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Abstract: This study was designed to examine the in vitro antiproliferative effect of 
brassinin and its derivatives on human cancer cell lines. Among seven tested compounds, 
homobrassinin (K1; N-[2-(indol-3-yl)ethyl]-S-methyldithiocarbamate) exhibited the most 
potent activity with IC50 = 8.0 μM in human colorectal Caco2 cells and was selected for 
further studies. The flow cytometric analysis revealed a K1-induced increase in the G2/M 
phase associated with dysregulation of α-tubulin, α1-tubulin and β5-tubulin expression. 
These findings suggest that the inhibitory effect of K1 can be mediated via inhibition of 
microtubule formation. Furthermore, simultaneously with G2/M arrest, K1 also increased 
population of cells with sub-G1 DNA content which is considered to be a marker of 
apoptotic cell death. Apoptosis was also confirmed by annexin V/PI double staining, DNA 
fragmentation assay and chromatin condensation assay. The apoptosis was associated with 
the loss of mitochondrial membrane potential (MMP), caspase-3 activation as well as 
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intracellular reactive oxygen species (ROS) production. Moreover, the antioxidant Trolox 
blocked ROS production, changes in MMP and decreased K1 cytotoxicity, which 
confirmed the important role of ROS in cell apoptosis. Taken together, our data 
demonstrate that K1 induces ROS-dependent apoptosis in Caco2 cells and provide the 
rationale for further in vivo anticancer investigation. 
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1. Introduction 

A plethora of epidemiological and animal studies show that consumption of cruciferous vegetables 
may lower the risk for variety of cancers [1–4]. It is suggested that the cancer-protective effects of 
cruciferous vegetables can be associated with the presence of glucosinolates, which are cleaved to 
biologically active compounds, such as indoles and isothiocyanates [5]. 

Another group of cruciferous-derived phytochemicals, the indole phytoalexins, have attracted 
scientists’ interest because of their ability to modulate processes involved in oncogenic transformation, 
such as alterations of cell cycle control, apoptosis evasion and inhibition of different signalling 
pathways [6–8]. 

Generally, phytoalexins are low molecular weight secondary metabolites biosynthesized de novo by 
plants in response to stress caused by biotic or abiotic factors [9,10]. Although phytoalexins are part of 
general defense mechanisms used to ward off plant invaders, their chemical diversity suggest substantially 
broader biological activities. In addition to their antimicrobial activity, some phytoalexins also possess 
antiinflammatory [11], antioxidant [12], antiproliferative [13,14], as well as anticancer [15,16] properties. 

Indole phytoalexins are structurally unique, sulfur-containing natural products isolated from plants 
of the family Cruciferae (syn. Brassicaceae). Besides their antimicrobial properties, several indole 
phytoalexins also exhibit antiproliferative/anticancer activity [17–21].  

Brassinin ([3-(S-methyldithiocarbamoyl) aminomethyl indole]), first isolated from Chinese  
cabbage [22], is an indole phytoalexin with demonstrated antiproliferative/anticancer activity. Mehta 
and co-workers [23] documented dose-dependent inhibition of 7,12-dimethylbenz[a]anthracene 
(DMBA)-induced preneoplastic lesion formation by brassinin and cyclobrassinin in a mouse mammary 
gland organ culture model. Later, Csomós et al. [24] showed antiproliferative effects of brassinin, 
isobrassinin and isobrassinin derivatives in different cancer cell types. Recently, Izutani et al. [6] 
described the ability of brassinin to inhibit cell growth in human colon cancer cells by arresting the cell 
cycle at the G1 phase via increased expression of p21 and p27. In the last decade we have also 
documented the antiproliferative effects of brassinin or its derivatives in different cancer cells [25–30]. 

Although the precise mechanism(s) of the antiproliferative activity of brassinin and its derivatives 
still remain unknown, inhibition of indoleamine 2,3-dioxygenase and inhibition of PI3K/Akt/mTOR 
signalling pathways may interfere with cancer cell survival and proliferation [7,31]. However, so far 
there is no published information about the antiproliferative molecular mechanisms of homobrassinin 
on cancer cells.  
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It is well known that oxidative stress may play role in the cytotoxicity of different natural  
compounds [32,33]. Recently, it was documented that the antiproliferative effect of some indole 
phytoalexins may be associated with ROS production [34,35] or glutathione depletion [19,30], which 
may lead to imbalance between antioxidant and prooxidant factors. This prompted us to explore the role 
of ROS in the antiproliferative effects of brassinin and its derivatives. Our results demonstrate that 
homobrassinin (K1) is the most active in inhibiting the growth of Caco2 cells among the compounds 
studied. Effect of K1 is associated with ROS production leading to mitochondrial dysfunction, caspase 3 
activation and apoptosis induction. The role of ROS in K1-induced cell death was analysed by 
intracellular ROS generation and ROS scavenger experiments. These findings generate a rationale for 
in vivo efficacy studies with this compound in preclinical cancer models. 

2. Results and Discussion 

2.1. Effect of Brassinin and Its Derivatives on Cell Proliferation 

The antiproliferative effect of indole phytoalexins was evaluated on eight human cancer cell lines 
using the MTT assay. Survival of cancer cells exposed to the studied indole phytoalexins is shown in 
Table 1. Our data showed that brassinin (1, Figure 1) possesses relatively weak antiproliferative effect 
with IC50 > 100 μM in all cancer cell lines used. Similar results were obtained also with compounds 
K10 and 47. On the other hand, homobrassinin (K1, Figure 1) displayed the highest antiproliferative 
activity with IC50 from 8.0 to 35.0 μM with the greatest antiproliferative activity in Caco2 cells. Other 
indole phytoalexins (K49, K124 and K170) were less potent. 

Table 1. The IC50 (μM) of tested compounds in different cell lines after 72 h incubation. 
Results are presented as a mean ± SD of three independent experimental determinations 
performed in triplicate. The tested compounds: Brassinin (1), Homobrassinin (K1),  
N-{[1-(tert-Butoxycarbonyl)indol-3-yl]methyl}-N'-methyl-N'-phenylthiourea (K10),  
N-{[(1-tert-Butoxycarbonyl)indol-3-yl]metyl}-N'-(4-methoxyphenyl)thiourea (K124),  
1-(β-D-glucopyranosyl)brassinin (47), 1-[(1R,2S,5R)-Menthoxycarbonyl]brassinin (K49); 
1-[(1R,2S,5R)-8-Phenylmenthoxycarbonyl]brassinin (K170). 

Compound 
Cancer Cell Lines 

Jurkat Caco2 HepG2 HCT-116 A549 HeLa MCF-7 MDA-MB-231 
1 >100 >100 >100 >100 >100 >100 >100 >100 

K1 28.2 ± 1.2 8.0 ± 0.6 21.3 ± 2.3 27.3 ± 1.8 33.4 ± 0.8 26.1 ± 2.4 35.0 ± 2.1 22.8 ± 1.4 
K10 >100 >100 >100 >100 >100 >100 >100 >100 

K124 30.0 ± 0.5 >100 >100 30.7 ± 2.9 >100 34.0 ± 0.7 92.0 ± 2.7 >100 
K49 39.6 ± 1.8 89.4 ± 1.3 37.4 ± 3.7 76.0 ± 2.5 22.8 ± 0.5 45.6 ± 1.4 62.0 ± 3.4 >100 

K170 44.3 ± 3.2 >100 >100 53.7 ± 2.1 96.5 ± 4.1 >100 >100 >100 
47 >100 >100 >100 >100 >100 >100 >100 >100 

Because only K1 displayed interesting antiproliferative activity, it was selected for further 
mechanistic studies in Caco2 cells. The antiproliferative activity of compound K1 was also compared 
with its activity against non-cancer cells, human umbilical vein endothelial cells (HUVEC). Our results 
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shown that compound K1 was more active against cancer cells than non-cancer cells (IC50 = 8.0 vs. 
IC50 = 46.2 μM). 

Figure 1. Chemical structure of brassinin (1) and homobrassinin (K1).  

 

To confirm the potential antiproliferative effect of K1, the BrdU proliferation assay was used. The 
magnitude of the absorbance for the developed colour is proportional to the quantity of BrdU 
incorporated into cells, which is a direct indication of cell proliferation. As shown in Figure 2A, K1 at 
concentrations of 100, 50 and 10 μM significantly decreased BrdU incorporation compared with the 
control (approximately 94%, 83% and 56% respectively) (p < 0.001; p < 0.05). Antiproliferative effect 
was not observed at the concentration of 1 μM. 

Figure 2. Antiproliferative effect of compound K1 on Caco2 cells. (A) Effect of 72 h K1 
treatment on proliferation of Caco2 cells, as measured by the BrdU ELISA proliferation 
assay, *** p < 0.001, * p < 0.05. Data were obtained from three independent replicate 
experiments with at least three wells per treatment group in each individual replicate.  
(B) Real-time monitoring of Caco2 cell proliferation after incubation with K1 using the 
xCELLigence system. Appropriate concentrations of K1 were added 24 h after seeding. 
Representative picture from three independent experiments is shown. 
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The antiproliferative effect of compound K1 on Caco2 cells was also evaluated by xCELLigence 
system. As shown in Figure 2B the cell index of Caco2 cells decreased significantly after treatment 
with K1 in a concentration-dependent manner. However, the cells treated with 1 μM of K1 exhibited a 
similar proliferation rate as control for most of the duration of the experiment, which confirm results 
obtained by BrdU proliferation assay. 

2.2. K1 Blocks Cell Cycle at G2/M Transition 

To evaluate the effect of K1 treatment on Caco2 cell cycle progression, we performed flow 
cytometric analysis on cells treated with 10 μM K1 for 24, 48 and 72 h as described in the 
Experimental Section. Results obtained are summarized in Table 2. The significant enrichment in 
G2/M cell populations was observed after 24 h (70.48%) of K1 treatment, as compared to untreated 
cells (36.64%) (p < 0.001). As a consequence, a significant reduction of the G0/G1 phase cell 
population confirms the cell cycle arrest in G2/M as an effect of colorectal cells exposure to K1. After 
48 and 72 h incubation G2/M arrest still persisted with addition of increased sub-G1 population of cells. 
These results strongly suggest that K1-induced cell cycle arrest may represent one of the mechanisms 
by which this indole phytoalexin inhibits colorectal cancer cells growth. 

Table 2. The distribution of cell cycle in Caco2 cells treated with K1. Cells were treated 
with K1 derivate (c = 10 µM) for 24, 48 and 72 h. The distribution of cell cycle was 
assessed by flow cytometry. Each value is the mean ± SD of three independent 
experiments. The significant differences between control and K1-treated cells were signed 
as p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). 

Treatment Time (h) Sub-G1 G0/G1 S G2/M 
Control  0.29 ± 0.15  40.81 ± 3.29 18.25 ± 3.90 36.64 ± 2.29 

K1 24 1.49 ± 0.37  21.34 ± 3.13 ** 6.69 ± 1.56 * 70.48 ± 2.28 *** 
K1 48 3.36 ± 1.67 * 30.89 ± 2.81 * 9.58 ± 2.43 56.20 ± 2.58 ** 
K1 72 5.58 ± 1.16 * 30.17 ± 1.65 * 11.47 ± 1.65 52.79 ± 2.77 ** 

2.3. K1 Induces Apoptotic Cell Death 

The increase of cell having sub-G1 DNA content is considered to be a marker of apoptotic cell 
death. To confirm whether K1 could induce apoptosis on colorectal cell lines, we performed Annexin 
V/PI staining, which detects an early stage of apoptosis and combined staining with PI, which detects a 
late stage of apoptosis or necrosis. The results showed that only a small percentage of untreated Caco2 
cells (3.17%) bound with annexin V. In contrast, the percentage of annexin V binding Caco2 cells 
significantly increased in a time-dependent manner after 24, 48 and 72 h of treatment with 10 μM K1 
(18.54% to 37.07%, p < 0.01; p < 0.001 ). Simultaneously, percentage of annexin V/PI positive cells 
increase from 2.05% (untreated cells) to 20.85% (K1 treated cells after 72 h of incubation). These 
experimental results demonstrate that K1 induced apoptosis of Caco2 cells (Table 3; Figure 3). 

Chromatin condensation is one of the most important markers for apoptotic cells. The nuclear 
morphological changes of Caco2 cells were analysed using DAPI staining. In control groups, cells 
appeared to be round and manifested homogeneous nuclei. In cells treated with K1 at concentration  
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10 μM, cells displayed condensed nuclei. A significant increase of cells with typical apoptotic 
morphology was observed (Figure 4A), reaching 6.83% after 24 h of treatment, as evaluated by 
determination of apoptotic index (Figure 4B). 

Table 3. Induction of apoptosis after K1 treatment measured by Annexin V/PI staining Caco2 
cells were treated with K1 for 24, 48 and 72 h, stained with fluoresceinated Annexin V and PI, 
and analysed by flow cytometry. The percentage of events in the nonapoptotic (lower left, 
An−/PI−), early apoptotic (lower right, An+/PI−), and late apoptotic/necrotic (upper left + right, 
An−/PI+ + An+/PI+) quadrants (Figure 3) is indicated. The significant differences between 
control and K1-treated cells were signed as p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). 

Treatment Time (h) An−/PI− An+/PI− An+/PI+ 
Control  94.07 ± 1.32 3.17 ± 0.60 2.05 ± 0.50 

K1 24 67.81 ± 1.18 ** 18.54 ± 1.63 ** 13.75 ± 2.43 * 
K1 48 49.92 ± 3.20 *** 38.55 ± 2.47 *** 11.81 ± 2.24 * 
K1 72 42.36 ± 3.65 *** 37.07 ± 2.66 *** 20.85 ± 3.69 ** 

Figure 3. Induction of apoptosis after K1 treatment measured by Annexin V/PI staining. 
Caco2 cells were treated with K1 for 24, 48 and 72 h, stained with fluoresceinated Annexin V 
and PI, and analysed by flow cytometry. One representative experiment out of three is 
shown. The percentage of events in the nonapoptotic (lower left, An−/PI−), early apoptotic 
(lower right, An+/PI−), and late apoptotic/necrotic (upper left + right, An−/PI+ + An+/PI+) 
quadrants is indicated in Table 3.  

 



Molecules 2014, 19 10883 
 

 

Figure 4. Apoptotic effect of K1 on Caco2 cells. (A) Morphological changes of Caco2 
cells treated with 10 μM of K1 for 24 h. Cells were cultured in chamber slides and stained 
with DAPI to show typical apoptotic morphology. Magnification 400×. (B) Apoptotic 
index of Caco2 cells treated with 10 μM of K1 for 24 h. The results (mean ± SD) of three 
independent experiments are shown as the apoptotic index evaluated as a percentage of 
cells with fragmented nuclei from a total number of minimum 300 cells, * p < 0.05.  
(C) DNA fragmentation of Caco2 cells after incubation with 10 μM of K1 for 24, 48 and 
72 h, C-control (untreated cells), PC-positive control (cells treated with 10 μM of cisplatin). 
A representative picture from three independent experiments is shown.  

 

Analysis of DNA fragmentation by agarose gel electrophoresis is one of the most widely used 
biochemical markers for cell death. Fragmentation of DNA was observed in Caco2 cells after 24 h 
incubation with 10 μM of compound K1 compared to control (untreated cells). This effect also 
persisted after 48 and 72 h of incubation (Figure 4C). 

2.4. Effect of K1 on ROS Formation 

It has been reported that increased liberation of ROS can activate a cascade of events leading to 
apoptosis [36]. Therefore, we decided to detect whether K1 was able to trigger ROS generation by 
measuring the rhodamine 123 fluorescence intensity. The results showed that treatment of the cells 
with K1 significantly increased ROS generation in a time-dependent manner. After 12 h incubation 
with K1 the significant ROS accumulation was observed. Culminated accumulation was marked after 
48 h treatment (Figure 5B). On the other hand, no increase in ROS production was observed after 1, 3 and 
6 h of incubation (data not shown). In order to show that generation of ROS is a key step in the  
K1-induced apoptotic pathway, Caco2 cells were pretreated with Trolox, a water-soluble analogue of 
the free radical scavenger α-tocopherol. Trolox significantly decreased ROS accumulation in time 
dependent manner. These effects were associated also with recovered cell viability (Figure 6). 
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Figure 5. Effect of K1 and Trolox on caspase-3, ROS accumulation and MMP. (A) Effect 
of K1 and Trolox treatment on caspase-3 activation. Caspase-3 activation was measured 
24, 48 and 72 h after treatment by quantifying the fluorescence intensity. (B) Measurement 
of ROS production in Caco2 cells treated with K1, Trolox or mutual combinations. 
Cytosolic ROS were measured 12, 24, 48 and 72 h after treatment by quantifying the 
fluorescence intensity of activate DHR-123. The results (mean ± SD) of three independent 
experiments are shown as multiples of the control group fluorescence. (C) MMP changes 
in Caco2 cells treated with K1, Trolox or mutual combinations were analysed 12, 24, 48 
and 72 h after treatment.  

 
Results are expressed as mean values ± SD of three independent experiments. * p < 0.05,  
** p < 0.01, *** p < 0.001 vs. untreated control; + p < 0.05, ++ p < 0.01, +++ p < 0.001 vs. Trolox;  
● p < 0.05, ●● p < 0.01, ●●● p < 0.001 vs. K1.  

Collectively, these findings suggest that an increase in ROS generation may take part in the  
K1-induced apoptosis in Caco2 cells. 

2.5. K1-Induced Mitochondrial Dysfunction 

A decrease in MMP is one of the earliest events in apoptosis. Mitochondrial membrane integrity 
was evaluated using the cationic dye TMRE, a highly specific probe for detecting changes in 
mitochondrial ∆Ψm. In our experiments, changes in MMP were detected 12, 24, 48 and 72 h after K1 
treatment. Effect of K1 treatment on Caco2 cells led to intensive and considerable destruction of 
mitochondrial function demonstrated with significant changes in the percentage of cells with dissipated 
MMP in time-dependent manner. On the other hand, co-treatment with Trolox significantly diminished 
effect of K1 on MMP changes and prevented mitochondrial dysfunction (Figure 5C). 
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Figure 6. Relative survival of Caco2 cells treated with K1, Trolox or mutual combinations as 
evaluated by MTT assay. Cells were incubated with tested compounds for 24, 48 and 72 h.  

 
Data is presented as a mean ± SD of three independent experimental determinations performed in 
triplicate. ** p < 0.01, *** p < 0.001 vs. untreated control; + p < 0.05, ++ p < 0.01, +++ p < 0.001 vs. 
Trolox; ●● p < 0.01, ●●● p < 0.001 vs. K1. 

2.6. Activation of Caspase-3 by K1 

Analysis of caspase-3 activation (Figure 5A) clearly demonstrated caspase-dependent form of cell 
death in Caco2 cells line. The more than 2-fold higher increase of caspase-3 activation after 48 h 
treatment confirmed this suggestion. On the other hand, co-treatment with Trolox significantly decreased 
the effect of K1 on caspase-3 activation. Significant caspase-3 activation correlated well with apoptosis 
occurrence frequency, ROS and loss of MMP leading to cell death after K1 treatment. These results 
clearly indicate that caspase-3 activation plays an important role in Caco2 cell apoptosis induced by K1. 

2.7. Effect of K1 on Gene Expression of Tubulins 

The cell cycle analysis showed that K1 induces the G2/M arrest. Based on this result, the alteration 
in selected gene expression was analysed after 24, 48 and 72 h incubation by real-time PCR. We found 
significant downregulation of β-tubulin expression and significant upregulation of α-tubulin expression 
after 24 h treatment with compound K1 at concentration 10 μM. Similar results were also obtained 
after 72 h of incubation. After 48 h incubation with the tested compound an opposite but  
non-significant effect was noted (Table 4).  

Table 4. Fold changes of specific genes after 24, 48 and 72 h treatment with K1 (c = 10 μM). 
β-actin gene was used as a housekeeping gene to normalize each sample. 

Genes 
Normalized Ratio 

24 h 48 h 72 h 
α-tubulin 5.59 1.68 3.35 
α1-tubulin 1.89 0.65 1.47 
β5-tubulin 0.29 0.99 0.48 
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These results suggest that K1 may affect microtubule and microtubule assembly. The results of 
real-time PCR analysis for selected genes are in direct correlation with the data obtained in cell  
cycle analysis. 

2.8. Effect of K1 on Cytoskeletal Tubulins Assembly 

To determine whether the tubulins are involved in K1-mediated apoptosis of Caco2 cells, western 
blotting was used to detect cellular changes of α, α1c and β tubulins from whole cell lysates. All α, α1c 
and β tubulin levels showed a time-dependent decrease after treatment with K1 (Figure 7).  

Figure 7. Western blot detection of α and β tubulins in Caco2 cells treated with K1, Trolox 
or mutual combinations. Cells were incubated with tested compounds for 24, 48 and 72 h. 
Representative picture from three independent experiments is shown. β-Actin served as a 
loading control.  

 

The β tubulin analysis also confirmed degradation and cleaving of presented protein to lower mass 
form. The results from both 48 and 72 h treatments indicated that tubulin levels decreased rapidly, and 
the effects proceeded for a long time. The correlation between changes of tubulins level and cell cycle 
distribution suggests that tubulin degradation may be involved in cell cycle arrest and apoptosis after 
K1 treatment. To explain the possible involvement of oxidative stress in the tubulin degradation, 
disaggregation or deregulation we used Trolox as an antioxidant to prevent an oxidative burst after K1 
treatment. Data showed that Trolox alone has minimal or no effect on tubulin assembly. In 
combination, Trolox with K1 treatment is not able to diminish the effect of K1 on tubulin levels. Only 
short time treatment (24 h) with K1 and Trolox at the β tubulins level pointed to a minor Trolox effect 
compared with K1 treatment. 

2.9. Discussion 

Cancer, characterized by unregulated proliferation of cells, is the second major cause of death after 
cardiovascular disease [37]. Despite enormous progress in the understanding of carcinogenesis, the 



Molecules 2014, 19 10887 
 

 

discovery of anticancer drugs remains a highly challenging endeavor. Natural products provide one of 
the most important sources of promising leads for the development of novel chemotherapeutics. 

In the present study, the antiproliferative effects of brassinin and some of its synthetic derivatives 
on cancer cells were investigated. Our results revealed that the natural or synthesized compounds 
exhibited different levels of antiproliferative activity in cancer cells. Compound K1, in particular, 
showed much higher levels of bioactivity than naturally occurring brassinin, with IC50 = 8.0 μM in 
human colorectal adenocarcinoma Caco2 cells. Interestingly, K1 at lower concentration stimulated 
cancer cell proliferation. Similar biphasic, dose-dependent effect of natural compounds or their 
chemical analogues have been documented only in a limited number of studies. Polyphenols such as 
apigenin, quercetin, genistein or red wine polyphenols at low concentrations stimulated cell growth. 
On the contrary, at the higher concentrations decrease in cell proliferation was observed [38–41]. 

To our knowledge, this is the first report of an investigation into the effect of K1 on proliferation in 
cancer cells. We demonstrated that K1-induced antiproliferative effect in human colorectal Caco2 cells 
was related to cell cycle arrest and increase of cells with sub-G1 DNA content and induction of 
apoptosis, as confirmed by annexin V/PI staining, measurement of chromatin condensation, DNA 
fragmentation and caspase 3 activation. Our data also indicated that K1 induced apoptosis of Caco2 
cells through generation of ROS and mitochondrial dysfunction, suggesting that ROS act as upstream 
signalling molecules for initiation of cell death. 

Flow cytometric analysis showed that the K1-induced decrease in Caco2 cell viability is associated 
with cell cycle arrest in the G2/M phase. This result prompted us to analyse expression of selected 
genes involved in microtubules formation. Microtubules are built up of a heterodimer of α- and  
β-tubulin. These constantly growing and shortening dynamic structures are involved in many 
important cellular processes particularly associated with cell division [42]. Their importance in mitotic 
spindle formation and chromosome movement during cell division which is uncontrolled in cancer 
cells makes tubulin an important target for cancer therapy. The effect of the most successful 
antineoplastic drugs called as tubulin inhibitors, such as the taxanes and the vinca alkaloids, interfere 
directly with the tubulin system [43]. The tested compound K1 increased expression of α-tubulin and 
decreased expression of β-tubulin. Dysregulated expression of tubulins can lead to insufficiency of α/β 
hetero-dimer production, material necessary for mitotic spindle formation, resulting in the G2/M cell 
cycle arrest, eventually resulting in apoptotic cell death [44]. Furthermore, K1 treatment led to 
degradation or cleavage of corresponding proteins in time dependent manner (Figure 7). Presented 
destruction of cytoskeletal tubulin assembly also correlates with the observed apoptosis progression. 

In addition to G2/M cell cycle arrest, the increase of cells with sub-G1 DNA content was observed. 
Compared with the control, cells with sub-G1 DNA content were increased 5.1-, 11.5- and 19.2-fold 
after 24, 48 and 72 h of treatment, respectively. The appearance of the sub-G1 fraction and 
conventional morphological signs of apoptosis provided support for the idea that K1 induced apoptosis 
in Caco2 cells (Figure 4). Pro-apoptotic effect of K1 was further confirmed by annexin V/PI staining. 
The percentage of apoptotic cells increased in a time-dependent manner (Figure 3). These findings also 
supported caspase 3 activation observed after K1 treatment that could be one of crucial step to 
execution of apoptotic features. 

Mitochondria are crucial for energy production, intermediary metabolism, and calcium  
homeostasis [45]. On the other hand, mitochondrial dysfunction has been recognized as one of the key 
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events occurring at the initial stages of apoptosis [46]. Several experimental studies reported a fall in 
the MMP during apoptosis induced by various compounds with anticancer properties [47–49]. 
Therefore, MMP changes after K1 treatment in Caco2 cells were measured.  

In our study, the decrease of MMP was detected 12 h after K1 treatment, suggesting K1 induced 
cell apoptosis in Caco2 cells might be mitochondria dependent (Figure 5). Mitochondria are also the 
major sites for ROS production. It is well known that excessive generation of ROS may result in cell 
death [50,51]. Our results showed K1 treatment significantly stimulated ROS generation in Caco2 cells 
(Figure 5). To confirm role of ROS in K1-induced apoptosis and cell death, Caco2 cells were 
pretreated with the antioxidant Trolox. Compared to K1 treatment only, Trolox pretreatment caused a 
reduction in ROS levels and prevented loss of MMP as well as significantly rescued K1-induced 
Caco2 cytotoxicity (Figure 6). We have also demonstrated that peroxyl radical scavenging does not 
affect K1-mediated tubulin degradation, but we cannot disprove the involvement of other free radical 
forms in the shortened time of treatment shown in Figure 7. 

3. Experimental Section  

3.1. Test Compounds 

Brassinin (1), homobrassinin (K1), N-{[1-(tert-butoxycarbonyl)indol-3-yl]methyl}-N'-methyl-N'-
phenylthiourea (K10), N-{[(1-tert-butoxycarbonyl)indol-3-yl]methyl}-N'-(4-methoxyphenyl)thiourea 
(K124), 1-(β-D-glucopyranosyl)brassinin (47), 1-[(1R,2S,5R)-menthoxycarbonyl]brassinin (K49);  
1-[(1R,2S,5R)-8-phenylmenthoxycarbonyl]brassinin (K170). The synthesis of tested compounds was 
described in the previous studies: 1, K1 [52]; K10, K124 [28]; 47 [53]; K49, K170 [54]. 

3.2. Cell Culture 

The human cancer cell lines HCT116 (human colorectal carcinoma), HepG2 (human hepatocellular 
carcinoma), HeLa (human cervical adenocarcinoma), Jurkat (human leukemic T cell lymphoma) were 
cultured in RPMI 1640 medium (PAA Laboratories, Pasching, Austria) and Caco2 (human colorectal 
adenocarcinoma), A549 (human alveolar adenocarcinoma), MCF-7 (human Caucasian breast 
adenocarcinoma) and MDA-MB-231 (human mammary gland adenocarcinoma) were maintained in 
growth medium consisting of high glucose Dulbecco’s Modified Eagle Medium (Invitrogen, Carlsbad, 
CA, USA). Both media were supplemented with a 10% fetal bovine serum (FBS), penicillin (100 
IU/mL) and streptomycin (100 μg/mL) (all from Invitrogen). The cells (obtained from the American 
Tissue Culture Collection, ATCC, Rockville, MD, USA) were maintained under standard tissue culture 
conditions of 37 °C, 95% air/5% CO2. Cell viability, estimated by trypan blue exclusion, was greater 
than 95% before each experiment. Human umbilical vein endothelial cells (HUVECs) were isolated 
and cultured as previously described by Ivanova et al. [55]. 

3.3. Growth Inhibition Assay 

The antiproliferative effects of compounds were determined using colorimetric microculture assay 
with the MTT end-point [56]. Briefly, 3 × 103 cells were plated per well in 96-well polystyrene 
microplates (Sarstedt AG & Co, Nümbrecht, Germany) in the culture medium containing tested 
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chemicals at final concentrations of 10−4–10−6 mol/L or Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid; Fluka, Buchs, Schwitzerland) at final concentrations 300 μM, or at mutual 
combinations. After 72 h of incubation (for Trolox and mutual combinations also after 24 and 48 h),  
10 µL of MTT (5 mg/mL) (Sigma-Aldrich Corporation, St. Louis, MO, USA) were added in each well. 
After an additional 4 h, during which insoluble formazan was produced, 100 μL of 10% sodium 
dodecyl sulfate were added in each well and another 12 h were allowed for the dissolution of 
formazan. The absorbance was measured at 540 nm using the automated uQuant ™ Universal 
Microplate Spectrophotometer (Biotek, Winooski, VT, USA). The blank-corrected absorbance of the 
control wells was taken as 100% and the results were expressed as a percentage of the control. All 
experiments were performed in triplicate. Due to spontaneous apoptosis, HUVEC cells were incubated 
only 48 h. 

3.4. 5-Bromo-2'-Deoxyuridine (BrdU) Cell Proliferation Assay 

Cell proliferation activity was directly monitored by quantification of BrdU incorporated into the 
genomic DNA during cell growth. DNA synthesis was assessed using colorimetric cell proliferation 
ELISA assay (Roche Diagnostics GmbH, Mannheim, Germany) following the vendor’s protocol. 
Briefly, 2 × 103 cells/well in 80 µL medium were plated in a 96-well polystyrene microplates (Sarstedt 
AG & Co, Nümbrecht, Germany). Twenty-four hours after cell seeding different concentrations  
(10−4–10−6 mol/L) of the compound were added. After 48 h of treatment, cells were incubated with 
BrdU labeling solution (10 µM final concentration) for another 24 h at 37 °C followed by fixation and 
incubation with anti-BrdU peroxidase conjugate for an additional 1.5 h at room temperature. Finally, 
after substrate reaction, the stop solution was added (25 µL 1 M H2SO4) and colour intensity was 
measured with multi-well microplate ELISA reader at 450 nm (reference wavelength: 690 nm). 

3.5. xCELLigence Cell Analysis System 

The xCELLigence system is a unique, impedance-based system for cell-based assays, allowing for 
label-free and real-time monitoring of cellular processes such as cell growth, proliferation, 
cytotoxicity, adhesion, morphological dynamics and modulation of barrier function. It measures 
impedance changes in a meshwork of interdigitated gold microelectrodes located at the well bottom 
(E-plate) or at the bottom side of a microporous membrane (CIM16-plate). These changes are caused 
by the gradual increase of electrode surface occupation by (proliferated/ migrated/invaded) cells during 
the course of time and thus can provide an index of cell viability, migration and invasion. This method 
of quantification is directly proportional to cellular morphology, spreading, ruffling and adhesion 
quality as well as cell number [57,58]. 

The xCELLigence RTCA system was initialized, as per manufacturer’s instructions, prior to 
commencement of the experiment by filling all 16 wells of the E-plate (ACEA Biosciences, San Diego, 
CA, USA) with the growth medium (100 μL) and equilibrated at room temperature for  
30 min. The plate was placed into the single plate (SP) station cradle (housed in a humidified incubator 
at 37 °C with a 5% CO2 atmosphere) to establish a background reading. Then, Caco2 cells were seeded 
in E-plates at a density of 2 × 103 cells per well. After 24 h, K1 was added at final concentrations of  
1–50 μM and cells were allowed to grow for additional 72 h under label-free conditions. The electrical 
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impedance was measured by the RTCA-integrated software of the xCELLigence system (ACEA 
Biosciences) as a dimensionless parameter termed CI. 

3.6. Experimental Design for Flow Cytometry Analysis 

Caco2 cells (3 × 105) were seeded in Petri dishes and cultivated 24 h in a complete medium with 
10% FBS. Cells were treated with K1 (c = 10 µM) for 12, 24, 48 and 72 h prior to analysis. The 
apoptosis, caspase 3 activation and cell cycle parameters were analysed 24, 48 and 72 h after 
treatment. Changes in MMP and ROS production were also analysed after 12 h of incubation. To 
evaluate ROS-dependent/independent mechanisms of K1 treatment we used Trolox, a  
water-soluble analogue of vitamin E, as antioxidant. Trolox (300 μM) was used 1 h before K1 
treatment and after as a co-treatment with K1 for 12, 24, 48 and 72 h before ROS and MMP analysis. 

3.7. Analysis of Cell Cycle 

For flow cytometric analysis (FCM) of the cell cycle, floating and adherent cells were harvested 
together 24, 48 and 72 h after treatment, washed in cold PBS, fixed in cold 70% ethanol and kept at 
−20 °C overnight. Prior to analysis, cells were washed twice in PBS, resuspended in staining solution 
(final concentration 0.1% Triton X-100, 0.5 mg/mL ribonuclease A and 0.025 mg/mL propidium 
iodide-PI), incubated in the dark at room temperature for 30 min and analysed using a FACSCalibur 
flow cytometer (Becton Dickinson, San Jose, CA, USA).  

3.8. Annexin V-FITC Labelling 

The plasma membrane changes characteristic of apoptosis were analysed by double staining with 
Annexin V-FITC and PI according to the manufacturer’s instructions. Adherent and floating cells (1 × 105) 
were harvested together 24, 48 and 72 h after treatment and stained with Annexin V-FITC (BD 
Biosciences Pharmingen, San Diego, CA, USA) in binding buffer for 15 min, washed, stained with PI 
for 5 min and thereafter analysed using a BD FACSCalibur flow cytometer. Three populations of cells 
were observed: viable cells: Annexin V-FITC negative and PI negative; apoptotic cells: Annexin  
V-FITC positive and PI negative; late apoptotic/necrotic cells: Annexin V-FITC positive and PI 
positive or and Annexin V-FITC negative and PI positive. 

3.9. Measurement of ROS 

The intracellular production of ROS was detected with FCM analysis using dihydrorhodamine-123 
(DHR-123, Fluka), which reacts with intracellular hydrogen peroxide. The cells treated with an 
appropriate agent were harvested, washed twice in PBS, and resuspended in PBS.  
DHR-123 was added at a final concentration of 0.2 μM. The samples were then incubated for 15 min in 
dark and after incubation samples were placed on ice. Fluorescence was detected with 530/30 (FL-1) 
optical filter. Forward and side scatters were used to gate the viable populations of cells. 
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3.10. Detection of MMP 

The changes in MMP were analysed with FCM using tetramethylrhodamine ethyl ester per chlorate 
(TMRE, Molecular Probes, Eugene, OR, USA). The cells were washed with PBS, resuspended in  
0.1 μM of TMRE in PBS, and incubated for 30 min at room temperature in the dark. The cells were 
then washed twice with PBS, resuspended in 500 μM of the total volume, and analysed (1 × 104 cell 
per sample). Fluorescence was detected with 585/42 (FL-2) optical filter. 

3.11. Detection of Active Caspase 3 

The changes in caspase 3 activation were analysed with FCM using BD Pharmingen Active 
Caspase-3 PE MAb Apoptosis kit (BD Bioscience, San Diego, CA, USA). The cells were prepared 
according to manufactory condition and stained with PE conjugated antibody and incubated for 30 min 
at room temperature in the dark. The cells were then washed twice with PBS, resuspended in 500 μM 
of the total volume, and analysed (1 × 104 cell per sample). Fluorescence was detected with 585/42 
(FL-2) optical filter. 

3.12. DNA Fragmentation Assay 

The culture medium was removed from untreated (1 × 106) and treated Caco2 cells (K1 10 μM for 
24, 48 and 72 h and 10 μM of cisplatin as positive control) and centrifuged at 1300 rpm for 5 min to 
collect them. Cells were washed twice with  PBS calcium and magnesium free. Then cells were lysed 
in a lysis buffer containing 10 mmol/L EDTA, 0.5% Triton X-100. Proteinase K (1 mg/mL) was added 
and cells were incubated at 37 °C for 1 h followed by 10 min incubation at 70 °C. RNase  
(200 µg/mL) was added and cells were incubated for another 1 h at 37 °C. Samples were transferred to 
2% agarose gel and run with 40 V for 3 h. DNA fragments were visualized by a UV illuminator.  

3.13. DAPI Staining 

Twenty four hours after treatment (K1 10 µM), Caco2 cells grown on cover slips were fixed with 
2% paraformaldehyde for 20 min at 4 °C. After incubation, the cells were washed briefly with PBS 
and incubated at room temperature with SlowFade® Gold antifade reagent with 4',6-diaminidino-2-
phenyl-indole, dihydrochloride (DAPI) (Invitrogen) for nuclear visualization. The slides were analysed 
using fluorescence microscope Leica DMI6000 B (Leica Microsystems, Inc., Bannockburn, IL, USA) 
and evaluated as percentages of cells with a fragmented nucleus from a minimum of 300 cells. 

3.14. RNA Isolation and cDNA Synthesis 

Total RNA was isolated from Caco2 cells using the TRI Reagent (Molecular Research Center, Inc., 
Cincinnati, OH, USA) according to the manufacturer’s instruction. Total RNA quality was verified on 
an agarose gel. Total RNA (0.5 µg) was reverse transcribed into cDNA by the RevertAidTM H Minus 
First Strand cDNA synthesis kit (Fermentas GmbH, St. Leon-Rot, Germany) according to the 
manufacturer’s instruction, and used for quantitative real time PCR. 
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3.15. Quantitative Real-Time PCR 

Quantitative real time PCR analysis was performed in Light Cycler (Roche, Mannheim, Germany) 
using iQTM SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA) to verify the 
alterations of α-tubulin, α1-tubulin, β5-tubulin gene expression. The PCR program was initiated by  
5 min at 95 °C before 40 thermal cycles, each of 30 s at 95 °C and 45 s at 55 °C. Data were analysed 
according to the comparative Ct method and were normalized by β-actin expression in each sample. 
Melting curves for each PCR reaction were generated to ensure the purity of the amplification product. 

3.16. Western Blot Analysis 

Caco2 cells were treated with compound K1 (10 μM), Trolox (300 μM) and mutual combinations 
for 24, 48 and 72 h. Protein extracts were obtained using a lysis buffer containing 100 mM Tris  
(pH 7.4), 1% SDS and 10% glycerol in the presence of PIC (protease inhibitor cocktail), for 30 min on 
ice. After the insoluble materials were removed by centrifugation at 12,000 g for 10 min at 4 °C, total 
protein concentrations were quantified using the Pierce® BCA Protein Assay Kit (Thermo Fisher 
Scientific, Waltham, MA, USA). Twenty micrograms of total cellular proteins were separated on 10% 
SDS polyacrylamide gels and electrotransferred onto nitrocellulose membranes (Pall Corporation, Port 
Washington, NY, USA). Membranes were blocked in 5% skim milk in Tris-buffered saline (TBS) 
containing 0.1% Tween-20 for 1 h at room temperature to minimize non-specific binding and 
incubated with the primary antibodies overnight at 4 °C. Immunoblotting was carried out with α 
Tubulin (E-19), α1c Tubulin (MH-87), β Tubulin (H-235) and β-Actin (C4) Antibody (all from Santa 
Cruz Biotechnology, Inc. Dallas, Texas, USA). After incubation with primary antibodies, membranes 
were washed 1 × 5 min with TBS-Tween followed by an incubation of 1 h at room temperature with 
the corresponding horseradish peroxidase-conjugated secondary antibodies (anti-rabbit IgG-HRP,  
anti-mouse IgG-HRP, all from Sigma-Aldrich). After washing 4 × 10 min with TBS-Tween expression 
was detected by chemiluminescence emission using ECL (Thermo Fisher Scientific) and then the blots 
were exposed to x-ray films.  

3.17. Statistical Analysis 

Results are expressed as mean ± SD. Statistical analyses of the data were performed using standard 
procedures, with one-way ANOVA followed by the Bonferroni multiple comparisons test. Differences 
were considered significant when p values were smaller than 0.05. 

4. Conclusions  

In summary, the results revealed that K1 exhibited the highest levels of antiproliferative activity 
against Caco2 colon cancer cells and was selected for follow-up study. The cell cycle results 
demonstrated that K1 induced time-dependent G2/M arrest simultaneously with an increase in cells 
with sub-G1 DNA content. Furthermore, the apoptosis data showed that K1 induced cellular apoptosis 
as confirmed by annexin V/PI double staining, DNA fragmentation and chromatin condensation. 
Moreover, increased ROS generation and loss of MMP and caspase 3 activation supported these 
findings. Application of Trolox, a water-soluble analogue of vitamin E, diminished ROS production 
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and loss of MMP and prevented cytotoxicity of K1 in Caco2 cells. These results insinuate that K1 may 
inhibit the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway. 
Although many details of the effects of K1 remain to be elucidated, the in vitro findings of the present 
study provide the basis for future in vitro and in vivo studies. 
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