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Abstract: Linear polystyrene-stabilized PdO nanoparticles (PS-PdONPs) were prepared by 

thermal decomposition of Pd(OAc)2 in the presence of polystyrene. X-ray diffraction 

(XRD) and transmission electron microscopy (TEM) indicated the production of PdO 

nanoparticles. The loading of palladium was determined by inductively coupled plasma-

atomic emission spectroscopy (ICP-AES). PS-PdONPs exhibited high catalytic activity for 

Mizoroki-Heck reactions under air in water and could be recycled without loss of activity. 
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1. Introduction 

The coupling reaction of vinyl or aryl halides with various alkenes in the presence of palladium 

catalyst is known as the Mizoroki-Heck reaction and represents a powerful tool for building up a new 

carbon-carbon bonds [1,2]. Recently, attention has focused on the use of palladium nanoparticles 

(PdNPs) as catalysts in organic synthesis [3-5]. PdNPs supported by a variety of substrates, including 

poly(N-vinylpyrrolidone)- or several organic moieties-grafted silica [6,7], alumina-based oxides [8], 

mesoporous silica or NiFe2O4 [9,10], and chitosan [11], have been shown to exhibit high catalytic 

activity for the Mizoroki-Heck reaction in aprotic, polar solvents such as N,N-dimethylformamide and 
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dimethylacetamide. However, these solvents are toxic and have high boiling points, which cause 

difficulties in isolating the products after the reactions. This problem can be minimized by using ionic 

liquids [12] or performing the reaction under solvent-free conditions [13]. 

On the other hand, the use of water as a reaction medium for organic synthesis has recently received 

much attention because water is a readily available, safe, and environmentally benign solvent [14-18]. 

Several research groups have reported PdNPs-catalyzed Mizoroki-Heck reactions in water [19-25]. For 

example, Cacchi et al. have developed fluorous silica gel-immobilized perfluoro-tagged PdNPs that 

can be successfully used and recycled in the Mizoroki-Heck reaction of aryl iodides with allylic 

alcohols under aerobic phosphine-free conditions [26]. 

Recently, we found that PdO nanoparticles (PdONPs) are readily stabilized on linear polystyrene, 

and the resultant polystyrene-stabilized PdONPs (PS-PdONPs) have high catalytic activities for Suzuki 

and copper-free Sonogashira coupling reactions in water [27-29]. Our continuing interest in the 

catalytic utility of PS-PdONPs led us to examine herein the Mizoroki-Heck reaction in water. 

2. Results and Discussion 

2.1. Preparation and Characterization of PS-PdONPs 

Linear polystyrene-stabilized PdO nanoparticles (PS-PdONPs) were prepared according to our 

previous paper [27]. A mixture of Pd(OAc)2 and linear polystyrene (Mn = 6.0 × 10
3
) was added to  

1.5 mol·L
−1

 aqueous K2CO3 solution. After the mixture was stirred at 90 °C for 1 h, the color turned 

black. An XRD pattern of PS-PdONPs is presented in Figure 1a. In addition to the broad diffraction 

with 2θ ranging from 12° to 28° ascribed to the polystyrene, other five diffraction peaks assigned to 

PdO (JCPDS #41-1107) are observed clearly. Figure 1c shows a TEM image of PS-PdONPs, where a 

fairly uniform particle size of 2.5 ± 0.4 nm is evident. Inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES) revealed that PS-PdONPs contained an average of 2.5 mmol·g
−1

 of Pd. 

Figure 1. (a) XRD patterns of PS-PdONPs; (b) JCPDS data (#41-1107) for PdO; (c) TEM 

micrograph of PS-PdONPs (scale bar = 20 nm); (d) Size distribution of PS-PdONPs. 
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Figure 1. Cont. 

 

2.2. Coupling Conditions 

Initially, an optimum base was investigated at 90 °C in the Mizoroki-Heck reaction of iodobenzene 

with acrylic acid using PS-PdONPs. As seen in Table 1, the most effective base was potassium 

hydroxide. Reactions with potassium carbonate, cesium carbonate, and sodium acetate gave  

trans-cinnamic acid in 27%, 19% and 20% yields, respectively, probably due to the low basicity. 

When 1.8-diazabicyclo[5.4.0]undec-7-ene (DBU) and NEt3 was used as a base, the yields of coupling 

product were 21% and 96%, respectively. However, the catalyst was not recovered in these cases, 

suggesting that the strong binding capability of nitrogen was causing palladium leaching. PS-PdNPs, 

reduced by NaBH4, exhibited slightly lower catalytic activity than PS-PdONPs although reduction of 

palladium on the surface of the nanoparticles was observed by XRD after treatment of PS-PdONPs 

with acrylic acid (Figure 2). However, the precise reason for this is as yet unclear, although it suggests 

that the presence of oxygen is important [27,30]. On the contrary, Pd/C exhibited low catalytic activity. 

Table 1. Effect of base on the Mizoroki-Heck reaction of iodobenzene with acrylic acid 

using PS-PdONPs in water. 

I

OH

O

Cs2CO3

NEt3

KOH

K2CO3

CH3COONa

DBU

OH

O

0.50 mmol

+

    PS-PdONPs
(1.0 mol% of Pd)

base (3 equiv), 
H2O, 90 °C, 5 h

0.75 mmol

Yield (%)
a

99 (32)
b

2
c

99 (16)
b

Base

a
NMR yields. 

b
Reaction time = 1 h. 

c
PS-PdNPs 

was used as a catalyst. 
d
Pd/C was used as a 

catalyst.

3
d

4

5

44

19

Entry

1

27

6 20

7 21

8 96

 

Entry Base Yield (%) 
a
 

1 KOH 99 (32) 
b
 

2 
c
 

 
99 (16) 

b
 

3 
d
 

 
44 

4 K2CO3 27 

5 Cs2CO3 19 

6 CH3COONa 20 

7 DBU 21 

8 NEt3 96 
a NMR yields; b Reaction time = 1 h; c PS-PdNPs was used as a catalyst;  
d Pd/C was used as a catalyst. 
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Figure 2. (a) XRD patterns of the catalyst after treatment with acrylic acid at 90 °C; 

(b) JCPDS data (#87-0641) for Pd (H-loaded). 

 

2.3. Substrate Tolerance 

Employing the optimized reaction conditions, we next examined a variety of substituted aryl iodides 

having either an electron-releasing or an electron-withdrawing group (Table 2). The reaction of 

iodobenzene with acrylic acid took place smoothly in water at 90 °C for 5 h to give trans-cinnamic 

acid in 99% yield (entry 1). The Mizoroki-Heck reaction of 4-iodotoluene and 4-iodoanisole, bearing 

electron donating groups at the para-position, gave the corresponding cinnamic acids in 99% and 96% 

yields, respectively (entries 2 and 3). Substrates with electron-deficient aromatic rings, i.e.,  

4-iodoacetophenone and 4-iodobenzotrifluoride, also underwent the Mizoroki-Heck reaction with 

acrylic acid under similar conditions to afford 4-acetylcinnamic acid and 4-trifluoromethylcinnnamic 

acid, respectively, both in near quantitative yield (entries 4 and 5). Sterically hindered substrates were 

also examined. The reaction of 2-iodotoluene and 2-iodophenol with acrylic acid gave the 

corresponding cinnamic acids in 99% and 99% yields, respectively (entries 6 and 7).  

1-Iodonaphthalene was also reactive, with the desired product being obtained in 98% yield (entry 8).  

It is noteworthy that the formation of 2,6-dimethylcinnamic acid was achieved by the reaction of  

2-iodo-m-xylene with acrylic acid in 59% yield (entry 9). The reaction proceeded well with  

4-bromoacetophenone, although a longer reaction time was needed (entry 4). However, reactions with 

styrene and bromobenzene gave low yields (entries 1 and 10). 

Table 2. PS-PdONPs-catalyzed Mizoroki-Heck reaction in water. 

Ar X R

I

OH

O

MeO

I

OH

O

OH

O

OH

O

OH

O

I

I

I

O

I

F3C

I

I

OH

O

OH

O

OH

O

OH

O

I

OH

I

Ar
R

0.50 mmol

+

    PS-PdONPs
(1.0 mol% of Pd)

KOH (3 equiv), 
H2O, 90 °C, 5 h0.75 mmol

Yield(%)
a

99 (13)
b,c

99 (99)
b,c

Aryl iodides Alkenes

a
NMR yields. 

b
Aryl bromide was used as a substrate. 

c
Reaction time = 20 h.

99

96

99

99

59
c

98

92

Entry

1

2

3

4

5

6

7

8

9

14
c10
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Table 2. Cont. 

Entry Aryl iodides Alkenes Yield (%) 
a
 

1 
I

 OH

O

 
99 (13) 

b,c
 

2 
I

 OH

O

 
99 

3 

I

MeO  OH

O

 
96 

4 

I

O

 
OH

O

 
99 (99) 

b,c
 

5 

I

F3C  OH

O

 
92 

6 
I

 OH

O

 
99 

7 

I

OH OH

O

 
99 

8 

I

 
OH

O

 
98 

9 
I

 
OH

O

 
59 

c
 

10 
I

  
14 

c
  

a NMR yields; b Aryl bromide was used as a substrate; c Reaction time = 20 h. 

2.4. Recycling Experiments 

Recycling studies were then performed. After the first reaction, which gave a nearly quantitative 

yield of the product (Table 2, entry 1), the catalyst was recovered and successively subjected to nine 

more runs of the reaction under the same conditions. As shown in Scheme 1, the yields remained 

essentially constant for the ten successive runs. After every run, the reaction solutions were analyzed 

by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) to determine the amount of 

palladium leached during the reaction. The amount of palladium leaching after every run was <1.4%. 

Similar sizes of palladium nanoparticles were observed by TEM after the recycling experiments (after 

the fifth run, 3.0 ± 0.6 nm; after the tenth run, 3.0 ± 0.4 nm, Figure 3). When the reaction was 

interrupted at 16% conversion and continued after removal of the catalyst (hot filtration test), the 

residual activity of the reaction mixture was significant (47% after 20 h). This suggests that leached 

palladium species are, obviously, participating in the catalytic process. However, the data in Table 1 

(entries 1 and 2) and the hot filtration test indicate that the soluble forms of palladium are not the only 

catalytically active species. 
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Scheme 1. Recycling experiments. 

I

OH

O

OH

O

0.50 mmol

+

    PS-PdONPs
(1.0 mol% of Pd)

KOH (3 equiv), 
H2O, 90 °C, 5 h

0.75 mmol
1st run: 98%

2nd run: 92%

3rd run: 90%

4th run: 96%

5th run: 95%

6th run: 99%

7th run: 99%

8th run: 99%

9th run: 98%

10th run: 97%  

Figure 3. (a) TEM image of the recovered catalyst after the fifth run; (b) Size distribution 

of the recovered catalyst after the fifth run; (c) TEM image of the recovered catalyst after 

the tenth run; (d) Size distribution of the recovered catalyst after the tenth run.  

 

 

3. Experimental 

3.1. General 

1
H-NMR spectra in CDCl3 were recorded with a 300 MHz NMR spectrometer (UNITY 300, 

Varian, Palo Alto, CA, USA) using tetramethylsilane (δ = 0) as an internal standard. Inductively 

coupled plasma-atomic emission spectroscopy (ICP-AES) was performed using ICPS-8100 (Shimadzu 

Co., Kyoto, Japan). Pd nanoparticles were investigated by transmission electron microscopy (TEM) on 



Molecules 2011, 16 9073 

 

 

a JEM 2100F transmission electron microscope (JEOL Ltd., Tokyo, Japan). The samples were 

prepared by placing a drop of the solution on carbon-coated copper grids and allowed to dry in air. 

Polystyrene of narrow molecular weight distribution standards was purchased from Tosoh Co., Ltd. 

(Tokyo, Japan). Pd(OAc)2 was obtained from Sigma-Aldrich Co. (St Louis, MI, USA). 

3.2. Preparation of PS-PdONPs 

To a screw-capped vial with a stirring bar was added polystyrene (9.0 mg, 85 μmol of styrene 

units), Pd(OAc)2 (5.5 mg, 25 μmol), and 1.5 M aqueous K2CO3 solution (3 mL). After stirring at 90 °C 

for 1 h, the reaction mixture was filtered with hot water. Subsequently, the polystyrene stabilized Pd 

nanoparticles were washed with hot water (5 × 1.0 mL) and acetone (5 × 1.0 mL). 

3.3. Determination of the Amount of Palladium 

PS-PdONPs (2.9 mg) was placed in a screw-capped vial and then 13 M nitric acid (5 mL) was 

added. The mixture was heated at 80 °C to dissolve completely. After cooling to room temperature, the 

solution was adjusted to 50 g by water and then the amount of Pd metal was measured by ICP-AES 

analysis (15.3 ppm). After the catalytic reaction, the aqueous phase was adjusted to 10 g by nitric acid 

and then the amount of Pd metal was measured by ICP-AES analysis. 

3.4. Typical Procedures for Mizoroki-Heck Reaction 

To a screw-capped vial with a stirring bar were added iodobenzene (0.25 mmol), acrylic acid  

(0.25 mmol), PS-PdONPs (1.0 mol% of Pd), 1.5 M aqueous KOH solution (1 mL). After stirring at  

90 °C for 5 h, the reaction mixture was cooled to room temperature by immediately immersing the vial 

in water (~20 °C). Subsequently, the aqueous phases were removed, and recovered catalyst was 

washed with water (5 × 1.5 mL) and diethyl ether (5 × 1.5 mL), which were then added to the aqueous 

phase. After 6.0 mol·L
−1

 HCl aqueous solution (0.22 mL) was added to the aqueous phase, the aqueous 

phase was extracted five times with diethyl ether. The combined organic extracts were dried over 

MgSO4, concentrated under reduced pressure. The product was analyzed by 
1
H-NMR. The recovered 

catalyst was dried in vacuo and successfully reused. Furthermore, the amount of Pd metal in the 

aqueous phase determined by ICP-AES analysis was 0.1 ppm. 

4. Conclusions 

PS-PdONPs was prepared with a simple procedure and demonstrated to be an efficient and reusable 

catalyst for the Mizoroki-Heck reaction in water. ICP-AES analysis confirmed that palladium leached 

into the aqueous solution during the reaction. Hot filtration tests indicated the leached palladium 

species are participating in the catalytic process. In addition, no obvious change in particle size was 

observed by TEM. Currently, further efforts to extend the application of polystyrene-stabilized metal 

nanoparticles to other organic reaction in water are under way in our laboratory. 
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