworthy that the reaction of 1d and 1e gave oxidative coupling products 
exclusively, in preference to the products based on the Mizoroki-Heck reaction (entries 7 and 8). The 
reaction of 1,2-dimethoxybenzene (1f) with 2a afforded ethyl 3,4-dimethoxycinnamate (3j) in 67% 
yield (entry 9). Unfortunately, the reaction of 2-methyl-thiophene (1g) with 2a under the above-
mentioned reaction conditions did not take place at all. Alternatively, Pd(OAc)2 supported on active 
carbon, Pd(OAc)2/C, was efficient for the coupling of 1g with 2a to give the corresponding coupling 
product, 3k, in 86% yield (entry 10).  

In this reaction, reoxidation step is important to determine the turn-over number (TON) of the 
present reaction, which was markedly affected by the choice of HPMoV catalysts. Therefore, the 
reaction of 1a (45 mmol) and 2a (3 mmol) was carried out in the presence of Pd(OAc)2 (0.03 mmol), 
HPMoV (0.02 mmol), NaOAc (0.08 mmol), acetylacetone (0.03 mmol), and EtCOOH (5 mL) under 
O2 (1 atm) at 90 °C for 12 h. The results of TONs for the formation of 3a and 4a by using various 
HPMoV under these conditions were as follows: 19 for H3PMo12O40·30H2O, 76 for 
H4PMo11VO40·30H2O, 10 for H5PMo10V2O40·28H2O, 8 for H6PMo9V3O40·30H2O, and 6 for 
H7PMo8V4O40·28H2O.  

We previously reported that combined catalysts of Pd(OAc)2 with HPMo11V1 and HPMo12 as the 
reoxidation catalyst was the most active for the Pd-catalyzed oxidative coupling of benzene to 
biphenyl under O2 (1 atm) [23]. In the present reaction, the best TON (121) was observed by the 
reaction in the presence of Pd(OAc)2 combined with a 1:1 mixture of HPMo11V1 and HPMo12 under 
these reaction conditions.  

To obtain mechanistic information on the present reaction, the initial rate of the reaction of benzene 
1a with 2a was compared with that of benzene-d6 (1a-d) with 2a under the same conditions as entry 1 
in Table 1. It was found that a kinetic isotope effect for the coupling reaction was evident and the rate 
of the reaction of 1a with 2a was four times faster than that of benzene-d6 (1a-d) with 2a, i.e.,  
kH/kD ≈ 4. The same results (kH/kD ≈ 4) were obtained by the reaction of a 1:1 mixture of 1a and 1a-d 
with 2a under these conditions. These facts indicate that the cleavage of the C-H bond of the 1a is the 
rate-determining step in a sequence of reactions. 

Although a detailed reaction mechanism remains to be further elucidated, it is possible to explain 
the reaction rationally by a pathway similar to that proposed by Kitamura and Fujiwara [13]. A 
plausible reaction path is shown in Scheme 1. First, electrophilic attack of a Pd(II) to arene 1 would 
initiate the reaction, leading to a σ-aryl-palladium (II) intermediate (A), which is considered to be the 
rate-determining step by judging from the labeled experiment (vide supra). The insertion of olefins like 
acrylate 2 to σ-aryl-palladium (II) intermediate (A) takes place to give σ-alkyl-palladium (II) 
intermediate B. Subsequently, β -hydride elimination of the B gives the desired coupling products 3 
along with Pd-H intermediate. The Pd-H intermediate is reduced to Pd(0), and the resulting Pd(0) 
species is reoxidized by [HPMoV]ox. to generate initial Pd(II) catalyst. The [HPMoV]red. is easily 
oxidized to [HPMoV]ox. with atomospheric dioxygen. 
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Scheme 1. A possible reaction path for the coupling of arene with acrylate. 

 

2.2. Oxidative Mizoroki-Heck type coupling of benzenes with α,β-unsaturated aldehydes 

The oxidative coupling reaction of benzene (1a) with α,β-unsaturated aldehydes such as acrolein 
(6a) was also achieved by slight modifications of the reaction conditions as reported in section 2.1., 
which leads to cinnamaldehyde (7a) and β-phenyl cinnamaldehyde (8) as products (Equation 2). 

 

 
 

The results of the reaction of 1a with 6a under various conditions are summarized in Table 3. The 
best result for the formation of cinnamaldehyde (7a) was attained by the reaction conditions as shown 
in Table 3, entry 1. Namely, a mixture of 1 (30 mmol) and 6a (1.5 mmol) was allowed to react under 
the influence of Pd(OAc)2 (0.1 mmol, 6.7 mol %), H4PMo11VO40·26H2O (HPMo11V1,  
0.02 mmol, 1.3 mol %), Na2CO3 (0.05 mmol, 3.4 mol %), and dibenzoylmethane (DBM) (0.1 mmol, 
6.7 mol %) under O2 (1 atm) in propionic acid (5 mL) at 90 ºC for 1.5 h, giving 7a in 59% yield along 
with 8 (5%). In the present reaction, a trace amount of cinnamic acid was detected by GC. Similar to 
the reaction of 1a and acrylate 2a (see Section 2.1), prolonged reaction time resulted in dicoupling 
product 8a as a major product rather than 3 (entries 1–4). The maximum yield of 7a was attained in  
1.5 h (entries 1). The best yield of 7a was obtained when the reaction was carried out by using the 
excess amount of 1a (30 mmol) to 6a (1.5 mmol). However, the yield of 7a was still good to high 
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when the amount of 1 was reduced to 20 mmol (entry 5). The addition of DBM as a ligand was 
effective in the present reaction and the yield of 7a in the absence of a DBM ligand resulted in a 
decrease of the yield of 7a to 33% (entry 6). As for a ligand, the use of benzoylacetone led to a similar 
result as that of DBM (entry 7). When acetylacetone (acacH) which is an effective ligand in the 
reaction of 1a and 2a (section 2.1) was employed instead of DBM, longer reaction time is needed to 
obtain the same catalytic activity (entries 8 and 9). The addition of the base is indispensible in the 
reaction and the reaction in the absence of Na2CO3 resulted in a considerable decrease of the yield of 
7a and 8a, and several unidentified products (probably oligomers of 6a) were formed (entry 10). A 
slight decrease of the yield of 7a was observed when NaOAc was added as a base (entry 11).  

Furthermore, the effect of the HPMoV was examined under the reaction conditions as entry 1, 
Table 3 (entries 12–16). The best result was obtained by using H4PMo10VO40·26H2O to afford 7a in 
59% yield as shown in entry 1. Increase of the V content in the HPMoV was found to bring about a 
decrease of the yields of 7a (entries 12–14). Moreover, vanadotungstphosphoric acid 
(H5PW10V2O40·27H2O) did not catalyze the present coupling reaction at all (entry 15). 
H3PMo12O40·30H2O not containing a vanadium atom was less efficient catalyst than HPMoV  
(entry 16). 

In this reaction, acrolein (6a) was rapidly consumed when the reaction started, and the coupling 
product 7a was reached maximum after 1.5 h, and gradually decreased because of further coupling 
with 1a leading to dicoupling product 8a. To confirm this sequential pathway for the formation of 8a, 
an independent reaction of 7a with 1 under these conditions gave 8a in 61% yield.  

Table 3. Oxidative coupling of benzene (1a) with acrolein (6a) catalyzed by Pd(II)/HPMoV. a 

Entry HPMoV Ligand Time/h Yield/% b 
7a 8a 

1 H4PMo11VO40·26H2O  DBM 1.5 59 5 
2 H4PMo11VO40·26H2O DBM 1 26 nd d 
3 H4PMo11VO40·26H2O DBM 2 45 18 
4 H4PMo11VO40·26H2O DBM 3 17 40 
5c H4PMo11VO40·26H2O DBM 1.5 53 6 
6 H4PMo11VO40·26H2O None 1.5 33 nd d 
7 H4PMo11VO40·26H2O benzoylacetone 1.5 52 6 
8 H4PMo11VO40·26H2O acacH 1.5 48 1 
9 H4PMo11VO40·26H2O acacH 2 54 8 
10e H4PMo11VO40·26H2O acacH 2 3 nd d 
11f H4PMo11VO40·26H2O acacH 2 44 2 
12 H5PMo10V2O40·28H2O DBM 1.5 54 6 
13 H6PMo10V3O40·30H2O DBM 1.5 47 6 
14 H7PMo8V4O40·28H2O DBM 1.5 35 1 
15 H5PW10V2O40·27H2O DBM 1.5 ndd nd d 
16 H3PMo12O40·30H2O DBM 1.5 24 nd d 
a A mixture of 1a (30 mmol) and 6a (1.5 mmol) was reacted in the presence of Pd(OAc)2 (0.1 mmol, 
6.7 mol %), HPMoV (0.02 mmol, 1.3 mol %), Na2CO3 (0.05 mmol, 3 mol %) and ligand (0.1 mmol, 
6.7 mol %) under O2 (1 atm) in EtCOOH (5 mL). b GC yield based on 6a used. c 1a (20 mmol) was 
used. d Not detected by GC. e The reaction was performed in the absence of Na2CO3. f NaOAc 
(0.08 mmol) was used instead of Na2CO3. 

 
Several substituted benzenes were reacted with 2 under varying conditions and the results are 

summarized in Table 4. 
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Table 4. Oxidative coupling of arenes 1 with acrolein (6a) catalyzed by Pd(II)/HPMoV. a 

H3C CHOH3C
59 (13:44:43)b

1

1b

CHO
2 54 (0:56:44)b

MeO CHOMeO
3c 45 (17:10:73)b

MeO

MeO

CHOMeO

MeO
4c 47d

Arene (1)Entry Products (7)

O

O

CHOO

O
5c 45 (45:55)d

1h

1c

1f

1i

7b

7c

7d

7e

7f, 7f'

Yield / %

 
a A mixture of 1 (30 mmol) and 6a (1.5 mmol) was reacted in the presence of Pd(OAc)2 (0.1 mmol, 
6.7 mol %), H4PMo11VO40·26H2O (0.02 mmol, 1.3 mol %), Na2CO3 (0.05 mmol, 3 mol %) and 
DBM (0.1 mmol, 6.7 mol %) under O2 (1 atm) in EtCOOH (5 mL) at 90 °C, 1.5 h. b Ratio of o-:m-
:p-isomer. c 1 (10 mmol) was reacted with 6a (1.5 mmol) by Pd(OAc)2 (0.1 mmol, 6.7 mol %), 
H4PMo11VO40·26H2O (0.02 mmol, 1.3 mol %), Na2CO3 (0.05 mmol, 3 mol %) and acacH (0.1 
mmol, 6.7 mol %) under O2 (1 atm) in EtCOOH (5 mL) at 90 °C, 1 h. d 2,3-
Dimethoxycinnamaldehyde was obtained 2% yield as by-product. e Ratio of 2,3-methylenedioxy 
cinnamaldehyde (7f) to 3,4-methylenedioxy cinnamaldehyde (7f’). 

 
The reaction of toluene (1b) with 6a afforded a mixture of structural isomers 7b (o:m:p = 13:44:43) 

in 59% yield along with small amounts of dicoupling products (entry 1). In the reaction with t-
butylbenzene (1h) having bulky alkyl group, m- and p-products were obtained and o-product was not 
detected at all (entry 2). Anisole (1c) was subjected to react with 6a to give a mixture of the 
corresponding coupling products 7d (o:m:p = 17:10:73) in 45% total yield (entry 3). The reaction of 
1,2-dimethoxybenzene (1f) with 6a proceeded in high regioselectivity to produce 3,4-
dimethoxycinnamaldehyde (7e) (45%), and the yield of the isomer, 2,3-dimethoxycinnamaldehyde, 
was found to be less than 2% (entry 4). In contrast, the reaction of 1,2-methylenedioxybenzene (1i) 
with 6a led to a 45:55 mixture of 2,3- and 3,4-methylenedioxycinnnamaldehydes (7f and 7f’) in 45% 
yield (entry 5).  
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The oxidative coupling of methacrolein (6b) with 1a was carried out under the conditions as entry 1, 
Table 3 (Equation 3). 

 
In this reaction, a mixture of three isomeric coupling products consisting of 9a, 9b and 9c were 

obtained in 54% yield (9a:9b:9c = 65:6:29) along with the dicoupling product 10 (7%). Based on the 
reaction mechanism as illustrated in Scheme 1, the reaction would proceed through a phenyl-palladium 
intermediate (B’) formed by the insertion of phenyl-palladium σ-complex (A’) to 6b. Therefore, 9a, 9b 
and 9c can be formed by the following β-Hydrogen elimination step via path a (9a and 9b: elimination 
of Ha or Ha’) and path b (9c: elimination of Hb) (Scheme 2) [12]. 

Scheme 2. Formation of 9a, 9b, and 9c from phenyl-palladium intermediate (B’). 

CHO
Ha

Ph
Ha' Pd

Hb
Hb

Hb
L

B'

CHO

Ph
CHO

LPh Pd

Ph
CHO

A'

+

path a
- HaPdL

path b
- HbPdL

9a and 9b 9c

6b

or
- Ha'PdL

-Hydrogen elimination step
(path a and path b)

 
 

2.3. Oxidative Mizoroki-Heck type coupling of benzenes with ethylene 

Synthesis of styrene by the oxidative arylation of ethylene with benzene under mild reaction 
conditions is also an attractive in organic synthesis, because the styrene is produced by the Friedel-
Crafts reaction of benzene with ethylene followed by dehydrogenation of the resulting ethylbenzene. 
We performed the aerobic oxidative coupling reaction of benzene (1a) with ethylene (11) catalysed by 
the Pd(OAc)2/H4PMo11VO40·15H2O system, and styrene (12) was obtained as a major adduct. The 
results under various reaction conditions are summarized in Table 5. 
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Table 5. Oxidative coupling of benzene (1a) with ethylene (11) catalyzed by Pd(II)/HPMoV. a  

entry HPMoV Base 
TONb (μmol) 

12 13 14 15 

1 H4PMo11VO40·15H2O NaOAc  20 (202) 5.2 (25) 5.0 (50) 3.0 (30) 
2c H4PMo11VO40·15H2O NaOAc  4.6 (46) ndd 8.3 (82) 4.5 (45) 
3e H4PMo11VO40·15H2O NaOAc  7.5(75) 0.9 (4) 6.0 (59) 3.9 (39) 
4f H4PMo11VO40·15H2O NaOAc  14 (138) 4.8 (24) 3.8 (38) 4.9 (49) 
5 H4PMo11VO40·15H2O None 1.6 (16) ndd 2.0 (20) ndd 
6 H4PMo11VO40·15H2O LiOAc 9.1 (90) 2.6 (13) 2.9 (29) 2.9 (29) 
7 H4PMo11VO40·15H2O KOAc  5.9 (59) 0.8 (4) 1.7 (17) 1.4 (14) 
8g H4PMo11VO40·15H2O Na2CO3 19 (188) 9.7 (48) 5.2 (52) 7.1 (71) 
9h H4PMo11VO40·15H2O NaOAc 14 (142) 4.0 (20) 3.4 (33) -i 
10j H4PMo11VO40·15H2O NaOAc 12 (119) ndd 19 (190) -i 
11k H4PMo11VO40·15H2O NaOAc 5.3 (53) ndd 24 (243) -i 
12l H4PMo11VO40·15H2O NaOAc 14 (137) 4.9 (24) 5.2 (52) -i 
13 H5PMo10V2O40·28H2O NaOAc 16 (154) 4.2 (21) 4.4 (44) 3.8 (38) 
14 H6PMo9V3O40·30H2O NaOAc 17 (166) 7.7 (38) 2.9 (29) 4.0 (40) 
15 H7PMo8V4O40·28H2O NaOAc 19 (192) 4.9 (2.4) 6.4 (64) 3.6 (36) 
16 H3PMo12O40·30H2O NaOAc 22 (223) 11 (53) 2.9 (29) 0.3 (3) 
17m H3PMo12O40·30H2O NaOAc 42 (420) 4.4 (22) 3.5 (35) ndd 
18m,n H3PMo12O40·30H2O NaOAc 100 (1003) 67 (335) 3.9 (39) ndd 
19 H3PMo11WO40·27H2O NaOAc 24 (239) 12 860) 3.0 (30) ndd 
20 H3PMo10W2O40·29H2O NaOAc 23 (228) 7.8 (39) 2.8 (28) ndd 
21 H4SiMo12O40·27H2O NaOAc 22 (218) 7.8 (39) 2.9 (29) ndd 
22 H5PW10V2O40·27H2O NaOAc 1.5 (15) trace ndd ndd 

a A mixture of benzene (1a), Pd(OAc)2 (10 μmol), H4PMo11VO40·15H2O (10.3 mg, ca. 5 μmol), 
NaOAc (25 μmol), dibenzoylmethane (DBM) (30 μmol) was allowed to react under 0.9 atm of 
etyhylene (11) and 1.6 atm of air in EtCOOH (2 mL) at 90 °C for 8 h. b Turnover number (TON) 
based on Pd(OAc)2 used. c The reaction was performed in the absence of dbm. d Not detected by 
GC. e Dbm (10 μmol) was used. f Acetylacetone was used instead of dbm. g Na2CO3 (13 μmol) was 
used. h The reaction was performed under ethylene/air = 0.5 atm/1 atm. i Not determined. j The 
reaction was performed under ethylene/air = 3.6 atm/6.4 atm. k The reaction was performed 
under ethylene/air = 5.4 tm/9.6 atm. l The reaction was performed under ethylene/air = 0.9 
atm/29.1 atm. m 1a (120 μmol) was reacted with 0.9 atm of 11 in the presence of Pd(OAc)2  
(10 μmol), HPMo11V1 (6.8 μmol), NaOAc (32 μmol), and dbm (120 μmol) in EtCOOH (8 mL) 
under 1.6 atm of air using a 120 mL autoclave. n The reaction was performed at 120 ºC. 
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The reaction of benzene (1a) (30 mmol) was performed with a mixed gas of ethylene (11) (0.9 atm, 
ca. 2.0 mmol) and air (1.6 atm) in the presence of Pd(OAc)2 (10 μmol, ca. 0.5 mol % based on 11), 
H4PMo11VO40·15H2O (10.3 mg, ca. 5 μmol), NaOAc (25 μmol), dibenzoylmethane (DBM) (30 μmol) 
and propionic acid (2 mL) at 90 ºC for 8 h. As a result, styrene (12) was obtained in 202 μmol 
corresponding to 20 turnover numbers of Pd (TON = 20) with concomitant formation of trans-stilbene 
(13) in 25 μmol (TON = 5.2), and vinyl propionate (14) in 50 μmol (TON = 5.0), and phenol (15) in 
30 μmol (TON = 3.0) (entry 1). Similar to the result reported in the reaction of benzene with acrylates 
and acrolein, the addition of ligand such as DBM brought about the improvement of the catalytic 
activity. The amount of DBM was reduced from 30 μmol to 10 μmol, the yield of 12 was decreased to 
75 μmol (TON = 7.5) (entry 3). The reaction in the absence of DBM gave 12 in low yield and the 
catalyst was deactivated by forming the Pd black during the reaction course. As a ligand, acetylacetone 
(acacH) showed the similar catalytic activity for the formation of 12 (entry 4). The addition of the base 
is necessary to achieve the reaction and the reaction was sluggish in the absence of NaOAc (entry 5). 
The use of other base such as LiOAc or KOAc instead of NaOAc resulted in the lower TON of Pd for 
the formation of 12 (entries 6 and 7). Alternatively, Na2CO3 can also be used as an efficient base in the 
present reaction (entry 8). 

The reaction was markedly influenced by the concentrations of ethylene and air, and the coupling 
reaction of 1a with 11 was conducted under several varying ethylene/air pressures (entriy 1 vs. entries 
9–12). Under the reaction of ethylene/air = 0.9 atm/1.6 atm, TON of Pd for 12 attained maximum 
(TON = 20) (entry 1). Thus, when the reaction of was performed under lower pressure of ethylene 
(ethylene/air = 0.5 atm/1 atm), the yield of 12 was decreased to 142 μmol (TON = 14) (entry 9). 
Furthermore, the amount of vinyl propionate 14 was increased with increasing of ethylene pressure. 
The yields of 14 was 190 μmol (TON = 19) and 243 μmol (TON = 24) when the reaction was carried 
out under ethylene/air = 3.6 atm/6.6 atm and 5.4/9.6 atm, respectively (entries 10–11). The reaction 
under high pressure of air (29.1 atm) with 0.9 atm of ethylene resulted in slightly lower catalytic 
activity (TON = 14) (entry 12). 

As mentioned in the previous section, the role of HPMoV is important as the reoxidation system of 
the reduced Pd(0) catalyst Therefore, the reaction was performed by the use of HPAs under these 
conditions. In this reaction, HPAs having various V contents such as H5PMo10V2O40·28H2O, 
H6PMo9V3O40·30H2O and H7PMo8V4O40·28H2O can be used as reoxidation catalysts and afforded 12 
in comparable yields with that of H4PMo11VO40·15H2O (entries 13 to 15). It was found that 
H3PMo12O40·30H2O not including V ion was found to serve a good reoxidation catalyst (entries 16–18) 
and the highest total TON of Pd for the formation of 12 and 13 was reached to 167, under the optimum 
reaction conditions (entry 18). In addition, various heteropoly acids such as H4PMo11WO40·27H2O, 
H3PMo10W2O40·29H2O, and H4SiMo12O40·27H2O showed similar catalytic activities (entries 19–21). 
However, the heteropoly acid without molybdenum ion such as H5PW10V2O40·27H2O was found to be 
inactive for the present reaction (entry 22). It is noteworthy that phenol (15) was not produced in the 
reaction using heteropoly acids not including V ion. By judging of these results, it is considered that 
molybdenum ion in the heteropoly acids is an essential component to promote the reoxidation of the 
reduced Pd(0) to Pd(II) for the present reaction.   
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3. Experimental  

3.1. General procedure for oxidative coupling of benzene (1a) with ethyl acrylate (2a) (entry 1, Table 1) 

A solution of Pd(OAc)2 (0.1 mmol), H4PMo11V1O40·30H2O (HPMo11V1) (46.7 mg, ca. 0.02 mmol), 
NaOAc (0.08 mmol), acetylacetone (0.1 mmol), benzene (1a) (30 mmol) and ethyl acrylate (2a) 
(1.5 mmol) in propionic acid (5 mL) was placed in a round bottom flask (30 mL) equipped with a 
balloon filled with O2, and the mixture was allowed to react under stirring at 90 ºC for 2.5 h. The 
reaction gave ethyl cinnamate (3a), β-phenylcinnamate (4a) and 3-propionylacrylate (5) in 74%, 14% 
and 5% yields, respectively. All yields were determined by GLC analysis using nonane as internal 
standard. The products were characterized by 1H- and 13C-NMR and GC-MS, respectively. 

3.2. General procedure for oxidative coupling of benzene (1) with ethylene (11) (entry 1 in Table 5) 

Caution: In order to avoid an explosion of a mixture of ethylene and air, the reaction was carried 
out at the ethylene concentration deviated from explosion limits ranging in 3.1 to 32%. To a 50 mL 
stainless steel autoclave equipped with a magnetic stir bar were placed Pd(OAc)2 (10 μmol), 
H4PMo11VO40·15H2O (10.4 mg, ca. 5 μmol), NaOAc (25 μmol), dibenzoylmethane (DBM) (30 μmol), 
and benzene (1a) (30 mmol) and propionic acid (2 mL). To the autoclave was introduced with 0.9 atm 
of ethylene gas (11) and 1.6 atm of air, and the mixture was stirred at 90 ºC for 8 h. All yields were 
detected by GLC analysis using dodecane as internal standard. The products were identified through a 
comparison of these analytical data with those of authentic samples. 

4. Conclusions 

In conclusion, we have shown the first direct oxidative coupling of benzenes with acrylates, α,β-
unsaturated aldehydes, and ethylene under atmospheric dioxygen and air by using Pd(OAc)2 combined 
with HPMoV. In this catalytic system, addition of ligand such as acetylacetone (acacH) and 
dibenzoylmethane (DBM) was effective to suppress the Pd(0) black precipitation. All the presented 
oxidative coupling reactions in this review uses molecular oxygen as terminal oxidant. Therefore, 
these reactions provide very useful organic transformations from environmental and economical points 
of view. 
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