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Abstract: The Kabachnik–Fields (phospha-Mannich) reaction involving the condensation 

of primary or secondary amines, oxo compounds (aldehydes and ketones) and >P(O)H 

species, especially dialkyl phosphites, represents a good choice for the synthesis of  

-aminophosphonates that are of significant importance due to their biological activity.  

In general, these three-component reactions may take place via an imine or an  

-hydroxy-phosphonate intermediate. The monitoring of a few Kabachnik–Fields reactions 

by in situ Fourier transform IR spectroscopy has indicated the involvement of the imine 

intermediate that was also justified by theoretical calculations. The Kabachnik–Fields 

reaction was extended to >P(O)H species, comprising cyclic phosphites, acyclic and cyclic  

H-phosphinates, as well as secondary phosphine oxides. On the other hand, heterocyclic 

amines were also used to prepare new -amino phosphonic, phosphinic and phosphine 

oxide derivatives. In most cases, the synthesis under solvent-free microwave (MW) 

conditions is the method of choice. It was proved that, in the cases studied by us, there  

was no need for the use of any catalyst. Moreover, it can be said that sophisticated  

and environmentally unfriendly catalysts suggested are completely unnecessary under  

MW conditions. Finally, the double Kabachnik–Fields reaction has made available 

bis(phosphonomethyl)amines, bis(phosphinoxidomethyl)amines and related species. The 

bis(phosphinoxidomethyl)amines serve as precursors for bisphosphines that furnish ring 

platinum complexes on reaction with dichlorodibenzonitriloplatinum. 
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1. Introduction 

The basic method for the preparation of -aminophosphonates, valuable synthetic equivalents and 

biologically active substrates, involves the condensation of a primary or secondary amine, a carbonyl 

compound (aldehyde or ketone) and dialkyl phosphite (Scheme 1) [1,2].  

Scheme 1. General scheme for the Kabachnik–Fields reaction. 
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-Aminophosphonic acids, considered as phosphorus analogues of -amino acids, have attracted 

much attention in drug research due to their low mammalian toxicity. They are important targets in the 

development of antibiotics, antiviral species, antihypertensives, and antitumour agents based on  

their effect as inhibitors of GABA-receptors, enzyme inhibitors and anti-metabolites [3–9]. Diaryl  

-amino-phosphonate derivatives are selective and highly potent inhibitors of serine proteases, and 

thus can mediate the patho-physical processes of cancer growth, metastasis, osteoarthritis or heart 

failure [10]. Dialkylglycine decarboxylase [9] and leucine aminopeptidase [11] are also inhibited by  

-amino-phosphonates. Cyanoacrylate [12] and amide derivatives [13] of -aminophosphonates are 

active antiviral compounds and inactivators of the tobacco mosaic virus. Certain -aminophosphonates 

were proved to be suitable for the design of continuous drug release devices due to their ability to 

increase the membrane permeability of a hydrophilic probe molecule [14]. 

2. Possible Pathways for the Kabachnik–Fields Reaction 

Cherkasov et al. studied the mechanism of the Kabachnik–Fields reaction in detail. One possibility 

is that an imine (a Schiff base) is formed from the carbonyl compound and the (primary) amine, and 

then the dialkyl phosphite is added on the C=N unit of the intermediate. The other route assumes the 

formation of an α-hydroxyphosphonate by the addition of the dialkylphosphite to the carbonyl group of 

the oxo component, then the hydroxyphosphonate undergoes substitution by the amine to furnish the 

α-aminophosphonate. On the basis of kinetic studies, it was concluded that the mechanism is 

dependent on the nature of the reactants. For example, the condensation of aniline, benzaldehyde and a 

dialkyl phosphite was assumed to follow the “imine” mechanism. Interestingly it was found that before 

the condensation of the aniline and the benzaldehyde, an H-bond is formed between the P=O function 

of the phosphite and the HN unit of the amine (Scheme 2) [15,16]. 
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Scheme 2. The “imine” mechanism proposed for a Kabachnik–Fields reaction [15,16]. 
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In another case, Cherkasov et al. suggested that the reaction of the more nucleophilic  

cyclohexyl-amine, benzaldehyde and a dialkyl phosphite takes place via the “hydroxyphosphonate” 

route. Here again an interaction was substantiated to precede the addition of the dialkylphosphite on 

the C=O unit of the oxo-compound. According to this, an H-bond is formed between the P(O)H moiety 

of the phosphite and the nitrogen atom of the amine (Scheme 3) [15,17]. 

Scheme 3. The “α-hydroxyphosphonate” mechanism proposed for a Kabachnik–Fields reaction [15,17]. 
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Later, however, Zefirov and Matveeva proved that the condensation of cyclohexylamine, 

benzaldehyde and dialkyl phosphite follows the “imine route”, and concluded that there is no real 

experimental evidence for the hydroxyphosphonate route [18]. It is also worth mentioning that the 

reaction of cyclohexylamine, benzaldehyde and dibutylphosphine oxide, that may be regarded as  

an extended Kabachnik–Fields condensation, was shown to proceed according to the “imine” 

mechanism [15,19]. It seems probable that the actual mechanism is dependent on the components of 

the reaction, although the “imine” route seems to be more general than the route involving an  

“α-hydroxy-phosphonate” intermediate [3]. R. Gancarz and I. Gancarz substantiated that a reversible 

formation of the α-hydroxyphosphonate may also occur, and if it is rearranged to the corresponding 

phosphate, this becomes a “dead-end” route [20]. It can be said that in the Kabachnik–Fields reaction, 

a soft nucleophile (the dialkyl phosphite) and a hard nucleophile (the amine) compete for the 

electrophilic carbonyl compound. The softer the carbonyl compound is, the faster it reacts with the 

softer P-nucleophile and the slower it reacts with the harder amine nucleophile [21]. 

We wished to investigate the phospha-Mannich condensation of n-propylamine, benzaldehyde and 

diethyl phosphite (Scheme 4) by following the reaction utilizing in situ Fourier transform (FT) Infra 

Red (IR) spectroscopy [22]. 

Scheme 4. The Kabachnik–Fields reaction studied by us. 
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The possible reaction paths are shown in Scheme 5. The question was whether the imine 3 or  

the α-hydroxyphosphonate 4 is the intermediate during the formation of the corresponding  

α-aminophosphonate 2. 

Scheme 5. Possible routes for the Kabachnik–Fields reaction studied by us. 
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The reaction carried out at 80 °C in acetonitrile was monitored by registering a 3D IR diagram.  

On the basis of the characteristic νC=N stretching vibration at 1,648 cm–1, the imine 3 could be  

observed as a transient species. It was possible to obtain a relative concentration—time diagram  

for the components (Figure 1) by deconvolution of the 3D IR diagram. It can be seen that the imine 

intermediate 3 reaches its maximum concentration after a 10 min reaction time [22]. 

Figure 1. Concentration profile for the Kabachnik–Fields reaction studied at 80 °C in acetonitrile. 

 

It was shown above that there was also controversy over the mechanism of the Kabachnik–Fields 

condensation of cyclohexylamine, benzaldehyde and dialkyl phosphites (Scheme 6) [15,17,18]. We 

sought to clarify the situation by in situ FT IR spectroscopy [23]. 

Scheme 6. Another Kabachnik–Fields reaction investigated by us. 
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From among the two possible intermediates 6 and 7, again the imine 6a could be detected on  

the basis of the νC=N = 1,644 cm–1 absorption as the transient species for α-aminophosphonate 5a  

(Scheme 7). The intermediacy of imine 6 can be seen in Figure 2. 

Scheme 7. Possible pathways for the second model investigated.  
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Figure 2. Concentration profile for the Kabachnik–Fields reaction studied at 80 °C in acetonitrile. 
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Relative energies for the possible intermediates 6 and 7 and for α-aminophosphonate 5 were 

calculated by the B3LYP/6-31G** method and then refined by the the B3LYP/6-311G**++ method 

provided that dimethyl phosphite is the reactant. It can be seen from Table 1 that the formation of the 

imine 6 goes with significantly lower energy gain than that of the α-hydroxyphosphonate 7. On the one 

hand, the imine 6 would like to be stabilized further by reaction with the dimethyl phosphite on way to 

the -aminophosphonate 5. On the other hand, the hydroxyphosphonate 7 is too stable to react further 

to the aminophosphonate 5. The conversion of 7 to 5 represents only a slight energy gain of 2.4 kJ/mol. 

In other words, there is no significant driving force for the substitution [23]. 

Table 1. Relative energies for the four states calculated. 

Species Relative energy (kJ/mol) 

Reactants (benzaldehyde, cyclohexylamine and dimethyl phosphite) 0.0 
Imine intermediate 6 –18.6 
α-Hydroxyphosphonate intermediate 7 –40.5 
Product 5 –42.9 
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3. Microwave-Assisted Solvent- and Catalyst-Free Approach for the Synthesis of  

α-Amino-phosphonates and Related Derivatives 

Although a lot of catalytic variations to carry out three-component Kabachnik–Fields condensations 

have been described, we found that the most straightforward synthesis is when the reactants are 

irradiated with microwave (MW) in the absence of any catalyst or solvent. The solventless and  

MW-assisted approach was useful in the synthesis of a few -aminomethylphosphonates [24]. We 

used aniline or benzylamine as the amine, formaldehyde, benzaldehyde, acetophenone and 

cyclohexanone as the oxo-component and dialkyl phosphites and diphenylphosphine oxide as the 

>P(O)H reactant. The α-aminophosphonates and α-aminophosphine oxide products are represented by 

structure 8 in general Scheme 8 [25]. The detailed results are listed in Table 2. The comparative  

results of the catalytic versions were also included. A detailed account on the conditions of the 

catalytic reactions is provided in Table 3. In a part of the cases, such as in the example covered by  

reference [26], the catalytic versions could already be carried out at room temperature. 

Scheme 8. General scheme for the solventless, catalyst-free MW-assisted  

Kabachnik–Fields reactions studied. 
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Table 2. Kabachnik–Fields reactions carried out without the use of a solvent and a catalyst 

under MW irradiation [25]. 

Entry R1 R2 R3 Y Product T (°C) Yield (%) 
Yield (%) of catalytic 

methods [ref.] † 

1 Ph H H EtO 8a 80 a 
100 b 

91  

2 Ph H H MeO 8b 80 a 
80 b 

80  

3 Ph H H Ph 8c 80 94  
4 Bn H H EtO 8d 100 81  
5 Bn H H Ph 8e 80 88  
6 Ph H Ph EtO 8f 100 93 98 [27], 85 [28], ~95 [29], 

88 [30], 79 [31], 93 [32],  
92 [33], ~90 [34], 96 [35], 
60 [36], 86 [37], 92 [38] 

7 Ph H Ph MeO 8g 100 86 98 [24], 98 [27], 92 [33] 
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Table 2. Cont. 

Entry R1 R2 R3 Y Product T (°C) Yield (%) 
Yield (%) of catalytic 

methods [ref.] † 

8 Ph H Ph Ph 8h 80 87  

9 Bn H Ph EtO 8i 100 83 99 [28], 84 [29], 92 [30],  

85 [31], 91 [32], 91 [33],  

92 [35], 92 [36], 93 [38] 

10 Bn H Ph MeO 8j 100 87 95 [27], 82 [33] 

11 Ph Me Ph EtO 8k 120 80 75 [27], 74 [30], 63 [35],  

18 [36] 

12 Bn Me Ph EtO 8l 120 84 92 [26], 80 [27], 81 [38] 

13 Bn Me Ph Ph 8m 100 a 

120 b 

80  

14 Ph   EtO 8n 120 81 92 [27], ~72 [29], 86 [30], 

47 [31], 87 [37] 

15 Bn   EtO 8o 120 91 85 [26], 90 [27], 83 [31],  

80 [33], 85 [38] 

16 Bn   MeO 8p 120 85 92 [27] 

17 Bn   Ph 8q 100 a 

120 b 

80  

† for details see Table 3; a condensation of the oxo-component and the amine; b addition of the 
>P(O)H species to the Schiff-base. 

Table 3. Kabachnik–Fields reactions carried out in the presence of catalysts. 

Catalyst Solvent MW/ T [°C] t Yield (Product) [%] Ref. 

Phthalocyanine-AlCl CH2Cl2 – 26 a 12 h 92 (8b), 85 (8p) [26] 

Mg(ClO4)2 – – 26 2 min/8 h 90–98 (8f, 8g, 8j, 8n-p) [27] 

Mg(ClO4)2 –  50–80 45 min–12 h 80–99 (8f, 8i, 8l, 8n-p) [27,28]

Mg(ClO4)2 EtOH  50 5 h/12 h 85 (8f), 99 (8i) [28] 

M(OTf)n  

M = Li, Mg, Al, Cu, Ce 

–  80 20 min–3.5 h 72–95 (8f, 8i, 8n) [29] 

GaI3 CH2Cl2 – 26 3–6 h 74–92 (8f, 8i, 8k, 8n) [30] 

In(OTf)3 THF  66 21–35 h 47–85 (8f, 8i, 8n, 8o) [31] 

BiNO3 – – b 26 10 h 93 (8f), 91 (8i) [32] 

BiCl3 MeCN  80 6–15 h 80–92 (8f, 8g, 8i, 8j, 8o) [33] 

FeCl3 EtOH (or 

solvent free) 

– 26  ~90 (8f) [34] 

YbCl3 MeCN – 26 24 h 63–96 (8f, 8i, 8k) [35] 

SmI2 (+ 4 Å mol sieves) MeCN  80 24 h 18–92 (8f, 8i, 8k) [36] 

ceric ammonium nitrate MeCN – 26 3 h 86 (8f), 87 (8n) [37] 
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Table 3. Cont. 

Catalyst Solvent MW/ T [°C] t Yield (Product) [%] Ref. 

InCl3 THF  66 9–12 h 81–93 (8f, 8i, 8l, 8o) [38] 

InCl3 DMF MW no data 2 min 82 (8f) c [39] 

InCl3 [bmim][PF6] MW no data 2 min 91 (8f) c [39] 

Ln(OTf)3  

Ln = Yb, Sc, Dy, Sm 

DMF MW no data 2 min 72 (8f) c [39] 

Ln(OTf)3  

Ln = Yb, Sc, Dy, Sm 

[bmim][PF6] – 26 27 h 92 (8f) c [40] 

Ln(OTf)3  

Ln = Yb, Sc, Dy, Gd 

[bmim][PF6] MW no data 2 min 89 (8f) c [39] 

the solvent acts as catalyst [bmim][BF4] – 26 5 h/8 h 90 (8f), 84 (8f) [41] 
a Diethyl phosphite was added to preformed imines; b Was also performed under MW;  
c The product was extracted with benzene. 

On the basis of our experimental data, there is no need to use exotic (expensive and environmentally 

unfriendly) catalysts. In most cases, the solvent- and catalyst-free MW-assisted reactions give excellent 

results. Further exploration of catalysts does not seem to be justified in this field. Next, our method 

was extended to phospha-Mannich condensations involving heterocyclic amines (Scheme 9) [42]. 

Diphenylphosphine oxide was also used as the P-component. 

Scheme 9. Kabachnik–Fields reactions applying N-heterocycles as the amine component. 
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In another series of reactions, 1,3,2-dioxaphosphorine oxide (10) was used as the phosphite  

(Scheme 10) [43]. In this way “double” heterocyclic derivatives were prepared. These reactions were 

more efficient in the presence of a solvent. 

Scheme 10. Kabachnik–Fields reactions applying 1,3,2-dioxaphosphorine oxide as the P-reactant. 
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Applying 1,3,2-dioxaphosphorine oxide (10) together with benzaldehyde, the steric hindrance 

prevented the efficient condensation. It was better to prepare the imine 12 first and to react it 

separately with the cyclic phosphite 10 (Scheme 11) [43]. 

Scheme 11. Synthesis of α-aminophosphonates via the imine intermediate. 
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Dibenzo[c.e][1,2]oxaphosphorine (14) was also utilized in the synthesis of P-heterocyclic 

derivatives. In this case, the primarily formed product 15 underwent opening of the hetero ring by 

reaction with the water formed (Scheme 12) [43]. 

Scheme 12. Kabachnik–Fields reaction applying a dibenzooxaphosphorine oxide as the P-reactant. 
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For the preparation of diethyl -diethylaminophenylmethylphosphonate (17), the two-step approach 

led to better results. The aldehyde–amine adduct formed primarily was reacted with diethyl phosphite 

to afford product 17 (Scheme 13) [43]. 

Scheme 13. Synthesis of an α-aminophosphonates in two steps. 
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The MW-assisted solventless procedure was useful in the synthesis of a series of 

bis(phosphonomethyl)amines and related derivatives marked as 18 (Scheme 14) [44–46]. Product 18 

could be obtained in yields, mostly above 80%. The double Kabachnik–Fields reaction was then 

extended to the synthesis of bis(phosphinoxidomethyl)amines 19. In these cases, heterogenity of the 

reaction mixture requested the use of a solvent that was acetonitrile (Scheme 15) [44–46]. The use of 

aniline as the amine component led to by-product 20 besides the expected product 19 (Y = Ph) [46]. 
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Scheme 14. Synthesis of bis(phosphonomethyl)amines and related derivatives by the 

double Kabachnik–Fields reaction. 
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Scheme 15. Bis(phosphinoxidomethyl)amines by the double phospha-Mannich reaction. 
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The bis(phosphinoxidomethyl)amines 19 served as precursors for bis(phosphinomethyl)amine 

bidentate P-ligands 21 by double deoxygenation. The bisphosphines 21 so formed were  

reacted with half an equivalent of dichlorodibenzonitriloplatinum to furnish ring platinum complexes 

22 (Scheme 16) [45,46]. 

Scheme 16. Synthesis of ring platinum complexes from bis(phosphinoxidomethyl)amines. 
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The bidentate P-ligands may be stored as their phosphine-borane complexes. This is shown in the 

example of the 23  24 conversion (Scheme 17). In general, the phosphine can be regenerated from the 

phosphine-borane by heating with a secondary amine, such as diethylamine, in an aromatic solvent [47]. 

Scheme 17. Stabilization of a bis(phosphinomethyl)amine as a bis(borane complex). 
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The MW-assisted catalytic addition of dialkyl phosphites on the carbonyl group of a series of 

benzaldehyde derivatives was also elaborated (Scheme 18) [48]. The -hydroxyphosphonates (25,  

Y = RO) are potential intermediates of the Kabachnik–Fields reaction. The use of diphenylphosphine 

oxide in the addition led to the formation of -hydroxyphosphine oxides (25, Y = Ph). 

Scheme 18. MW-assisted synthesis of α-hydroxyphosphonates and α-hydroxyphosphine oxides. 
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The addition of dialkyl phosphites to -ketophosphonates led to 1-hydroxymethylene-

bisphosphonates [49,50]. It was interesting to find that, as a consequence of the neighboring group 

effect of the P=O moiety, -hydroxyphosphonate 25 (Y = EtO) could be readily converted to the 

corresponding -aminophosphonates (26) (Scheme 19) [51]. Quantum chemical calculations justified 

the beneficial neighboring group effect of the P=O moiety [51]. 

Scheme 19. Preparation of α-aminophosphonates by substitution of α-hydroxyphosphonates. 
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4. Conclusions 

In conclusion, recent results obtained in the study of the Kabachnik–Fields reaction have been 

summarized. This mini-review sheds light on the new developments regarding mechanistic and 

synthetic aspects showing that the phospha-Mannich reaction remains an evergreen topic for organic 

chemists. On the one hand, the mechanism of the Kabachnik–Fields reaction still reserves some 
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surprises, on the other hand, the 3-component condensation is an ideal subject for green chemical 

reactions. In addition, the -aminophosphonate and -aminophosphine oxide products are biologically 

active substrates. 
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