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Abstract: The Density Functional Theory (DFT) method and the 6-31G** basis set were 

employed to calculate the molecular properties of artemisinin and 20 derivatives with 

different degrees of cytotoxicity against the human hepatocellular carcinoma HepG2 line. 

Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were 

employed to select the most important descriptors related to anticancer activity. The 

significant molecular descriptors related to the compounds with anticancer activity were 

the ALOGPS_log, Mor29m, IC5 and GAP energy. The Pearson correlation between 
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activity and most important descriptors were used for the regression partial least squares 

(PLS) and principal component regression (PCR) models built. The regression PLS and 

PCR were very close, with variation between PLS and PCR of R2 = ±0.0106, R2
ajust = ±0.0125, 

s = ±0.0234, F(4,11) = ±12.7802, Q2 = ±0.0088, SEV = ±0.0132, PRESS = ±0.4808 and  

SPRESS = ±0.0057. These models were used to predict the anticancer activity of eight new 

artemisinin compounds (test set) with unknown activity, and for these new compounds 

were predicted pharmacokinetic properties: human intestinal absorption (HIA), cellular 

permeability (PCaCO2), cell permeability Maden Darby Canine Kidney (PMDCK), skin 

permeability (PSkin), plasma protein binding (PPB) and penetration of the blood-brain 

barrier (CBrain/Blood), and toxicological: mutagenicity and carcinogenicity. The test set 

showed for two new artemisinin compounds satisfactory results for anticancer activity and 

pharmacokinetic and toxicological properties. Consequently, further studies need be done 

to evaluate the different proposals as well as their actions, toxicity, and potential use for 

treatment of cancers. 

Keywords: artemisinin; anticancer activity; molecular modeling; B3LYP/6-31G**; QSAR 

 

1. Introduction 

Cancer, also called malignant neoplasm or malignant tumor, is a disease characterized by the 

uncontrolled growth of abnormal cells in an organism [1]. While the origin of these is due to genetic 

alterations may be by inactivation of tumor suppressor genes, activation of oncogenes, inactivation of 

genes responsible for apoptosis and mutations produced by chemical, physical and biological agents, 

and are characterized by loss of function coming from the absence of differentiation, uncontrolled 

proliferation, invasiveness of adjacent tissues and metastasis [2,3]. 

On a global scale there was an increase to 14.1 million new cases of different types of cancer in 

2012, causing 8.2 million deaths, in accordance with the online channel GLOBOCAN 2012 [4]. The 

prevalence estimates for 2012 show that there were 32.6 million people (over the age of 15 years) who 

have had a cancer diagnosed in the last five years. The types most commonly diagnosed around the 

world were lung (1.8 million, 13.0% of the total), breast (1.7 million, 11.9%), and colon and rectum 

(1.4 million, 9.7%). The most common determinants of death were lung cancers (1.6 million, 19.4% of 

the total), liver (0.8 million, 9.1%) and stomach (0.7 million, 8.8%). Importantly, among the different 

forms of cancer malignant tumors of the liver, hepatocellular carcinoma type, is the second most 

common causing deaths around the world [5]. 

Nowadays a variety of factors has driven the search for new drugs of plant origin, particularly the 

discovery of drugs that fight cancer effectively [6]. Chaturvedi [7] relates that nowadays the antitumor 

action is the most widely studied biological activity of sesquiterpene lactones, where studies reveal 

that these are capable of combating tumors via selective alkylation, thereby controlling and inhibiting 

cell division. This set of factors and cellular functions leads the cells to lose action by apoptosis. 

There are some drugs derived from sesquiterpene lactones such as artemisinin, that in clinical trials 

showed activity to combat cancer [7–9]. Artemisia annua L. a plant species coming from temperate 
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regions such as China and Southeast Europe, contains the active principle artemisinin (qinghaosu), that 

is widely used in traditional Chinese medicine for the treatment of malaria [10]. 

Recently artemisinin (Figure 1, compound 1) has been reported for its ability to exert a cytotoxic 

effect on cancer cells [11]. Studies of the activity of artemisinin and its derivatives appear to indicate it 

is mediated by its interaction through the endoperoxide function of the 1,2,13-trioxane ring [12]. 

Therefore, it becomes necessary to discover the mechanism of action of the compound to be studied in 

order to determine how to carry out drug-receptor interactions, for this is necessary the utilization of 

some tools such as the use of molecular modeling that enables one to determine cell sites or the 

physiology involved in this process [13]. 

Molecular modeling is a tool that consists in the application of theoretical models to represent and 

manipulate the structure of molecules, study chemical reactions and establish relationships between 

structure and properties of matter [14,15]. In the theoretical chemistry area there are some strategies 

that are promising in relation to the design of new drugs, such as rational design, which consists of 

using information in different areas of human knowledge, especially those related to the electronic 

levels of the drug, physical-chemical parameters (hydrophobic, steric and electronic) related with the 

biological activity [16–19]. This type of strategy, unlike molecular modification, does not have high 

time demands and is low in financial investment. Among the various techniques we can highlight 

planning with the help of computer, which is a resource that increases considerably the possibilities of 

scientific research in discovery of new drugs [20–23]. 

In this paper, a QSAR study of artemisinin and 20 derivatives with logarithm of relative activity, 

logRA (see Figure 1) that showed different degrees of cytotoxicity against the human hepatocellular 

carcinoma HepG2 line [24]. Initially, the structures were modeled, and many different molecular 

descriptors were computed. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis 

(HCA) were employed to choose the molecular descriptors that are most related to the anticancer 

biological property investigated. Then, a QSAR model was elaborated through the Principal 

Component Regression (PCR) and Partial Least Square (PLS) methods that were used to perform 

predictions for eight new artemisinin compounds (test set) with unknown anticancer activity [25–28]. 

For these eight compounds the following pharmacokinetic properties: human intestinal absorption (HIA), 

cellular permeability (PCaCO2), cell permeability Maden Darby Canine Kidney (PMDCK), skin permeability 

(PSkin), plasma protein binding (PPB) and penetration of the blood-brain barrier (CBrain/Blood), and 

toxicological ones, mutagenicity and carcinogenicity, were predicted. These predictions aid in the 

interactions between micromolecules and their molecular targets, predicting, also, possible toxic 

consequences of the drug candidate and to aid in future studies searching for other new anticancer drugs. 

2. Results and Discussion 

2.1. Determination of the Theoretical Geometrical Parameters for the 1,2,13-Trioxane Ring of 

Artemisinin (Bond Length, Bond Angle, and Torsion Angle of Atoms in this Ring) in Different Methods 

and Basis Sets 

We determined the geometrical parameters for the 1,2,13-trioxane ring of artemisinin (bond length, 

bond angle, and torsion angle of atoms in this ring), as shown in Table 1. 
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Figure 1. Structure and biological activity of artemisinin and derivatives with anticancer 

activity against human hepatocellular carcinoma HepG2 line. 
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Figure 1. Cont. 
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Table 1. Theoretical and experimental parameters for the 1,2,13-trioxane ring in artemisinin (compound 1). 

Parameters [a] Semiempirical Hartree-Fock/HF DFT/B3LYP 
EXP[29] 

AM1 PM3 ZINDO 6-31G 6-31G* 6-31G** 3-21G 3-21G* 3-21G** 6-311G 6-31G 6-31G* 6-31G** [b] 3-21G 

Bond length (Å) 

O1O2 1.288 1.544 1.237 1.447 1.391 1.390 1.461 1.461 1.462 1.429 1.524 1.459 1.459 1.524 1.469 

O2C3 1.447 1.403 1.400 1.435 1.393 1.396 1.440 1.440 1.439 1.432 1.452 1.413 1.414 1.455 1.416 

C3O13 1.427 1.428 1.396 1.435 1.388 1.408 1.436 1.435 1.435 1.434 1.473 1.441 1.441 1.473 1.445 

O13C12 1.416 1.403 1.392 1.403 1.400 1.376 1.407 1.407 1.407 1.401 1.425 1.395 1.396 1.430 1.379 

C12C12a 1.537 1.555 1.513 1.533 1.533 1.532 1.529 1.529 1.530 1.530 1.438 1.539 1.539 1.535 1.523 

C12aO1 1.468 1.427 1.416 1.469 1.429 1.429 1.477 1.477 1.477 1.438 1.499 1.455 1.455 1.504 1.461 

Bond angle (°) 

O1O2C3 112.530 110.340 114.310 108.800 106.100 109.460 107.100 107.080 107.060 109.210 107.300 108.280 108.280 105.590 108.100 

O2C3O13 103.600 104.810 105.370 106.760 110.800 107.800 107.270 107.285 107.300 106.670 107.730 108.490 108.490 108.220 106.600 

C3O13C12 115.480 116.010 115.843 117.300 112.800 115.300 115.670 115.680 115.710 116.960 114.990 114.080 114.060 113.200 114.200 

O13C12C12a 113.510 115.200 113.270 112.280 108.700 112.300 112.080 112.080 112.030 112.360 113.640 113.250 113.240 113.300 114.500 

C12C12aO1 111.070 113.180 107.290 110.910 110.500 110.545 111.570 111.600 111.600 110.760 111.740 111.290 111.280 112.410 110.700 

C12aO1O2 113.740 112.290 118.380 113.240 112.700 112.700 111.290 111.290 111.290 113.360 111.400 111.600 111.590 109.620 111.200 

Torsion angle (°) 

O1O2C3O13 −77.800 −73.310 −70.403 −71.840 −73.369 −73.400 −74.670 −74.700 −74.690 −71.940 −73.460 −73.900 −73.910 −76.610 −75.500 

O2C3O13C12 42.070 52.700 36.370 33.390 31.034 31.100 32.300 32.360 32.180 33.010 34.970 32.800 32.780 33.750 36.000 

C3O13C12C12a 11.400 2.811 17.420 25.320 27.432 27.400 28.290 28.190 28.330 25.380 26.260 27.460 25.500 29.060 25.300 

O13C12C12aO1 −41.770 −40.510 −46.610 −49.410 −50.100 −50.143 −50.860 −50.770 −50.700 −49.470 −51.200 −51.270 −51.340 −52.190 −51.300 

C12C12aO1O2 12.050 19.940 18.110 12.510 10.900 10.924 9.989 9.940 9.750 12.480 12.740 11.730 11.780 9.060 12.700 

C12aO1O2C3 47.050 35.630 40.130 46.700 48.700 48.674 50.330 50.350 50.530 46.870 46.900 47.850 47.830 51.060 47.800 

Standard 
Deviation 

4.776 8.388 4.372 1.663 2.484 1.762 1.722 1.714 1.797 1.658 0.843 1.227 1.103 1.915 ˗ 

[a]: The atoms are numbered according to compound 1 in Figure 1; [b]: Valence basis set separately validated for calculating the molecular properties. 
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Table 1 illustrates that for the DFT method, all four basis sets (B3LYP/6-31G, B3LYP/6-31G*, 

B3LYP/6-31G**, and B3LYP/3-21G) can accurately describe all of the structural parameters with 

respect to their magnitude and sign when compared with the experimental values. 

Meanwhile, in the semiempirical (AM1, PM3, and ZINDO) and Hartree-Fock (HF/6-31G,  

HF/6-31G*, HF/6-31G**, HF/3-21G, HF/3-21G*, HF/3-21G**, and HF/6-311G) methods there is not 

good agreement between the experimental and theoretical values for the torsion angles, especially the 

angle formed by atoms O2C3O13C12, with deviations −6.070° (AM1), −16.700° (PM3), −0.370° 

(ZINDO), +2.610° (HF/6-31G), +4.966° (HF/6-31G*), +4.900° (HF/6-31G**), +3.700° (HF/3-21G), 

+3.640° (HF/3-21G*), +3.820° (HF/3-21G**), +2.990° (HF/6-311G), +1.030° (B3LYP/6-31G), 

+3.200° (B3LYP/6-31G*), +3.220° (B3LYP/6-31G**) and +2.250° (B3LYP/3-21G) and exhibited 

standard deviations of 4.776 (AM1), 8.388 (PM3), 4.372 (ZINDO), 1.663 (HF/6-31G), 2.484  

(HF/6-31G*), 1.762 (HF/6-31G**), 1.722 (HF/3-21G), 1.714 (HF/3-21G*), 1.797 (HF/3-21G**), 

1.658 (HF/6-311G), 0.843 (B3LYP/6-31G), 1.227 (B3LYP/6-31G*), 1.103 (B3LYP/6-31G**) and 

1.915 (B3LYP/3-21G), respectively. 

Table 1 shows that for artemisinin (compound 1) the B3LYP/6-31G, B3LYP/6-31G*, B3LYP/6-31G** 

basis sets show excellent results for bond length, bond angle and torsion angle compared to the 

experimental data. The B3LYP/6-31G method described geometrical parameters well, with values 

close to the experimental results. However, the minimum base 6-31G has several deficiencies; thus, a 

polarization function was included to improve upon this base (i.e., p orbitals represented by *). Thus, 

6-31G* refers to basis set 6-31G with a polarization function for heavy atoms (i.e., atoms other than 

hydrogen), and 6-31G** refers to the inclusion of a polarization function for hydrogen and helium 

atoms [29–35].  

When basis sets with polarization functions are used in calculations involving anions, good results 

are not obtained due to the electronic cloud of anionic systems, which tend to expand. Thus, 

appropriate diffuse functions must be included because they allow for a greater orbital occupancy in a 

given region of space. It then becomes necessary to include diffuse functions in the basis function 

associated with the configuration of a neutral metal atom to obtain a better description of the metal 

complex. The 6-31G** basis is particularly useful in the case of hydrogen bonds [30–35]. 

Cristino et al. [36] used the B3LYP/6-31G* method to model artemisinin and 19 10-substituted 

deoxoartemisinin derivatives, with different degrees of activity against the Plasmodium falciparum  

D-6 strains of Sierra Leone. Chemometric methods (PCA, HCA, KNN, SIMCA, and SDA) were 

employed to reduce the dimensionality and to determine which subset of descriptors is responsible for 

the classification between more and less active agents. 

Figueiredo et al. [37] conducted studies using the B3LYP/6-31G* method for antimalarial 

compounds against Plasmodium falciparum K1. These studies led to multivariate models for 

artemisinin derivatives and series of dispiro-1,2,4-trioxolanes. The application of these models has 

enabled the prediction of activity for compounds designed without known biological activity. 

Moreover, a new series of antimalarial compounds is currently in the study phase. 

Araújo et al. [38] used density functional theory (6-31G*) to verify the performance of a base set in 

reproducing experimental data, particularly geometrical parameters, and to calculate the interaction 

energies, electronic states, and geometrical arrangements for complexes composed of a heme group 

and artemisinin. The results demonstrated that the interaction between artemisinin and the heme group 
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occurs at long distances through a complex in which the iron atom of the heme group retains its 

electronic characteristics, with the quintet state being the most stable. These results suggest that the 

interaction between artemisinin and heme is thermodynamically favorable. 

Pereira et al. [39] studied four structures of artemisinin by reductive decomposition A, B1, B2, and 

B3 with 13 species (QHS, 1/2, 3, 4, 5, 5a, 6, 7, 18, 18a, 19, 20, and 21), and the structures of the 

studied species were analyzed in terms of geometrical parameters, Löwdin bond orders, atomic partial 

charges, spin densities, electronic energies, free energies, and entropy. These studies were carried out 

at the B3LYP/6-31G** level. 

Carvalho et al. [40] used the B3LYP/6-31G** method to study artemisinin and 31 analogues with 

antileishmanicidal activity against Leishmania donovani. The authors proposed a set of 13 artemisinins, 

seven of which are less active and six of which that have not been tested; of these six, one is expected 

to be more active against L. donovani. 

Barbosa et al. [41] performed molecular modeling and chemometric studies involving artemisinin 

and 28 derivatives exhibiting anticancer activity and the calculations of the compounds studied were 

performed at the B3LYP/6-31G** level. 

By comparing these methods with the DFT method (see Table 1), we find that all of the basis sets 

(B3LYP/6-31G, B3LYP/6-31G*, and B3LYP/6-31G**) have low standard deviations in relation to the 

semiempirical and Hartree-Fock methods at 0.843 (B3LYP/6-31G), 1.227 (B3LYP/6-31G*), and 1.103 

(B3LYP/6-31G**). The variation was ±0.384 between B3LYP/6-31G and B3LYP/6-31G*, ±0.260 

between B3LYP/6-31G and B3LYP/6-31G**, and ±0.124 between B3LYP/6-31G* and B3LYP/6-31G**. 

This study highlighted the B3LYP/6-31G** basis set, which is closer to the experimental results and 

shows good performance in the description when comparing the O2C3 and C3O13 bond length, O1O2C3 

and C3O13C12 bond angles. The torsion angles or dihedral angle also showed good agreement with 

the experimental values reported in the literature, showing that with the 6-31G** basis set, the torsion 

angles O13C12C12aO1 and C12aO1O2C3 are closer to the artemisinin crystallographic data. 

2.2. Principal Component Analysis (PCA) Results 

The PCA results showed that the most important descriptors were the following: ALOGPS_logs, 

Mor29m, IC5 and GAP energy. They were chosen from the complete data set (1716 descriptors) and 

other variables were not selected because either they had a poor linear correlation with activity or they 

did not give a distinct separation between the more and less active. 

The values of the important descriptors of each selected compound identified via PCA as well as the 

values of logRA, relative activity (RA) and the IC50 is the 50% inhibitory concentration are shown in 

Table 2. The Table 2 shows the Pearson correlation matrix between the descriptors and logRA, and the 

correlation between pairs of descriptors is less than 0.2420, while the correlation between the 

descriptors and logRA is less than 0.7459. The descriptors selected by PCA represent the 

characteristics necessary to separate between the more and less active with anticancer activity of these 

compounds against human hepatocellular carcinoma HepG2. 
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Table 2. Physicochemical properties selected by PCA, experimental logRA values, IC50 

and the correlation matrix. 

Compounds ALOGPS_log Mor29m IC5 Gap Energy logRA RA IC50/µΜ
1- −2.3500 −0.3050 4.8620 0.2616 0.0000 1.0000 97 
2- −3.5200 −0.3070 5.2530 0.2525 −0.0132 0.9700 100 
3+ −6.3500 −0.4550 5.6840 0.2521 1.5396 34.6417 2.8 
4+ −6.8400 −0.5250 5.6240 0.2524 1.9075 80.8164 1.2 
5+ −7.1600 −0.5140 5.5010 0.2527 2.3240 210.8628 0.46 
6+ −7.4900 −0.5010 5.2250 0.2525 1.3635 23.0940 4.2 
7- −3.6400 −0.2360 5.2170 0.2467 −0.0132 0.9700 100 
8+ −7.0300 −0.5260 5.5970 0.2462 2.1294 134.7100 0.72 
9- −7.6800 −0.1790 5.1970 0.2462 −0.0132 0.9700 100 
10- −3.6800 −0.3650 5.2530 0.2367 −0.0132 0.9700 100 
11- −3.6800 −0.3050 5.2530 0.2359 −0.0132 0.9700 100 
12+ −6.9700 −0.3940 5.5080 0.2457 1.5396 34.6417 2.8 
13+ −6.9700 −0.2910 5.5080 0.2552 1.3433 22.0444 4.4 
14- −7.4000 −0.2280 5.1590 0.2217 −0.0132 0.9700 100 
15- −7.4000 −0.2280 5.1590 0.2287 −0.0132 0.9700 100 
16- −3.7500 −0.4430 5.1800 0.2194 −0.0132 0.9700 100 
17- −7.6100 −0.3330 5.1680 0.2177 −0.0132 0.9700 100 
18+ −5.4900 −0.3470 5.6380 0.2199 0.3604 2.2929 42.3 
19+ −6.7200 −0.5520 5.5430 0.2491 1.8728 74.6105 1.3 
20+ −7.0600 −0.5520 5.4190 0.2492 2.1002 125.9505 0.77 
21+ −6.8400 −0.5150 5.5160 0.2449 1.4185 26.2119 3.7 

ALOGPS_log  0.2420 −0.4260 0.0497 −0.5265 - - 
Mor29m   −0.5892 −0.2971 −0.8249 - - 

IC5    0.1767 0.7459 - - 
Gap energy     0.5238 - - 

The results of the PCA model are presented in Table 3. The model was constructed with three main 

components (3 PCs). The first principal component (PC1) describes 38.6537% of the total information, 

the second principal component (PC2) describes 21.5859%, and the third (PC3) 12.3501%. PC1 

contains 48.3171% of the original data, and the combination of the first two components (PC1 + PC2) 

contains 75.2996%, and all three (PC1 + PC2 + PC3) explain 90.7373% of the total information, losing 

only 9.2627% of the original information. The descriptors ALOGPS_logs (0.4232), Mor29m (0.5937) 

and IC5 (−0.6223) contribute the most to PC1, while in PC2, the descriptor GAP energy (0.7746) is 

the primary contributor. The main components can be written as a linear combination of the selected 

descriptors. Mathematical expressions for PC1 (1) and PC2 (2) are shown below: 

PC1 = 0.4232ALOGPS_log + 0.5937Mor29m − 0.6223IC5 − 0.2845Gap energy (1)

PC2 = 0.5936ALOGPS_log − 0.1803Mor29m − 0.1225IC5 + 0.7746Gap energy (2)
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Table 3. PCA and contribution of selected descriptors based on step multivariate analysis. 

Parameters 
Main Component 

PC1 PC2 PC3 

Variance (%) 38.6537 21.5859 12.3501 
Cumulative variance (%) 48.3171 75.2996 90.7373 

Molecular descriptors 
 Contribution 

 PC1 PC2 

ALOGPS_log  0.4232 0.5936 
Mor29m  0.5937 −0.1803 

IC5  −0.6223 −0.1225 
Gap energy  −0.2845 0.7746 

Figure 2 shows the scores for the 21 compounds studied. Based on the graph, PC1 distinguishes 

between compounds that are more potent and less potent. The most potent compounds are located at 

the left (3, 4, 5, 6, 8, 12, 13, 18, 19, 20 and 21), while the less potent compounds are located in the 

right side of the graph (1, 2, 7, 9, 10, 11, 14, 15, 16 and 17). 

Figure 2. Plot of PC1–PC2 scores for artemisinin and derivatives with anticancer activity 

against human hepatocellular carcinoma HepG2 line. Positive values indicate more potent 

analogs (in blue), and negative values indicate less potent analogs (in red). 

 

Figure 3 shows the loadings for the four (4) descriptors that are most important in the classification 

of compounds. Less potent compounds have high contributions from the descriptors ALOGPS_logs 

and Mor29m, while more potent compounds have a high contribution from the descriptor GAP energy 

and IC5. Thus, the descriptors GAP energy and IC5 are responsible for the location of more potent 

compounds at the left side of the graph. The descriptors ALOGPS_logs and Mor29m places less potent 

compounds in the right part of the graph. Figure 3 also shows that the higher the contribution of the 

descriptors ALOGPS_logs and Mor29m in the first principal component, i.e., the higher the value for a 

certain compound, the higher the score value will be, indicating that the compound is less potent than 

-
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others. The other descriptors contribute to a lesser degree. For example, the descriptor GAP energy has 

negative weight in PC1, demonstrating that the most potent compounds generally have lower values of 

this descriptor. 

Figure 3. Plot of the PC1–PC2 loadings with the four descriptors selected to build the PLS 

and PCR models of artemisinin and derivatives with biological activity against human 

hepatocellular carcinoma HepG2 line. 

 

2.3. Hierarchical Cluster Analysis (HCA) Results 

The HCA method classified the compounds into two classes (more active and less active) and was 

based on the Euclidean distance and the incremental method [42]. In the incremental linkage, the 

distance between two clusters is the maximum distance between a variable in one cluster and a 

variable in the other cluster. The descriptors employed to perform HCA were the same as those used 

for PCA, i.e., ALOGPS_logs, Mor29m, IC5 and GAP energy. 

In the HCA technique, the distances between pairs of samples are computed and compared. Small 

distances imply that compounds are similar, while dissimilar samples will be separated by relatively 

large distances. The dendrogram in Figure 4 shows the HCA graphic as well as the compounds 

separated into two main classes. The scale of similarity varies from 0 for samples with no similarity to 1 

for samples with identical similarity. By analyzing the dendrogram, some conclusions can be drawn 

even though the compounds present some structural diversity. 

HCA showed results similar to those obtained with PCA. The compounds are grouped according  

to their biological activities. The most potent compounds are 3, 4, 5, 6, 8, 12, 13, 18, 19, 20 and 21.  

The less potent compounds are 1, 2, 7, 9, 10, 11, 14, 15, 16 and 17. Compound 18 has the lowest value 

of logRA = 0.3604, among the compounds classified as most potent of the series studied. Whereas, the 

compound 5 has the highest value of logRA = 2.3240, whereas the variation between the activities of 

the compounds 5 and 18 is ±1.9636 between them. 
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Figure 4. HCA dendrogram for artemisinin and derivatives with anticancer activity against 

human hepatocellular carcinoma HepG2. Positive values indicate more potent analogs, and 

negative values indicate less active compounds. 

 

2.4. Partial Least Squares (PLS) and Principal Component Regression (PCR) Results 

The statistical quality [43] of the PLS and PCR models was gauged by parameters such as 

correlation coefficient or squared correlation coefficient (R2), explained variance (R2
ajust, i.e., adjusted 

R2), standard deviation (s), variance ratio (F—a statistic of assessing the overall significance),  

cross-validated correlation coefficient (Q2), standard error of validation (SEV), predicted residual error 

sum of squares (PRESS) and standard deviation of cross-validation (SPRESS) [44–46]. The best 

regression models were selected based on high values of R2, R2
ajust, Q

2 and F and low values of s, SEV, 

PRESS and Spress. 

The calculated properties and the experimental activity values for the compounds studied were used 

to build the PLS and PCR regression models (see Table 4). The models built using the PLS and PCR 

were based on three latent variables and 21 compounds. 

The regression equations obtained for PLS (Equation (3)) and PCR (Equation (4)) models that 

relate the descriptors and anticancer activity are the following: 

logRA = −0.2748ALOGPS_log − 0.4307Mor29m + 0.3894IC5 + 0.2734 Gap energy (3)

n = 21, R2 = 0.9473, R2
ajust = 0.9381, s = 0.2280, F(4,17) = 71.9013, Q2 = 0.9151, SEV = 0.2620,  

PRESS = 0.8937, SPRESS = 0.0590. 

logRA = −02904ALOGPS_log − 0.4074Mor29m + 0.4270IC5 + 0.1953 Gap energy (4)

n = 21, R2 = 0.9367, R2
ajust = 0.9256, s = 0.2514, F(4,17) = 59.1211, Q2 = 0.9063, SEV = 0.2752,  

PRESS = 1.0745, SPRESS = 0.0647. 



Molecules 2014, 19 10682 

 

The results obtained with the PLS and PCR models were very close, with variation between  

PLS and PCR of R2 = ±0.0106, R2
ajust = ±0.0125, s = ±0.0234, F(4,11) = ±12.7802, Q2 = ±0.0088,  

SEV = ±0.0132, PRESS = ±0.4808 and SPRESS = ±0.0057. The quality of the PLS and PCR models can 

be demonstrated by comparing the measured and the predicted activities. The validation errors 

obtained by the leave-one-out cross-validation method are shown in Table 4. For the PLS model, only 

six compounds (1, 3, 5, 18, 20 and 21) had high validation errors, and the PCR model yielded seven 

compounds (1, 3, 4, 5, 17, 18 and 20) with high residual values. 

Table 4. Predicted PLS and PCR results and validation errors for logRA (experimental). 

Compounds 
Predicted Validation Error Experimental 

PLS PCR PLS PCR logRA 

1− −0.4002 −0.3420 −0.4002 −0.3420 0.0000 
2− 0.3129 0.2298 0.3161 0.2166 −0.0132 
3+ 1.9110 1.8824 0.3714 0.3428 1.5396 
4+ 2.0905 2.0404 0.1830 1.1329 1.9075 
5+ 1.8148 1.7574 −0.5092 −0.5666 2.3240 
6+ 1.4038 1.3075 0.0403 −0.0560 1.3635 
7− −0.1312 −0.1548 −0.1444 −0.1680 −0.0132 
8+ 1.9071 1.9093 −0.2223 −0.2201 2.1294 
9− 0.2824 0.2716 0.2692 0.2584 −0.0132 

10− 0.1883 0.1772 0.1751 0.1640 −0.0132 
11− −0.0429 −0.0270 −0.0561 −0.0402 −0.0132 
12+ 1.3212 1.3357 −0.2184 −0.2039 1.5396 
13+ 1.1437 1.1276 −0.1996 −0.2157 1.3433 
14− −0.1448 0.0796 −0.1580 0.0664 −0.0132 
15− 0.0023 0.1410 −0.0109 0.1278 −0.0132 
16− 0.0131 0.1077 0.0001 0.0945 −0.0132 
17− 0.1968 0.3439 0.1836 0.3307 −0.0132 
18+ 0.7639 0.8522 0.4035 0.4918 0.3604 
19+ 1.9530 1.9139 0.0802 0.0411 1.8728 
20+ 1.7459 1.6991 −0.3543 −0.4011 2.1002 
21+ 1.7443 1.7392 0.3258 0.3207 1.4185 

The measured versus predicted values using our PLS and PCR models are presented in Figure 5a,b, 

respectively. The PLS and PCR plots identify compounds with higher activity (blue) and compounds 

with lower activity (red). According to the PLS and PCR models, the four variables present different 

magnitudes of regression coefficients (in absolute value). The models reveal that compounds with high 

biological potency against human hepatocellular carcinoma HepG2 have a combination of higher 

values of IC5 and GAP energy and lower values of ALOGPS_logs and Mor29m for the PLS and  

PCR models. 
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Figure 5. Plot of experimental versus predicted values for logRA modeled by (a) PLS and (b) PCR. 

 

The eight compounds of the test set (22–29) were molded from the most stable structure of 

artemisinin, compound 1 of Figure 1, and constructed using GaussView 5.0 program, carrying the 

complete optimization of the geometry of each compound with the basis set of separated valence 

B3LYP/6-31G** using the DFT method as implemented in Gaussian 03 program. After obtain the 

most stable geometry of each compound was determined only selected descriptors in PCA and used in 

the construction of the QSAR models, namely ALOGPS_logs, Mor29m, IC5 and GAP energy, shown 

in Table 5. 
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Table 5. Molecular properties selected by analysis of main components of test set with 

anticancer activity unknown. 

Test Set ALOGPS_log Mor29m IC5 Gap energy, a.u. 

22 −5.030000 −0.412000 5.514000 0.252200 
23 −5.760000 −0.443000 5.628000 0.252200 
24 −7.390000 −0.515000 5.364000 0.252400 
25 −7.140100 −0.305100 5.571100 0.219700 
26 −6.030000 −0.311000 5.572000 0.252400 
27 −4.820000 −0.518000 5.856000 0.251700 
28 −7.350000 −0.601000 5.280000 0.227600 
29 −7.010000 −0.543000 5.488000 0.232300 

The QSAR models (PLS and PCR) were built used to predict the unknown anticancer activity of 

eight new artemisinin derivatives shown in Figure 6, compounds 22–29. Table 6 shows the results of 

the logRA by PCR and PLS models. According to Table 6 the PLS and PCR models showed that all 

the compounds of the test set are predicted to be more active, they had values of logRA greater than 

zero (logRA > 0) in both models (PLS and PCR) with residues of prediction ranging from 0.0650  

to −0.0560, suggesting that these new compounds in the two models (PLS and PCR) are more potent 

than artemisinin may be synthesized and tested for anticancer activity. 

Figure 6. Compounds of the test set artemisinin derivatives with unknown anticancer 

activity against human hepatocellular carcinoma HepG2. 
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Figure 6. Cont. 
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Table 6. Anticancer activity predicted (logRA) by PCR and PLS models for the test set 

compounds and residues of prediction between models. 

Test Set 
Compounds 

Predicted (logRA) Residues of Prediction 
(PLS-PCR) PLS PCR 

22 1.2458 1.2048 0.0410 
23 1.6431 1.6210 0.0221 
24 1.6804 1.6154 0.0650 
25 0.6841 0.8649 −0.1808 
26 1.1631 1.1564 0.0067 
27 2.1201 2.1163 0.0038 
28 1.3444 1.3850 −0.0406 
29 1.5410 1.5970 −0.0560 

2.5. Pharmacokinetic and Toxicological Results 

The prediction of Absorption, Distribution, Metabolism and Excretion (ADME) proprieties for 

artemisinin and its derivatives of the test set (compounds 22–29) classified by PLS and PCR models as 

more potent are shown in Tables 7 and 8. In Table 7, one can observe the absorption values (HIA, 

PCaCO2 and PMDCK) predicted for the compounds. The prediction of human intestinal absorption is 

a major objective in the optimization and selection of candidates for the development of oral 

medications. The focus on the discovery of modern drugs is not simply in the pharmacological activity, 

but also in search of more favorable pharmacokinetic properties [47]. The results of human intestinal 

absorption are the sum of absorption and bioavailability, evaluated from the proportion of excretion or 

cumulative excretion in urine, bile and feces [48,49]. 

The test compounds showed good human intestinal absorption, having values of HIA > 90%, being 

close to that of artemisinin (compound 1). Compound 27 showed the lowest absorption equal to 94.2039%, 

whereas compound 26 showed the highest value of HIA equal to 98.1189%, as shown in Table 7. 

The PCaco2 (nm/s) and PMDCK (nm/s) cell models have been used as a reliable in vitro model for the 

prediction of oral drug absorption, being the Caco-2 cells derived from human colon adenocarcinoma 

and have various routes of drug transport through the intestinal epithelium [49]. The results of  

the compounds shown in Table 7 showed an average permeability of 45.4351, as proposed by 

Yazdanian [50]. The values obtained of PCaCO2 (nm/s) were higher than 30.3276 nm/s (compound 1, 
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artemisinin). The compounds 25 and 26 showed higher values of cell permeability of 51.2476 and 

51.5452 nm/s, respectively. 

Table 7. Absorption properties for artemisinin (compound 1) and compounds of the test set. 

Compounds 
Absorption 

HIA(%) [a] PCaCO2(nm/s) [b] PMDCK(nm/s) [c] Pskin [d] 

1 96.3143 30.3276 72.4627 −3.00248 
22 95.9522 48.074 0.2820 −2.78573 
23 96.0180 49.0102 2.7481 −2.38535 
24 96.1170 50.8969 64.4258 −1.10239 
25 97.6636 51.2473 54.1962 −1.00477 
26 98.1189 51.5452 13.6801 −1.4846 
27 94.2039 35.0362 0.0437 −2.66011 
28 96.1170 46.0453 64.766 −0.792156 
29 97.6636 46.7337 55.4025 −0.768943 

[a]: percentage of human intestinal absorption; [b]: cell permeability (Caco-2 in nm/s); [c]: cell permeability 

Maden Darby Canine Kidney in nm/s; [d]: skin permeability. 

Table 8. Distribution properties in percentages of PPB and penetration of the blood brain 

barrier for artemisinin (compound 1) and compounds of the test set. 

Compounds 
Distribution 

PPB(%) [a] CBrain/CBlood [b] 

1 93.368123 1.30488 
22 90.481620 3.1575 
23 91.279366 5.35648 
24 93.306402 11.0801 
25 96.696312 8.39023 
26 95.399268 2.65831 
27 90.056670 1.91129 
28 93.838777 10.9862 

29 97.347576 8.08563 
[a]: percentage of plasma protein binding; [b] penetration of the blood brain barrier. 

In accordance with Irvine et al. [51], PMDCK (nm/s) system cells can be used as tool for rapid 

screening permeability. The test compounds (22, 23, 26 and 27) were those that presented low 

permeability in the PMDCK (<25) cell system. In the studied set, compounds 22 and 27 showed the 

lowest permeability values PMDCK equal to 0.2820 and 0.0437 nm/s, respectively. Compounds 24, 25, 

28 and 29 showed the highest permeability values varying in the range from 54.1962 to 64.7660 nm/s, 

close to the permeability value of artemisinin. 

In the pharmaceutical, cosmetic and agrochemical industries, predicting the rate of skin 

permeability is a crucial parameter for transdermal administration of medications and for the risk 

assessment of chemical products that come into contact with the skin accidentally [52]. The test set 

compounds showed negative values of skin permeability, i.e, it is not important to be administered for 

transdermal use, and also not present any risk accordance results described in Table 7. 
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The distribution of a drug depends on its plasma protein binding (PPB) and partition in adipose 

tissue and other tissues. In plasma the drug may be in unbound or bound form, which depends on the 

affinity that the drug presents by the plasmatic protein (drug target). If the protein binding is reversible, 

then a chemical equilibrium will exist between bound and unbound states. The proteins binding can 

influence in the biological half-life in the body. The bound portion may act as a reservoir or deposit to 

which the drug is slowly released in the unbound form. As the non-bound form being metabolized 

and/or excreted from the body, fraction bound to will be released in order to that maintain  

balance [53,54]. In Table 8 shows the results of the distribution properties (PPB% and CBrain/CBlood) for 

artemisinin and classified as most potent compounds of test set. Compounds 22–29 showed strong 

plasma protein binding with PPB > 90.0566%, being close to the value of PPB of artemisinin which 

was equal to 93.3681%. Compounds 25, 26 and 29 showed higher strength in plasma protein binding 

equal to 96.6963%, 95.3992% and 97.3475%, respectively. 

The penetration of the blood brain barrier is critical in the pharmaceutical field, because compounds 

that act on the central nervous system (CNS) should go through it, and inactive compounds in CNS 

should not go in order to avoid collateral effects of CNS [55]. In the test set, all compounds showed 

absorption values to the CNS higher than 1, and in accordance with the classification proposed by  

Ma et al. [56], compounds that have values greater than 1 (CBrain/CBlood > 1) are classified as active in 

the CNS may cause collateral effects, and compounds that have values below 1 (CBrain/CBlood < 1) are 

classified as inactive in the CNS. Therefore, compounds 22–29 had a variation of CBrain/CBlood in 

relation to the artemisinin of 1.8526, 4.0516, 9.7752, 7.0853, 1.3534, 0.6064 and 9.6813, respectively. 

Since the compound 27 showed the value of penetration of the blood brain barrier (CBrain/CBlood) closest 

to of artemisinin (CBrain/CBlood = 1.304) having the smallest variation between test compounds studied 

(CBrain/CBlood[compound 27] − CBrain/CBlood[artemisinin]), showing value equal to 0.6064. 

Table 9 shows the results of the toxicological properties of mutagenicity (Ames Test) and 

carcinogenicity (Mouse and rat) for artemisinin and its derivatives of the test set (22–29) classified by 

PLS and PCR models as more potent with anticancer activity against human hepatocellular carcinoma 

HepG2. One of the important reasons for the discovery of new drugs is the evaluation of the toxicity of 

drug candidates. This means that the conception of drugs with consideration of its toxicity is very 

important, as well as predicts the mutagenicity and carcinogenicity of new compounds that may be toxic. 

Table 9. Toxicological properties of mutagenicity (Ames Test) and carcinogenicity (mouse 

and rat) for artemisinin and its derivatives of the test set (22–29). 

Compounds 
Ames Test Carcinogenicity 

Mutagenicity Mouse Rat 

1 Mutagenic Negative Positive 
22 Non-mutagenic Negative Positive 
23 Non-mutagenic Negative Positive 
24 Non-mutagenic Negative Positive 
25 Non-mutagenic Positive Positive 
26 Non-mutagenic Positive Positive 
27 Non-mutagenic Negative Negative 
28 Non-mutagenic Negative Positive 
29 Non-mutagenic Negative Positive 
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The Ames test is a simple method to test mutagenicity of a compound, suggested by Ames, where 

various strains of Salmonella typhimurium bacterium with mutations in the genes involved in histidine 

synthesis, so they require histidine for growth, are used. The variable being tested is the ability of the 

mutagenic agent to provoke the reversal of the growth in histidine-exempt medium [57]. In this 

method, compound 1 (artemisinin) presented positive prediction, which means that this compound was 

predicted as a mutagen. The other compounds (22–29) showed a negative prediction, ie, were 

predicted as non-mutagenic, as shown in Table 9. 

Carcinogenicity is the ability that a substance has to induce alterations that lead to cancer. The 

carcinogenicity assays require a long time (>2 years). The principal methodologies use “in vivo” 

assays, using mice or rats by exposing them to a chemical compound, where the observed variable is 

the existence of cancer. In this study, PreADMET server was used to predict the result which is 

constructed from the data of the NTP (National Toxicology Program) and the USA/FDA, which are 

the results of in vivo tests for carcinogenicity in mice and rats for 2 years. 

In the prediction of carcinogenicity in mouse, compounds 25 and 26 showed positive prediction, ie, 

no evidence of carcinogenic activity. The others compounds were predicted as negative, which means 

that there is evidence of carcinogenic activities in mouse, for such compounds (1, 22–24 and 27–29). 

In the prediction of carcinogenicity in rat, the following compounds 1, 22–26, 28 and 29 had positive 

prediction, demonstrating that show no carcinogenic activity. Whereas compound 27 showed negative 

prediction, meaning that this compound may exhibit carcinogenic activity. 

3. Experimental Section 

3.1. Anticancer Compounds Studied 

Initially, 21 artemisinins (artemisinin and its derivatives) with different degrees of cytotoxicities 

against human hepatocellular carcinoma HepG2 were selected from the literature (Figure 1) [24]. The 

employed strategy was based on the knowledge that the endoperoxide group presented in artemisinin 

and its derivatives is responsible for their antimalarial, antileishmanicidal and anticancer activities. The 

compounds, the subjects of this study, consisted of artemisinin, amides, esters, alcohols, ketones, 

derivatives with polar hydroxyl and carboxylic acid groups and five-membered ring derivatives. All 

compounds have been associated with in vitro bioactivity against a human hepatocellular carcinoma 

cell line, HepG2. 

The numbering of the atoms used in this study is shown in Figure 1 (compound 1—artemisinin). 

The logarithm of the IC50 value of artemisinin over the IC50 value of the compounds (logarithm of 

relative activity, logRA) was used to reduce inconsistencies caused by individual experimental 

environments: 

logRA = log(IC50 of artemisinin/IC50 of analog) (5) 

where IC50 is the 50% inhibitory concentration. In this study, the following classification based on the 

anticancer responses was adopted: compounds with logRA > 0.00, ranging from 0.3604 to 2.324,  

were assumed to be more potent analogs (3, 4, 5, 6, 8, 12, 13, 18, 19, 20 and 21), and those with  

logRA ≤ 0.00, ranging from 0.0000 to −0.0132, were considered to be less potent analogs (2, 7, 9, 10, 

11 and 14–17). The compound 5 (logRA = 2.324) is the most potent compound in the series studied. 
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3.2. Molecular Modeling and Calculations of Descriptors or Properties Molecular 

Molecular modeling started with the construction of the structure of artemisinin using the GaussView 

3.0 program [58], which was then optimized with different methods and basis sets—semiempirical 

(AM1, PM3, and ZINDO), Hartree-Fock (HF/6-31G, HF/6-31G*, HF/6-31G**, HF/3-21G, HF/3-21G*, 

HF/3-21G**, and HF/6-311G), and DFT (B3LYP/6-31G, B3LYP/6-31G*, B3LYP/6-31G**, and 

B3LYP/3-21G). 

These calculations were executed to find the method and basis sets with the best fit between the 

computational time and accuracy of the information compared to the experimental data [59]. After initial 

determination and structural optimization, the theoretical geometrical parameters of artemisinin in the 

region of the 1,2,13-trioxane ring (bond length, bond angle and torsion angle) were determined with the 

aim of evaluating the quality of the molecular wave function and standard deviation of method studied 

comparing the theoretical geometrical parameters with the experimental data (see Table 1). 

The experimental structure of artemisinin was taken from the Cambridge Structural Database CSD, 

with REFCODES: QNGHSU10, crystallographic R factor 3.6 [60]. All the other structures (see Figure 1) 

were built with the optimized structure of artemisinin using the Gaussian 03 program [61] with the 

DFT method and B3LYP/6-31G** basis set. After the structures were determined in 3D, various 

descriptors for each molecule of the set studied were calculated. 

The descriptors are important for the quantitative description of molecular structure and to finding 

appropriate predictive models [62]. The computation of the descriptors was performed employing the 

following software: Gaussian 03 program [61], e-Dragon [63,64], Molekel [65] and HyperChem 6.02 [66]. 

The e-Dragon program calculated 1666 descriptors that were divided into the following 20 classes:  

48 constitutional descriptors; 47 descriptors of quantity and trajectory; 47 information indexes;  

107 adjacency indexes; 21 topological charge indexes; 41 molecular Radic profiles; 150 RDF descriptors; 

154 functional groups; 14 charge descriptors; 33 connectivity indexes; 96 2-D autocorrelations,  

64 Burden eigenvalues; 44 indexes based on eigenvalues; 74 geometric descriptors; 160 MORSE-3D; 

120 fragments centered in the atom; 31 molecular property descriptors; 119 topological indexes; 99 WHIM 

descriptors; and 197 Getaway descriptors. Other descriptors such as the following were obtained: 

(a) QUANTUM CHEMICAL descriptors: In our study, we calculated the following 25 quantum-

chemical descriptors: total energy (TE), energy of the highest occupied molecular orbital (HOMO), a 

level below the energy of the highest occupied molecular orbital (HOMO − 1), lowest unoccupied 

molecular orbital energy (LUMO), a level above the energy of the lowest unoccupied molecular orbital 

(LUMO + 1), difference in energy between HOMO and LUMO (GAP = HOMO − LUMO), Mulliken 

electronegativity (χ), molecular hardness (η), molecular softness (1/η), and charge on the atom n 

(where n = 1, 2, 3, 4, 5, 5a, 6, 7, 8, 8a, 9, 10, 11, 12, 12a, 13). The atomic charges used in this study 

were obtained with the key word POP = CHELPG using the electrostatic potential [67], with this 

strategy, it was possible to obtain the best potential molecular series of points defined around the 

molecule, and atomic charges offer the general advantage of being physically more satisfactory than 

Mulliken charges [68]. 

(b) Descriptors related to quantitative properties of chemical structure and biological activity: In our 

data matrix, QSAR descriptors were included, i.e., total surface area (TSA), molecular volume (MV), 

molar refractivity (MR), molar polarizability (MP), coefficient of lipophilicity (logP), molecular mass 
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(MM) and hydration energy (HE) according to the HyperChem 6.02 program. The molecular 

descriptors were selected to provide valuable information about the influence of electronic, steric, 

hydrophilic and hydrophobic features on the anticancer activity of artemisinins. 

3.3. Variable Selection and Model Building QSAR (PLS and PCR) 

After the determination of all molecular descriptors, it was possible to construct a data matrix to 

develop step multivariate analysis. The step multivariate analysis was necessary to make the autoscale or 

standardizing data matrix X = (n, m) consisting of twenty-one (21) lines (the anticancer compounds 

studied) and one thousand seven hundred sixteen (1,716) columns (in this case, the calculated descriptors 

for each molecule), where n is the number of compounds studied and m is the number of variables. 

The aim of using the standardizing matrix is to give each variable equal weight in mathematical 

terms, so each variable was centered on the mean and scaled to unit variance. To reduce the data set, 

variables were selected based on the analysis of the correlation matrix between variables (descriptors) 

and the logarithm of the relative activity (logRA). 

The descriptors with small or no correlation (under the 0.20 correlation value cutoff) were 

discarded, resulting in only two hundred and thirteen (213) descriptors remaining from the initial set of 

one thousand seven hundred sixteen (1,716) descriptors. After this data compression, two 

complementary methods for exploratory data analysis were employed (PCA and HCA) to study 

intersample and intervariable relationships and to select the properties that contribute the most to the 

classification of the compounds into two groups [27,28]. One group contained more potent analogs and 

the other less potent analogs. PCA was employed to reduce the dimensionality of the data, find 

descriptors that could be useful in characterizing the behavior of the compounds acting against a 

human hepatocellular carcinoma cell line (HepG2) and look for natural clustering in the data and 

outlier samples. 

While performing PCA, several attempts to obtain a good classification of the compounds were 

made. At each attempt, the score and loading plots were analyzed based on the variables employed in 

the analysis. The score plot gives information about the compounds (similarity and differences). The 

loading plot gives information about the variables (how they are connected to each other and which 

best describe the variance in the original data) [27,28]. The descriptors selected by PCA were used to 

perform HCA, PLS and PCR. 

The objective of HCA was to present the compounds distributed in natural groups and the results 

confirm the PCA results. Thus, several approaches were attempted to establish links between 

samples/cluster. All of them were of an agglomerative type because each sample was first defined as 

its own cluster, and then others were grouped together to form new clusters until all the samples were 

part of a single cluster [28]. 

The QSAR models for the new artemisinin compounds with anticancer activity were constructed by 

the PCR and PLS methods based on the autoscaled data and the leave-one-out crossvalidation 

procedure [25–28]. The final purpose of the multivariate analysis (PLS and PCR) was the construction 

of a mathematical model that can be used to predict anticancer activity of the compounds studied. The 

statistical parameters used to assess the quality of the models were the Prediction Residual Error Sum 

of Squares (PRESS), Equation (6), the Standard Error of Validation (SEV), Equation (7), the total 
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variance explained, R2 (correlation between the estimated values predicted by the model built with the 

full data set and actual values of y), Q2 (the cross-validated correlation coefficient) and SPRESS 

(standard deviation of cross-validation) given by Equations (8)–(10), respectively [27,28,69–71]: 
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i )ŷ(yPRESS 

=

−=  (6)

n

PRESS
SEV =  (7)













−
−=
 =

n

1i

2
i

cal2

)y(y

PRESS
1R  (8)















−
−=
 =

n

1i

2
i

val2

)y(y

PRESS
1Q  (9)

1kn

PRESS
SPRESS −−

=  (10)

In Equations (6) and (7), n is the number of compounds used for the calibration or validation model, 

yi is the experimental value of the physicochemical property for the sample and ŷi is the value 

predicted by a calibration or validation model. In Equations (8) and (9), PRESScal is the Calibration 

Prediction Error Sum of Squares and PRESSval is the Validation Prediction Error Sum of Squares. 

Both PRESScal and PRESSval are evaluated from Equation (6) by changing ŷi for a calibration or 

validation model. The values of explained variance (R2
ajust, i.e., adjusted R2), standard deviation (s) and 

F (Fisher test) were determined. The multivariate data analyses (PCA, HCA, PLS and PCR) were 

performed by employing Pirouette 3.01 software [42]. 

3.4. Pharmacokinetic and Toxicological Properties of Test Compounds 

At a molecular level, a system is coordinated by transporters, channels, receptors and enzymes; this 

system affects the absorption, distribution, metabolism, excretion and toxicity (ADME/Tox) of a 

molecule in humans. Understanding the interactions between small molecules and their molecular 

targets should improve the ability to predict the toxic consequences that are responsible for the 

removal of many commercialized drugs and failures in the final stage drug development [35,72–74]. 

Traditional ADME/Tox studies provide a detailed understanding of individual proteins, in which it 

is possible to examine if the molecule also binds to receptors that affect the regulation of other 

proteins, and if it interferes with endogenous metabolic, regulatory proteins and transport. 

Alternatively the main metabolic via may be mediated by a polymorphic enzyme and likely affect the 

therapeutic dose [73,75,76]. 

The properties ADME/Tox for artemisinin and its derivatives of the test set (22–29) were calculated 

using the server PreADMET [49]. This server calculates pharmacokinetic properties as: human 

intestinal absorption, cellular permeability Caco-2 in vitro, cell permeability Maden Darby Canine 
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Kidney (MDCK), skin permeability, plasma protein binding and penetration of the blood-brain barrier, 

and toxicological properties as mutagenicity and carcinogenicity. 

4. Conclusions 

The DFT method and the B3LYP/6-31G** basis set revealed themselves to be adequate to optimize 

the structures of artemisinin and derivatives for subsequent study. The predictive classification models 

for artemisinin derivatives were obtained with a set of molecular descriptors selected by chemometric 

approaches. PCA and HCA methods classified the compounds studied into groups according to their 

degree of anticancer activity against a human hepatocellular carcinoma cell line (HepG2). The 

descriptors ALOGPS_logs, Mor29m, IC5 and GAP energy were responsible for distinguishing 

compounds with higher and lower anticancer activity. The molecular features represented by these 

descriptors are in good agreement with previous SAR analysis performed on artemisinin derivatives. 

The combination of these structural attributes is believed to govern the anticancer effects of the 

compounds studied in this work. The PLS and PCR models obtained here showed not only statistical 

significance but also predictive ability. The test set showed for two new artemisinin compounds 

satisfactory results for anticancer activity and pharmacokinetic and toxicological properties. Through 

this strategy and our findings, useful information was obtained that could be of use in experimental 

syntheses and biological evaluation to understand the molecular and structural requirements for designing 

new ligands to be used as anticancer agents. Consequently, further studies need be done to evaluate the 

different proposals as well as their actions, toxicity, and potential use for treatment of cancers. 
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