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Abstract: Methicillin-resistant Staphylococcus auerus (MRSA) strains are having a major 

impact worldwide, and due to their resistance to all β-lactams, an urgent need for new 

drugs is emerging. In this regard, the shikimate pathway is considered to be one of the 

metabolic features of bacteria and is absent in humans. Therefore enzymes involved in this 

route, such as shikimate dehydrogenase (SDH), are considered excellent targets for 

discovery of novel antibacterial drugs. In this study, the SDH from MRSA (SaSDH) was 

characterized. The results showed that the enzyme is a monomer with a molecular weight 

of 29 kDa, an optimum temperature of 65 °C, and a maximal pH range of 9–11 for its 

activity. Kinetic studies revealed that SDH showed Michaelis-Menten kinetics toward both 

substrates (shikimate and NADP+). Initial velocity analysis suggested that SaSDH catalysis 

followed a sequential random mechanism. Additionally, a tridimensional model of SaSDH 

was obtained by homology modeling and validated. Through virtual screening three 
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inhibitors of SaSDH were found (compounds 238, 766 and 894) and their inhibition 

constants and mechanism were obtained. Flexible docking studies revealed that these 

molecules make interactions with catalytic residues. The data of this study could serve as 

starting point in the search of new chemotherapeutic agents against MRSA. 

Keywords: MRSA; shikimate dehydrogenase; homology modeling; virtual screening; 

flexible docking; enzyme kinetics 

 

1. Introduction 

Nosocomial infections occur around the world at rates as high as 40% and are thus a serious health 

problem [1]. Among the bacteria, Staphylococcus aureus strains are one of the important causative 

agents of nosocomial infections of the blood stream, lower respiratory tract, skin and soft tissue [2]. 

Picao et al. reported on the prevalence of methicillin-resistant S. aureus (MRSA) in Latin America 

between 1997 and 2006 as part of the SENTRY study [3]. They found that more than one-third of S. 

aureus isolates (37.3%) were MRSA, significantly increased their prevalence from 33.8% in 1997 to 

40.2% in 2006. Recently, Garza-González and Dowzicky [4] suggested MRSA numbers in Latin 

America has remained relatively stable between 2004 (44.6%) and 2010 (40.1%). S. aureus has also 

been notoriously developing antibiotic resistance, creating a serious problem for successful control of 

these infections. The effectiveness of vancomycin, which was once regarded as a drug of last resort to 

treat MRSA infections, has been marginalized by the emergence of vancomycin-resistant strains [5]. 

Moreover, S. aureus resistance to newer-generation drugs such as linezolid and daptomycin has also 

now been reported [6,7]. This creates an urgent need for new therapeutic agents to treat MRSA 

infections. In this regard, one approach is to look for small molecules that inhibit vital enzymes for 

bacteria survival; which may serve as a guide in the generation of new drugs. 

In this perspective, a fundamental metabolic route in bacteria is the so-called “shikimate pathway”. 

This route, that combines glucose and pentose phosphate metabolism, involves seven reactions that 

convert erytrose-4-phosphate and phosphoenolpyruvate to chorismate, which is the precursor for the 

synthesis of important metabolites such as aromatic amino acids, ubiquinone and folate [8]. The 

shikimate pathway is present in plants, fungi, apicomplexan parasites and bacteria, but is absent in 

humans, a characteristic that makes its enzymes excellent targets for drug discovery [8–10]. 

Shikimate 5-dehydrogenase (SDH), the fourth enzyme in the shikimate pathway, catalyzes the 

NADPH-NADP+ dependent interconversion between dehydroshikimate (DSHK) and shikimate (SHK) [8]. 

Structurally, the enzyme may exist in monomeric [11,12] or dimeric [13–15] forms, with an average 

molecular weight of 29 kDa per monomer. The general structure comprises a N-terminal domain that 

binds with the substrate and a C-terminal NADP+ binding domain, that present the typical Rossmann 

fold of other nucleotide binding enzymes. According to the crystal structures reported in the Protein 

Data Bank, SDH presents two different conformations, an open and a closed, and the former is 

considered as the catalytic [16]. 

Nowadays, computer-assisted drug design tools such as homology modeling and virtual screening 

are powerful methodologies to find new enzyme inhibitors, and leads the way in the search of new 
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antimicrobial agents [17]. In this context, the present study reported for the first time a new set of 

inhibitors of shikimate 5-dehydrogenase through a combination of studies involving cloning and 

biochemical characterization of shikimate 5-dehydrogenase from methicillin-resistant S. aureus 

(SaSDH), enzyme kinetics and different computational techniques.  

2. Results and Discussion 

2.1. Biochemical Characterization of SaSDH 

After purification to homogeneity (Figure 1A), the oligomeric state of SaSDH was determined 

using native size-exclusion chromatography; the chromatogram showed a single peak corresponding to 

a molecular weight of 29 kDa (Figure 1B). These results are in agreement with the predicted weight of 

the amino acid sequence of SaSDH [18] and the migration of the protein through SDS-PAGE gels 

(Figure 1A). This indicated that SaSDH exists as a monomer and is similar to its closest homologous 

Staphylococcus epidermidis SDH (SeSDH) [11].  

Figure 1. (A) Purification of SaSDH: lane 1 shows molecular weight markers; lane 2 

shows the supernatant loaded into the column; lane 3 shows the proteins that did not bind 

to the resin; and lane 4 shows SaSDH eluted with 300 mM imidazole. (B) Elution profile 

of SaSDH under native conditions; the peak corresponds to a molecular weight of 29 kDa. 

(C) Temperature dependence of SaSDH activity. (D) pH dependence of SaSDH activity. 

The data are the mean values obtained from three independent experiments. 
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On the other hand, activity measured at different temperatures, showed that the enzyme reached its 

maximum activity at 65 °C (Figure 1C), which is similar to that reported for H. pylori SDH (60 °C) [12]. 

Nevertheless S. aureus and H. pylori are mesophiles, H. pylori SDH retained above 80% of its activity 

at 70 °C, while SaSDH activity dropped to zero at the same temperature (Figure 1C). On the contrary, 

optimum temperature from the thermophile archaeon A. fulgidus SDH was around 90 °C, in fact, the 

activity of this enzyme was assayed at 87 °C [19]. 

The pH studies revealed that this enzyme exhibited a sustained highest activity over a pH range of 

9–11 (Figure 1D), which is different from other bacterial SDHs, like those from S. epidermidis [11] 

and M. tuberculosis [20] which recorded a maximal activity at a pH of 11.0; H. pylori SDH [12] 

presented its optimum activity at pH of 9.0; while in SDH from A. fulgidus [18] and C. glutamicum [21] 

was at 7.0 and 7.53, respectively. These data suggested that catalysis in SaSDH depended on  

acid-basic amino acids. 

2.2. Kinetic Constants and Reaction Mechanism 

SDH catalyzes bisubstrate reactions, and assignment of inhibitor mechanism can be enhanced by 

understanding the kinetics mechanism of enzyme. A single enzymatic mechanism for dehydrogenation of 

shikimate has not been established. A number of kinetic studies point to a sequential mechanism [22,23], 

the data are consistent with an ordered bi-bi kinetic mechanism, where SDH binds first with  

3-dehydroshikimate followed by NADPH binding to the enzyme catalytic site. However, the study of 

this enzyme may be difficult because the inhibition of plant SDH by dehydroshikimate produces  

non-linear Dixon plots, particularly at low shikimate concentrations, indicating dead end complex 

formation [24,25]. 

In order to examine whether a ping-pong or a sequential mechanism is operative in SaSDH, 

NADPH formation was measured as a function of shikimate at different fixed concentrations of 

NADP+ and vice-versa. Figure 2 shows all kinetic data and secondary plots for titration of SaSDH, 

experiments performed to determine the kinetic mechanism of the NADP+ linked reaction were 

complicated and during initial attempts to carry out a full titration analysis, it became apparent that 

titrations using shikimate concentrations spanning between 20–100 μM were yielding seemingly 

parallel lines in double reciprocal plots. Only by spanning concentrations of this substrate over  

(150–700 μM) it was possible to clearly identify the points of reciprocal plot intersection and the 

apparent increase in slope was more pronounced when sub-saturating concentrations of NADP+  

(400–700 μM), which suggested an inhibition by shikimate (Figure 2A). Moreover, under conditions 

where the concentrations of NADP+ was varied, the slopes exhibited an uncompetitive relationship at 

low concentration of shikimate (20–100 μM) but appeared to increase subtly with increasing fixed 

shikimate concentrations (150–700 μM), suggesting that substrate inhibition by NADP+ also occurs 

(Figure 2B). Despite this problem, the double reciprocal plots of 1/v versus 1/shikimate at various 

fixed NADP+ concentrations gave a family of straight lines with different slopes and intercepts which 

intersected at a common point in the third (lower left-hand) quadrant of the plot (Figure 2A,B). This is 

typical of a mechanism that involves reaction of the enzyme with both substrates before the release of 

any products, rather than a ping-pong mechanism, involving a distinct modified enzyme. This result 

suggested that dehydrogenation of shikimate proceeded through a sequential bi-bi reaction mechanism, 
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with the formation of a ternary NADP+-SDH-SHK complex. However, no clear distinction between a 

rapid equilibrium random bi-bi system or a steady-state ordered bi-bi mechanism can be made based 

solely on the initial velocity patterns [26]. Hence, secondary replots of ேܸ஺஽௉  with shikimate 

concentrations and ሺܸ ⁄ܭ ሻே஺஽௉  with shikimate showed that data fitted to the hyperbolic pattern, which 

corresponded to a random sequential mechanism (Figure 2C,D). These data suggested that SaSDH 

catalyzed reverse reaction follows a random bi-bi mechanism. 

Figure 2. (A, B) Double reciprocal analysis of initial velocities under conditions where 

either NADP+ or shikimate is varied at different fixed concentrations of the co-substrate. 

(C, D) Secondary plot of slope of B vs shikimate concentrations. 

 

Due to these results, the kinetic data were re-evaluated by a global non-linear regression analysis 

using computer simulation program SigmaPlot v12.3. Data were fitted to several models of  

bi-substrate reactions, all of which were analyzed using SigmaPlot Enzyme Kinetics Module v1.3. 

Akaike Information criterion corrections (AICc) for sample size values were used to determine the best 

fitting equation following SigmaPlot instructions, along with standard errors of the parameters  

௠ܭ)  and ௠ܸ௔௫ ) estimates [27]. The best equation had the lowest AICc value, with a minimum of  
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7 AICc units different from the next lowest. The initial velocity kinetics suggested a random sequential 

reaction mechanism, but this sort of analysis cannot be considered conclusive, and needs to be verified 

with product inhibition studies, and until this is done, it is important to report both dissociation 

constants. Table 1 summarizes the values of the kinetic constants determined by global and secondary 

plot data fitting to the equation derived for random bi-bi system. Global fitting of the data to equation 1 

yielded a ௠ܸ௔௫  for SHK and NADP+, at saturating levels of both substrates, of 233 and  

251 µmol/min/mg, respectively; values of ܭ௖௔௧  = 135 for shikimate and 146 s−1 for NADP+, were 

obtained. Furthermore, the dissociation constant (ܭ௜௔ ) for both substrates were calculated, giving 

values of 21.22 μM for SHK and 21.0 μM for NADP+. These were used to derive the turnover number 

௖௔௧ܭ and (௖௔௧ܭ) ⁄௠ܭ . The results showed in Table 1 are in fair agreement with previously published 

data for other bacterial SDHs [11,12,16,18,19,28].  

Table 1. Kinetic parameters for SaSDH. 

Substrate ࢓ࡷ (μM) ࢞ࢇ࢓ࢂ		(μmol/min/mg) s) ࢚ࢇࢉࡷ
−1) 

࢚ࢇࢉࡷ ⁄࢓ࡷ  
(M−1x s−1) 

ࢇ࢏ࡷ ࢇ࢏ࡷ ⁄࢓ࡷ  

Shikimate 37.46 ± 3.7 233.6 ± 1.5 135.81 3.62 × 106 21.224 1.76 

NADP+ 42.55 ± 9.9 251.41 ± 7.2 146.16 3.43 × 106 21.015 2.02 

2.3. SaSDH Inhibition 

The quest for small molecules that specifically inhibit SDH function has proven to be particularly 

challenging. The inhibitors reported to date for bacterial SDHs are hydrophobic compounds with 

complex structures that inhibit SDH activity competitively and noncompetitively with respect to 

shikimate [12]. Thus, it is important to find other types of SDH inhibitors with different structures, 

which might serve as a starting point for maximizing specificity. To this end, we looked for inhibitors 

of SaSDH through a virtual screening strategy. 

2.3.1. Homology Modeling and Virtual SCREENING 

In order to obtain structural information on SaSDH and for virtual screening from a small molecules 

database, a three-dimensional model of the enzyme was generated (Figure 3A), as described in the 

Materials and Methods section. The stereochemical quality of the model was revisited and validated by 

four different programs. According to Errat2 [29], the model obtained an overall quality factor of 

94.33 (upper 85 means a good quality); in RAMPAGE [30] only 0.8% of the residues (Pro62 and 

Ala85) were in the outlier region in Ramachandran plot, 2.2% were in the allowed region and 97% in 

the favored region of the plot (Figure 3B). Similar results were obtained from Molprobity [31] 

evaluation, but here only Ala85 was outlier. Q-MEAN [32,33] reported a normalized QMEAN6 score 

of 0.75 (close to 1 is the ideal) and a Z-score of −0.26 (close to zero is the ideal) (Figure 3C). 

Additionally, SaSDH model colored by per-residue inaccuracy [32,33] showed that the domain 

selected for virtual screening had a deviation less than 1Å from the structures used for evaluation 

(Figure 3A). Structural analysis of the model revealed that the SaSDH has the typical α/β folding of 

other SDHs, showing in the N-terminal region the SHK binding site and the Rossmman domain for 

NADP+ binding in the C-terminal. Because the model was constructed using as template the crystal 
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structure of SeSDH with open conformation, SaSDH model also presented the same folding, in fact, 

structural alignment between SaSDH model and SeSDH (3DON) reported an rmsd (root mean square 

deviation) of 0.077 Å. Taking together, all the data supported that the SaSDH 3D model is of high 

quality and could be used for virtual screening.  

Figure 3. (A) 3D model of SaSDH in ribbons colored by per-residue inaccuracy (the  

N- and C- terminals are indicated with arrows); the upper bar shows the corresponding 

deviation according to the color. The SHK binding site is located in the blue region.  

(B) Ramachandran plot obtained from model protein geometry evaluation (dark blue, light 

blue, and orange correspond to the favored, allowed and outlier regions respectively).  

(C) Normalized QMEAN6 score graphic showing the position (red cross) of the model in 

the set of PDB structures used for the evaluation and the Z-score value. 

 

Once the model was built, a rigid body docking procedure for virtual screening with a library of 

small molecules was performed. Because the enzyme is absent in humans, we selected the substrate 

(SHK) binding site as the target for virtual screening (Figure 3A). From the one thousand small 

molecules studied, a database of 38,355 poses was generated. The one hundred molecules with the 

highest binding energies were selected, and the capacities of these molecules to inhibit SaSDH were 

assessed. Inhibition assays using a concentration of 200 µM of the latter molecules were performed. 

Table 2 shows the inhibition percent of the SaSDH activity induced by the ten most active compounds; 

some of the molecular properties of these compounds are also described.  

The three most potent molecules found through virtual screening, 6-hydroxy-2,3-

dihydrobenzo[b]furan-3-one (compound 894), 7-hydroxy-2,2,8-trimethyl-2,3-dihydro-4H-chromen-4-

one (compound 766), and 2,2'-bithiophene-5-carboxylic acid (compound 238), were selected for 

further kinetic and structural studies.  
  



Molecules 2014, 19 4498 

 

 

Table 2. Molecular properties and drug likeness of the ten most potent. SaSDH inhibitors 

found through virtual screening. 

Compound 
Structure 

Molecular 
Weight a 

H-bond 
Donor a 

H-bond 
Acceptor a 

LogP a 
Drug 
Likeness a,b 

Binding 
energy 
kcal/mol 

% 
Inhibition 
200 µM 

894 

 
150.1 

 
1 

 
3 
 

 
0.97 

 
0.13 

 
−11.93 

 
99 

766 

 

 
206.2 

 
1 

 
3 

 
2.43 

 
−0.76 

 
−12.55 

 
87 

238 

 
210.3 1 4 3.32 −099 −12.38 87 

626 

 

 
270.2 

 
1 

 
2 

 
2.83 

 
−0.40 

 
−12.85 

 
49 

463 

 

 
195.3 

 
1 

 
3 

 
1.05 

 
0.24 

 
−11.89 

 
45 

62 

 
208.2 1 4 2.69 −0.70 −11.98 33 

291 

 
164.2 1 2 1.66 −0.80 −12.27 31 

692 

 

 
273.2 

 
1 

 
4 

 
3.87 

 
−0.99 

 
−11.90 

 
31 

306 

 

 
221.2 

 
1 

 
4 

 
1.23 

 
0.20 

 
−11.90 

 
31 

637  
192.2 

 
1 

 
3 

 
2.83 

 
−0.79 

 
−12.25 

 
29 

a Obtained from molsoft prediction server [34]; b Values between −1 and 2 indicate drug-like molecules, 

values closer to 2 are better.  

2.3.2. Kinetic Study of the SaSDH-Inhibitor Complex 

Although it might seem easy to compare the potency of this set of inhibitors acting on the same 

target, but in practice, it was not so straightforward. There is more than one way to report the 

inhibitory capacity of compounds, the inhibition constant, ܭ௜  and the ݅଴.ହ  (the 50% inhibition 

concentration) value. Usually biochemical investigations often determine the ܭ௜, but rarely determine 

an ݅଴.ହ. The ܭ௜ is determined by means of simple linear regression applied to Dixon plot, while that ݅଴.ହ 

is obtained by constructing a dose-response curve. Other aspect important is that SDH catalyzes 

bisubstrate reaction, and assignment of an inhibitor mechanism can be achieved by understanding the 
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kinetic mechanism of enzyme. Therefore, we decided to use the method reported by Cortés et al. 

which permitted us to calculate both parameters simultaneously [35]. 

In order to study the type of inhibition of compounds on SaSDH, pharmacological and kinetic 

parameters (݅଴.ହ, ܭ௜௖ and ܭ௜௨) were determined at various concentrations of these compounds, using 

SHK and NADP+ respectively, as substrates. In Figure 4, the plots of reciprocal rate multiplied by the 

substrate concentrations (ܵ/ݒ) versus inhibitor concentration in the presence of SHK and NADP+ are 

shown. The intercept of the extrapolated line on the [i] axis, that corresponds to each compound 

concentration, is	െ݅଴.ହ. This provided a single and accurate way of estimating ݅଴.ହ, which is important 

if it is to be used to calculate the inhibition constant [35]. 

In order to further explore the molecular mechanism of action of these compounds, the kinetic 

parameters of inhibition was measured. The Cornish-Bowden plots for the inhibited reactions showed 

that the compounds 238 and 766 exhibited the characteristics of competitive inhibition with  

SHK (Figure 4A,C), whilst the 894 is a mixed-competitive inhibitor with respect to SHK and  

mixed-uncompetitive with respect to NADP+ (Figure 4E,F). These findings were confirmed by 

secondary plots for the three compounds. When 238 and 766 were assessed with NADP+ as the 

variable substrate, the Cornish-Bowden plots indicated that both compounds exhibited characteristics 

of uncompetitive inhibition (Figure 4B,D). The mixed inhibition exhibited by 894 is a pattern usually 

observed in multisubstrate enzyme catalyzed reactions. However, the uncompetitive inhibition shown 

by 238 and 766 indicated that there is no reversible link between the inhibitor and the NADP+. 

The ݅଴.ହ  values obtained for compounds 238, 766 and 894 were 122.94, 343.4 and 142.9 μM 

respectively. Since the results from the inhibition assays for 400 µM of either substrates demonstrated 

that these compounds displayed moderate inhibition against SaSDH, compared with other inhibitors 

reported for bacterial SDH [12]. If this value is considered, we may mistakenly dismiss these 

compounds, because the ݅଴.ହ value depends on concentrations of the enzyme (or target molecule), the 

inhibitor, and the substrate along with other environmental conditions such as pH, ionic strength and 

temperature. Therefore, an accurate determination of the ܭ௜  value is required, which has an intrinsic 

thermodynamic quantity that is independent of the substrate but dependent on the enzyme and inhibitor.  

According to this, the dissociation constant, ܭ௜, for compounds 238, 766 and 894 was determined. It 

has long been common practice to determine the inhibition constants by use of Dixon plots. However, 

the usefulness of the Dixon plot is limited by the fact that it cannot be applied to uncompetitive 

inhibition. Therefore, the Cornish-Bowden plot was used to obtain the ܭ௜ value for the binding of the 

inhibitor of enzyme-substrate complex and demonstrated the mechanism of inhibition of these small 

molecules. The compounds 238 and 766 behaved according to a competitive mode of inhibition (They 

affected ܭ௠ value for shikimate), and these inhibitors had a better affinity for the free enzyme than for 

the enzyme-substrate complex, being their ܭ௜௖ ൏  ௜௖= 19.7 forܭ ௜௨, while that the compound 766 had aܭ

shikimate and a ܭ௜௨ = 11.3 for NADP+ (Table 3). In contrast, the compound 894 showed values of  

 ௜௨= 5.2 µM for NADP+. These results demonstrated the importance of determiningܭ ௜௖ = 900.9 µM andܭ

the values of both parameters for each inhibitor and agreed with those previously reported [36]. 
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Figure 4. SaSDH inhibition patterns by compounds 238 (A and B), 766 (C and D) and 894 

(E and F). A Cornish-Bowden plot was drawn using the data obtained from the kinetic 

studies in order to confirm the inhibition pattern and the inhibition constants (ܭ௜௖ and ܭ௜௨) 

were determined by interpretation of the 1 ݅଴.ହ⁄  versus ݒ ܸ⁄  (insets). ܸ and ݒ represent the 

maximal velocity and the velocity in the absence and presence of the inhibitor with a given 

concentration of the substrate, respectively. 
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Table 3. Inhibition kinetics of compounds 238, 766 and 894 against SaSDH. 

Substrate Inhibitor ࢉ࢏ࡷ (μM) ࢛࢏ࡷ (μM) 
 ૙.૞ at 400 μM࢏
of substrate 

Pattern 

Shikimate 238 9.53 NA 122.94 Competitive 

NADP+ 238 ND 48.3 107.52 Uncompetitive 

Shikimate 766 19.76 NA 343.43 Competitive 

NADP+ 766 ND 11.35 564.2 Uncompetitive 

Shikimate 894 58.3 1470 142.9 
Mixed-

competitive 

NADP+ 894 900.9 5.2 614 
Mixed-

uncompetitive 

NA, not applicable. ND, not determined. ܭ௜௖  is the dissociation rate constant for inhibitor binding to the 

substrate site. ܭ௜௨ represents the dissociation constant for inhibitor binding to the enzyme-substrate complex.  

2.3.3 Flexible Docking of the SaSDH-Inhibitor Complex 

To obtain more detailed structural information on enzyme-inhibitor interactions, an induced fit 

docking procedure (flexible docking), was applied to these three molecules towards the binding pocket 

of the modelled protein (Figure 5A,C,E). Both, side chains of amino acids in the binding site and the 

inhibitor showed flexibility. On the contrary, neither protein nor ligands are flexible in the rigid body 

docking procedure, flexibility of the ligand is explored through conformer generation. The binding 

energies of the best complex for each inhibitor were −4.53, −4.82, and −6.0 kcal/mol for compound 

238, 766, and 894, respectively. These energies cannot be compared with those reported in the rigid 

body docking procedure (Table 2), because both were obtained under different conditions using 

distinct software. The docking poses showed that compound 238 formed hydrogen bonds with Ser13 

and Thr60, a cation-pi interaction with Lys64, and a pi-pi interaction with Phe236 (Figure 5B). 

Compounds 766 and 894 participated in hydrogen bonds with Ser13, Asn85 and Asp100  

(Figure 5D,F). Structurally, the three molecules share some similarities with SHK. Compounds 766 

and 894 each have a carbonyl group and a six-carbon ring with a hydroxyl group, which are 

responsible for the interactions described above, while compound 238 has a carboxyl group that forms the 

hydrogen bond with Ser13. According to these results, it seems that in the SeSDH-SHK crystallographic 

complex [11], the interactions of the compounds with Ser13, Lys64, Asn85, and Asp100 are central to 

the desired inhibition mechanisms. 

To date, only Han et al. found through high throughput screening strategy inhibitors of H. pylori SDH, 

these compounds were the cucurmin, two chromene derivatives, and maesaquinone diacetate [12]. 

Structurally there is no similarity between these molecules and the ones reported in this study, in fact, 

the unique common characteristic is the presence of carboxyl groups as substituent. Additionally, 

compounds 238, 766 and 894 are considerably smaller, therefore, these SaSDH inhibitors represent a 

new chemical scaffold that can serve as a guide to design more potent and selective inhibitors. 

Furthermore, the drug-likeness model scores estimated for these inhibitors (Table 2) validate the 

consideration of these compounds as drug-like molecules. 
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Figure 5. 2D and 3D plots showing binding of compounds 238, 766 and 894 (A, C and E, 

respectively) to the SaSDH active site (showing electrostatic surface; neutral residues are 

depicted in white, while negative and positive charged residues are colored in red and blue 

respectively), showing interactions between the enzyme and compounds 238, 766 and 894 

(B, D and F, respectively). Dashed lines with arrow heads indicate H-bond formation; 

single dots indicate cation-pi interactions, and dots in both extremes of the line indicate  

pi-pi interactions.  
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3. Experimental  

3.1. SaSDH Gene Cloning  

Genomic DNA from the ATCC MRSA252 strain (purchased from ATCC®, Manassas, VA, USA) was 

used for SaSDH gene (AroE) cloning via PCR. The oligonucleotides 5'GCCATATGAAA 

TTTGCAGTTATCGGAAATCC3' (forward) and 5'GCGGATCCTTATTCTCCTTTTAATTG3' 

(reverse) were used, in which the restriction sites for NdeI and BamHI, respectively, are underlined. 

The PCR product was cloned using PCR BLUNT II® TOPO® vector (Invitrogen, Carlsbad, CA, 

USA) and then sequenced. Subsequently, the DNA was subcloned into pET28a(+) to generate a 

protein with a 6His-tag at its N-terminus and finally introduced via transformation into E. coli 

BL21(DE3)pLysS cells (Novagen, Madison, WI, USA) for gene over-expression. 

3.2. Enzyme Purification  

Luria-Bertani medium (250 mL) containing 50 µg/mL kanamycin was inoculated with bacteria 

transformed with pET28a(+) vector containing the SaSDH gene. These bacteria were grown at 37 °C 

until the absorbance at 600 nm reached 0.5. At this time, over-expression was induced using 0.4 mM 

IPTG; after 3 h, the cells were harvested by centrifugation, and the resulting pellet was washed with 

100 mM Tris-HCl, pH 8.0 (buffer A). The cells were suspended in buffer A added with the protease 

inhibitor PMSF (200 µM) and then lysed by sonication. SaSDH was purified by passing the 

supernatant through a Ni-NTA affinity column and washed with buffer A supplemented with 

increasing concentrations of imidazole, 20 mM (50 mL), 50 mM (50 mL), 100 mM (20 mL), and  

200 mM (15 mL). SaSDH was eluted with buffer A plus 300 mM (10 mL) imidazole. The Bradford 

method was used to determine the protein concentration [37]. 

3.3. Molecular Weight Determination  

Native size-exclusion chromatography was performed using a Superdex 200 10/300 GL column, 

and 75 µg of SaSDH was injected into the column. The molecular weight was determined using a 

calibration curve constructed using different proteins of various molecular weights, and fitting the data 

to the equation described elsewhere [38]. 

3.4. Enzyme Activity  

Enzyme activity was measured spectrophotometrically at 25 °C at 340 nm, following NADPH 

generation (ε = 6.19 × 103 M−1 cm−1). The reaction mixture contained buffer A plus 1 mM SHK, 1 mM 

NADP+, and 50 ng of SaSDH.  

3.5. Reaction Mechanism and Kinetic Parameters 

The kinetic parameters for shikimate and NADP+ were determined by independently varying the 

concentration of each from 0.01 to 1 mM while maintaining the concentration of the other at 1 mM. 

The data were linearized by the double-reciprocal transformation of Lineweaver and Burk [39]. 

Primary plots (1/v versus 1/NADP+) patterns were used to confirm the sequential reaction mechanism 
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of SaSDH. The Km and dissociation constant for shikimate were determined from the secondary plots 

of y intercepts and slopes against 1/NADP+ plots. The inversion of the data matrix allowed the 

determination of the dissociation constant for NADP+. 

Additionally, kinetic parameters ܭ௠ , ௠ܸ௔௫ , and dissociation constant values for NADP+ and 

shikimate were also estimated by fitting each data set to the bisubstrate Michaelis-Menten model, by 

using an iterative nonlinear least-squares method (SigmaPlot EK module). Following the notation of 

Cleland [25], the bisubstrate equation for a bi-bi mechanism is: 

ݒ ൌ ஺ܸ஻

ሺܭ௜௔ܭ௕ ൅ ܤ௔ܭ ൅ ܣ௕ܭ ൅ ሻܤܣ
 (1)

where ܣ is the first binding substrate concentration, ܤ is the second binding substrate constant of the 

 values were obtained ܽ݅ܭ .ܤ and ܣ ௕ are the Michaelis constants forܭ ௔ andܭ binary complex, and ܣܧ

by considering alternatively NADP+ and shikimate as the first binding substrate in the fitting 

procedure. Finally, when substrate inhibition patterns were observed in a data set, the outlier 

observations were ignored for ܭ௠ estimation. 

3.6. Inhibition Assays 

The data were fitted to equations for competitive, uncompetitive, non-competitive and mixed 

inhibition, respectively, using the kinetic module of SigmaPlot program v12.3. All experiments were 

repeated at least twice. 

The 50% inhibition concentrations ( ݅଴.ହ ) of compounds against SaSDH were determined and 

analyzed by fitting to [Equation (2)]. The inhibition mechanism and inhibition constant (ܭ௜௖ and ܭ௜௨) 

were studied by fitting the inhibition data to [Equation (3)]:  
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൨ (3)

In these equations, ܵ and ݅ are the substrate (shikimate or NADP+) and inhibitor concentrations. ܭ௜௖ 
is the inhibition constant derived from the intercepts, whereas ܭ௜௨ is the constant derived from the 

slope of 1 ݅଴.ହ⁄  vs ݒ ܸ⁄  plots. 

3.7. Biochemical Determinations 

The optimum temperature was calculated by measuring enzyme activity at temperatures that varied 

from 10 to 80 °C. The optimum pH was calculated by measuring the enzyme activity at a range of pH 

values from 5 to 12.8. The following different buffers were used to obtain the desired pH: citrate-

phosphate (pH 5–7), tris-HCl (pH 8–9), glycine-sodium hydroxide (pH 9–10), sodium bicarbonate-

sodium hydroxide (pH 10–11), and potassium chloride-sodium hydroxide (pH 12–12.8). 
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3.8. Homology Modeling 

The SaSDH model was constructed using the homology model tool in the computational package 

MOE [40]. Because the crystal structure of SeSDH has been reported [11] and share a 70% amino acid 

sequence identity with SaSDH (the highest measurement obtained based on the PSI_BLAST [41] 

alignment obtained using the PredictProtein server [42]), using SeSDH structure as the template (PDB 

ID: 3DON).  

Ten different intermediate models were constructed. These models were the result of permutational 

selection of side-chain rotamers and different loop candidates. The intermediate model with the best 

packing index according to the chosen scoring function was selected as the final model and was 

subjected to an energy minimization using the Amber 99 force field [43]. Finally, the stereochemical 

quality of the model was determined using the external validation software Errat2 [29], Rampage [30], 

Molprobity [31], and Q-Mean [32,33]. 

3.9. Virtual Screening 

A core set of the Maybridge Ro3 Diversity Fragment Library [44], which comprises one thousand 

small molecules that represent the chemical diversity of the entire library, was used to find inhibitors 

of SaSDH through a rigid body docking procedure in MOE [40]. Their three-dimensional low-energy 

conformations and atomic partial charges were obtained using the Gasteiger-Marsilli algorithm [45], 

and energy minimization using the MMFF94x force field [46] were determined in MOE until  

a gradient of 0.05 kcal/mol was reached. Conformations from each molecule with energies higher than 

3 kcal/mol were eliminated from the process to avoid internal strains. Assignment of atomic partial 

charges and energy minimization in MOE were applied to the SaSDH model for virtual screening. 

Because this enzyme is absent in humans, the substrate (SHK) binding site was used to search for 

potential inhibitors. The residues forming the docking site (Val5, Ser13, Ser15, Asn58, Ile59, Thr60, 

Lys64, Asn85, Asp100, Phe236 and Gln239) were determined by alignment to those for the SHK 

binding site in the SeSDH crystallographic complex (PDB ID: 3DOO) [11]. Approximately 80,000 

random orientations, with variations in position and molecular rotation, were assessed per conformer 

of each ligand. The score for each of these was calculated using the London dG Scoring function in 

MOE, considering the spatial compatibility of the binding site, the internal energy of the ligand, 

desolvation energy of each atom, and protein–ligand interactions. A database with the binding energy 

for each conformer was obtained, and 100 molecules with the highest scores were selected for 

inhibition studies. 

3.10. Induced Fit Docking (IFD) 

This protocol was applied to the three most potent inhibitors using Schrödinger Software, suite  

2013-3 [47]. The protein (SaSDH model generated in MOE), ligands, and substrate (SHK) were 

prepared using Protein Preparation Wizard [48], LigPrep v2.8 [49], Epik v2.6 [50], and Prime v3.4 [51] 

programs. Glide v6.1 [52] was used to prepare protein-ligand complexes, and Induced Fit Docking [53] 

was used for flexible docking studies. The grid was generated based on the SHK binding site, using the 

fault settings for Van der Waals radius and charge scaling. In Glide, standard precision and extra 
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precision protocols were applied. The complexes obtained from the former were used for IFD. For 

each inhibitor, 10 complexes in IFD were generated; the complex with the best energy score was 

selected for structural analysis.  

4. Conclusions  

To the best of our knowledge, neither the characteristics of SaSDH, and as a consequence, nor the 

existence of inhibitors have been previously described. Furthermore, the inhibition mechanism of these 

compounds was different to the reported for H. pylori SDH inhibitors, besides their marked structural 

difference, making of these molecules a new chemical scaffold. Therefore, the data reported here may 

provide a starting point for the search for more potent inhibitors that could lead to the discovery of new 

chemotherapeutic agents against MRSA and other nosocomial bacteria. 
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