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Abstract: Glycyrrhetic acid (GA)-modified pullulan nanoparticles (GAP NPs) were 

synthesized as a novel carrier of curcumin (CUR) with a degree of substitution (DS) of GA 

moieties within the range of 1.2–6.2 groups per hundred glucose units. In the present study, 

we investigated the physicochemical characteristics, release behavior, in vitro cytotoxicity 

and cellular uptake of the particles. Self-assembled GAP NPs with spherical shapes could 

readily improve the water solubility and stability of CUR. The CUR release was sustained 

and pH-dependent. The cellular uptake of CUR-GAP NPs was confirmed by green 

fluorescence in the cells. An MTT study showed CUR-GAP NPs with higher cytotoxicity 

in HepG2 cells than free CUR, but GAP NPs had no significant cytotoxicity. GAP is thus 

an excellent carrier for the solubilization, stabilization, and controlled delivery of CUR. 
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1. Introduction 

Curcumin (CUR), a low-molecular-weight and hydrophobic polyphenol with fluorescence, obtained 

from the turmeric Curcuma rhizome, has low intrinsic toxicity but a wide range of pharamacological 

activities, including antioxidant, anti-inflammatory, antimicrobial, antiamyloid, and antitumor 

properties [1,2]. CUR has great promise as a chemopreventive and therapeutic agent in liver cancer—It 

significantly attenuated tumor growth in female BALB/c athymic mice injected with Bel7402, 

SGC7901 and HL60 cells [3] and showed antiangiogenic activity in male BALB/c nude mice implanted 

with human HepG2 cells [4], possibly because of its potent antioxidant and anti-inflammatory 

properties and its ability to modulate a multitude of signaling mechanisms [5].  

However, its extremely low aqueous solubility, rapid systemic elimination, inadequate tissue 

absorption and degradation at alkaline pH severely curtail the clinical application of CUR [6–8]. As a 

solution attempts have been made to increase the aqueous solubility and bio-availability by 

encapsulation of CUR in polymeric micelles, liposomes, polymeric nanoparticles (NPs), lipid-based 

NPs, and hydrogels [9–14]. 

Nanoparticulate drug delivery systems are used to alter biodistribution, target desired cells, and 

control the release of chemotherapeutic drugs, an important approach with great potential for 

overcoming problems associated with the systemic toxicity of chemotherapy [15]. Pullulan-based NPs 

have been extensively used for nanoparticulate drug delivery because of their outstanding 

biocompatibility, high water-solubility, non-toxicity, and multiple hydroxyl groups that can easily be 

chemically modified; in addition, they lack immunogenicity, so are useful as a plasma expanders [16,17] 

and have inherent affinity for the liver [18–20]. Hydrophobized pullulan has been often used as a drug 

carrier; examples are cholesterol-bearing pullulan [21–24], poly(DL-lactide-co-glycolide)-grafted 

pullulan [25], and pullulan acetate [26].  

Glycyrrhetinic acid (GA), the main bioactive compound in traditional Chinese medicine liquorice, 

possesses a wide range of pharmacological properties such as anti-inflammatory, antiviral, 

antimicrobial, antioxidative, and anticancer activities and immunomodulatory, hepatoprotective and 

cardioprotective effects [27–29]. Furthermore, GA is used as a liver-targeting ligand because some 

highly specific GA binding sites are located on the surface of liver parenchyma cells [30]. 

In this study, we synthesized a novel carrier based on GA-modified pullulan (GAP) with different 

degrees of substitution (DS) confirmed by 1H nuclear magnetic resonance (1H-NMR) and Fourier 

transform infrared spectroscopy (FT-IR). The self-assembled NPs were prepared by the dialysis 

method and evaluated by transmission electron microscopy (TEM) and dynamic light scattering 

(DLS). In addition, we evaluated the use of GAP NPs as a drug carrier of CUR and investigated 

release behavior, cellular uptake and cytotoxicity. 
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2. Results and Discussion 

2.1. Synthesis and Characterization of GAP NPs  

The synthesis of GA-modified sulfated chitosan [31], O-carboxymethylchitosan [32], alginate [33] 

and hyaluronic acid [34] NPs etc. was reported recently. Chitosan, alginate and hyaluronic acid etc. 

polysaccharides and GA in these NPs need to be modified to increase water solubility and provide 

reactive groups. The syntheses of these NPs were complicated and tedious, which limits their industrial 

application and is not environmentally-friendly. However, pullulan can directly be modified by GA 

through a simple esterification step, because of its outstanding water-solubility and multiple hydroxyl 

groups. The synthesis of GAP is summarized in Scheme 1. 

Scheme 1. The synthesis of glycyrrhetic acid (GA)-pullulan (GAP).  
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In the presence of DMAP and CDI, GA was attached to pullulan for a novel kind of polymeric 

amphiphile with different DS of GA moiety by controlling the molar ratio of GA to pullulan.  

Figure 1. Fourier transform-infrared (FT-IR) spectra for (a) GA, (b) pullulan, and (c) GAP. 
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Peaks at 1728 cm−1 corresponding to carbonyl groups [35] appeared in the FT-IR spectra for GAP 

(Figure 1), so GA was covalently bound to pullulan; the enhanced stretching vibration band relative  

to -CH3, -CH2 groups of GA at about 2930 cm−1 confirmed this finding.  
The 1H-NMR spectra for GAP showed the characteristic peaks of pullulan and new peaks assigned 

to the CH3, CH2, and CH protons of the GA moiety at 0.63–2.0 ppm, which indicated the successful 

conjugation of GA to pullulan. Pullulan characteristic peak signals at 4.68 and 5.05 ppm correspond to 

the α-1,6 and α-1,4 glycosidic bonds protons of C1 [36], which could be identified as the glucose units 

in pullulan. The signals at 0.73 and 0.66 ppm corresponded to the protons of the C23 and C24 angular 

methyls in GA [37], whereby the two angular methyl peaks had almost the same shapes and positions 

of GA (Figure 2d,e). Therefore, the DS of GA residues per 100 glucose units for pullulan could be 

calculated by the ratio of angular methyl protons (0.73 and 0.66 ppm) of GA to sugar protons  

(C1 position of α-1, 6 and α-1, 4 glycosidic bonds) using the following equation: ܵܦ = ଴.଻ଷ௣௣௠ܫ + ସ.଺଼௣௣௠ܫ଴.଺଺௣௣௠6൫ܫ + ହ.଴ହ௣௣௠൯ܫ × 100% (1)

The results of the DS of GA moiety are in Table 1. 

Figure 2. 1H-NMR spectra for (a) pullulan, (b) GA, (c) GAP, (d) and (e) the angular 

methyl of C23 and C24.  
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Table 1. The degree of substitution (DS) and diameter loading capacity (LC) and 

encapsulation efficiency (EE) of GAP NPs and CUR-GAP NPs. Data are mean ± SD, n = 3. 

Samples DS 
Diameter of 

GAP NPs (nm) 
Drug/Carrier 

(w/w %) 
LC% EE% 

Diameter of  
CUR-GAP NPs (nm)

   5 4.97 ± 0.13 78.3 ± 3.05 97.1 ± 3.7 
GAP1 6.2 63.7 ± 4.8 10 9.98 ± 0.28 72.7 ± 1.45 109.3 ± 8.6 

   20 10.29 ± 0.21 68.9 ± 2.52 123.6 ± 9.5 
GAP2 4.5 68.5 ± 5.3 10 6.75 ± 0.32 62.4 ± 3.10 132.7 ± 3.8 
GAP3 1.2 82.1 ± 6.2 10 4.16 ± 0.17 48.3 ± 1.73 153.8 ± 6.2 

2.2. Characterization and Drug Encapsulation 

GAP and CUR-GAP NPs were spherical in shape with a smooth surface (Figure 3), so GAP and 

CUR-GAP NPs could form self-aggregated NPs in aqueous media, and the size could be controlled  

by the DS (Table 1). The DLS results show a small population of GAP or CUR-GAP micelles around 

10 nm, in size, which may be particles of GA and pullulan alone. Of course, fewer particles with 

higher DS or lower LC% were relatively small.  

Figure 3. Transmission electron microscopy and size distribution of (a) GAP NPs and  

(b) CUR-GAP NPs. 
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As shown in Table 1, the diameter decreased but LC% increased with increasing DS. This 

phenomenon can be explained by the fact that more hydrophobic groups are beneficial to form more 

compact hydrophobic cores and load more hydrophobic drugs [38–40], resulting in small size and high 

drug loading capacity. When the ratio of CUR to GAP weight was increased from 5%–20%, CUR loading 

capacity and diameter of CUR-GAP NPs increased from 4.97%–10.29% and 97.1 nm–123.6 nm 

respectively, while encapsulation efficiency decreased from 78.3%–68.9%. Therefore, considering the 

size and the drug-loading properties, we chose a weight ratio of 10% to prepare CUR-GAP NPs. 

2.3. In Vitro Drug Release 

We chose a simulated physiological environment (pH 7.4) and acidic tumor extracellular pH (pH 5.8) 

to study CUR release at 37 °C for 8 days. We found a burst release within the first 8 h both at pH 7.4 

and 5.8 (Figure 4), which might be due to the surface-absorbed CUR present in the NPs. Thereafter, 

CUR release was slow and uniform, which could be due to the diffusion of the entrapped drug in NPs. 

Thus, GAP NPs have potential as a sustained release carrier for CUR. The amount of CUR released 

was greater in acidic media than in the physiological environment, being approximately 73% at pH 5.8 

and 59% at pH 7.4, so the CUR release from CUR-NPs is pH-dependent, which can be due to the 

partial acidic hydrolysis of the ester group, as reported in the literature [41]. Therefore, the release of 

CUR under neutral conditions such as into blood plasma and normal liver tissue would be minimized, 

thus reducing the systemic distribution of CUR during drug delivery.  

Figure 4. In vitro release of CUR-GAP NPs under acidic (pH 5.8) and neutral (pH 7.4) 

conditions at 37 °C. Data are mean ± SD, n = 3. 

 

2.4. Solubility and Stability of CUR 

CUR has potential therapeutic value for cancer, neoplastic, neurological, cardiovascular, pulmonary 

and metabolic diseases [42,43], but the low solubility in water and instability and biodegradation at 

physiological pH restrict its clinical applications [7]. CUR-GAP NPs showed a clear, well-dispersed 

formulation with the natural color of CUR, whereas native CUR was poorly soluble in water, with 

CUR powder precipitated on the bottom of flasks (Figure 5). CUR-GAP NPs had no significant 
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degradation after 12 h incubation at pH 7.4. However, native CUR underwent rapid degradation in the 

first 2 h, and less than 10% CUR was left after the same incubation. CUR NPs could increase the 

aqueous solubility and stability of CUR in physiological environment, which is significant for 

promoting further use of CUR in medical fields. 

Figure 5. Solubility (a) and stability (b) of CUR and CUR NPs in phosphate buffered 

saline at 37 °C. Data are mean ± SD, n = 3. 

 

2.5. Cell Uptake of CUR-GAP NPs 

By taking advantage of the photochemical properties of CUR, we studied the intracellular uptake  

by fluorescence microscopy. The fluorescence signals from HepG2 cells treated with CUR and  

CUR-GAP NPs were almost equal (Figure 6). However, nanoparticulate CUR can be directly 

dissolved in water with higher stability. This is significant for promoting further applications of CUR.  

Figure 6. Differential interference contrast and fluorescence images of internalization of 

native CUR and CUR NPs by HepG2 cells. 

 
  

a 
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CUR with a molecular weight of about 368 can enter the cell via passive diffusion [44], while 

CUR-GAP NPs were less likely to enter cell by passive diffusion because of the large molecular 

weight. In the cell uptake study, HepG2 cells were incubated with 20 μM CUR and nanoparticulate 

CUR for only 2 h. According to the CUR release at pH 7.4, only a small amount of CUR (less than 

20%) was released during the first 2 h, which is not sufficient enough for the released CUR to achieve 

the same level of fluorescence signals. Therefore, CUR-GAP NPs may be internalized by HepG2 cells 

by endocytosis and then degraded to release encapsulated CUR.  

2.6. In Vitro Cytotoxicity Assay 

The cytotoxicity of NPs was evaluated by MTT cell viability assay in HepG2 cells, human liver 

cancer cells with GA receptors [45]. HepG2 cells were incubated with the CUR-loaded micelles at a 

dose equivalent to that of the free CUR. Blank GAP micelles showed no significant cytotoxicity at the 

highest concentration (1 mg/mL) in HepG2 cells after 24 h incubation (data not shown) and the 

cytotoxicity of CUR-GAP NPs and free CUR increased with increasing CUR concentration (Figure 7), 

so cytotoxicity was dominated by CUR and not blank NPs. Growth of HepG2 cells was inhibited more 

with CUR-GAP micelles than free CUR. CUR-GAP NPs may have high affinity to hepatocytes 

because of the abundant GA receptors on hepatocyte membranes [30] and the inherent affinity of 

pullulan for the liver. Therefore, GAP NPs may not only be a safety drug carrier, but also improve the 

drug efficacy because of its target and NP characteristics. 

Figure 7. In vitro viability of CUR and CUR-GAP NPs in HepG2 cells at 24 h. Data are 

mean ± SD (n = 6), * p < 0.01.  

 

3. Experimental  

3.1. Materials 

Pullulan (Mw = 200,000) was from Hayashibara (Tokyo, Japan). 4-Dimethylaminopyridine (DMAP), 

N,N'-carbonyldiimidazole (CDI) and diphenyltetrazolium bromide (MTT) were from Sigma Co.  

(St. Louis, MO, USA). GA, CUR and dimethylsulfoxide, anhydrous were from Aladdin Reagent Co. 

(Shanghai, China). All other chemicals were of analytical grade. 
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3.2. Synthesis and Characterization of GA-Modified Pullullan (GAP) 

GA can be directly attached to pullulan by an esterification reaction. GAP was synthesized as 

follows: pullulan was dissolved in dry DMSO, then different amounts of GA were added. DMAP and 

CDI were added at a molar ratio of DMAP to CDI to GA of 1:1:1. After stirring at 50 °C for 48 h, the 

solution was precipitated in ethanol and the precipitate was washed with ethanol, tetrahydrofuran and 

diethyl ether separately. Finally, the precipitate was redissolved in water and lyophilized to obtain the 

white, cotton-wool-like product of GAP. The chemical structure of GAP and DS, defined as the 

number of GA groups per 100 glucose units pullulan, was analyzed by FT-IR (KBr pellets, Nicolet 

iS5) and 1H-NMR (DMSO-d6, Agilent DD2, 600 MHz). 

3.3. Preparation of GAP Self-aggregated NPs 

The self-assembled NPs were prepared by the dialysis method [46]. Briefly, GAP was suspended in 

DMSO under gentle shaking at 37 °C until it was completely dissolved and then dialyzed against 2000 mL 

of distilled water for 3 days with 10 exchanges by using a dialysis bag (molecular weight cut-off  

8000–14,000,Union Carbide Corporation, Chicago, IL, USA) to remove DMSO. Then, the solution 

was sonicated 3 times by use of a probe type sonifier (Automatic Ultrasonic Processor UH-500A, 

Shanghai, China) at 100 W for 2 min each in an ice water bath and with pulsing (pulse on 2.0 s, off 2.0 s) 

to protect against heat build-up during sonication. The self-assembled NPs were then passed through a 

membrane filter (pore size: 0.45 µm, Millipore, Billerica, MA, USA) and stored at 4 °C. 

3.4. Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) 

To observe the morphologic features of GAP and CUR-GAP NPs, one drop of the NP suspension 

was placed on carbon-coated 300 mesh grids. Then, the grids were air-dried, stained with 2% 

phosphotungstic acid solution for 2 min and examined by TEM (JEM-1400, Tokyo, Japan) at an 

accelerating voltage of 80 KV. The size of CUR-GAP and GAP NPs was investigated by DLS  

(BI-90US, Tokyo, Japan). The NP suspensions were filtered with a 0.45 μm filter, and each batch was 

analyzed in triplicate. 

3.5. Preparation and Characterization of CUR-Loaded GAP NPs 

GAP solution (1 mg/mL) was prepared as described and stirred in an ice bath for 24 h, then 

different amounts of CUR in DMSO were added. The solutions were dialyzed against 2 L distilled 

water for 3 days with 10 exchanges by use of a dialysis bag, sonicated by use of a probe type sonicator 

at 100 W for 2 min to obtain CUR-loaded GAP self-aggregated NPs and centrifuged at 3000 rpm for 

10 min to remove the unloaded CUR and large NPs. The supernatant was lyophilized and stored at 4 °C.  

Lyophilized CUR-GAP NPs (2–3 mg) were dissolved in 10 mL methanol, then gently shaken on a 

shaker for 12 h at room temperature to completely leach out CUR from CUR-GAP NPs in methanol. 

Solutions were centrifuged at 14,000 rpm and supernatant was determined by use of a microplate 

reader (SpectraMax M2, Molecular Devices, Sunnyvale, CA, USA) at 425 nm. Empty GAP NPs were 

used as the blank test. The CUR loading capacity (LC) and encapsulation efficiency (EE) were calculated 

as follows:  
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(%)ܥܮ = ݐ݊ݑ݋݉ܽ	݈ܽݐ݋ݐ ݎݑܿ − ݀݁݀ܽ݋݈݊ݑ ݐݑ݋݉ܽ ܵܲܰݎݑܿ ܹ݁݅݃ℎݐ × 100 (2)

(%)ܧܧ = ݐ݊ݑ݋݉ܽ	݈ܽݐ݋ݐ ݎݑܿ − ݀݁݀ܽ݋݈݊ݑ ݐݑ݋݉ܽ ݈ܽݐ݋ݐݎݑܿ ݐ݊ݑ݋݉ܽ ݎݑܿ × 100 (3)

The morphology and particle size of CUR-GAP NPs were studied by the above methods. 

3.6. Solubility and Stability of CUR 

Native CUR and nanoparticulate CUR of an equivalent quantity of CUR were dissolved in water to 

compare aqueous solubility. Native CUR and nanoparticulate CUR at a fixed CUR concentration of  

15 µg/mL were prepared in phosphate buffered saline (PBS: 0.01 M, pH 7.4) with less than 5% by 

volume of methanol to improve the solubility of native CUR in PBS (0.01 M, pH 7.4), and shaken at 

200 rpm, 37 °C for 12 h [47,48]. At designated times, 900 µL methanol was added to 100 µL sample, 

to quantify the stability of CUR with time in PBS by a microplate reader at 425 nm. 

3.7. Release Kinetics of CUR from CUR-GAP NPs in Vitro 

The in vitro release of CUR from CUR-GAP NPs was performed in PBS at simulated physiological 

environment (pH 7.4) and acidic tumor extracellular pH (pH 5.8). CUR-GAP NPs of 100 mg were 

dissolved in 15 mL PBS and the solution was divided into 30 Eppendorf tubes (0.5 mL each) [12,47,48]. 

The samples were shaken at 200 rpm at 37 °C. Free CUR is completely insoluble in water; therefore, at 

designated times, the solution was centrifuged at 3000 rpm for 10 min to separate the released CUR 

from the CUR-GAP NPs. The released CUR was re-dissolved and diluted in methanol and determined 

by a microplate reader at 425 nm. All procedures were carried out in triplicate. 

3.8. In Vitro Cellular Uptake 

HepG2 cells were seeded in 24-well plates at 1 × 104 cells per well in 1 mL growth medium to study 

intracellular CUR fluorescence. After 24-h incubation, the attached cells were incubated with 20 μM 

native CUR and CUR-GAP NPs for 2 h, then washed 3 times with PBS (0.01 M, pH 7.4) to remove 

excess NPs or CUR and 1 mL PBS was added for fluorescence microscopy studies. The free CUR was 

dissolved in less than a thousandth by volume of DMSO to improve the solubility of native CUR. 

3.9. In Vitro Cytotoxicity 

The cytotoxicity of GAP NPs and CUR-GAP NPs and free CUR was determined by measuring the 

inhibition of cell growth by tetrazolium dye (MTT) assay as described [49]. Briefly, human 

hepatocellular carcinoma (HepG2) cells were seeded at 1 × 103 cells/well in 96-well plates. After 24 h 

incubation, cells were treated with serial dilutions of GAP NPs, CUR-GAP NPs and free CUR in 

serum-free medium for 24 h, then with MTT solution (20 µL, 5 mg/mL in PBS) for 4 h at 37 °C. The 

resulting formazan was dissolved in DMSO (150 µL) and measured at 490 nm by use of a microplate 

reader. The cellular growth inhibition was calculated by the following equation: ݅݊ℎܾ݅݅݊݋݅ݐ% = ൬1 − ݐݏ݁ܶ − ݈݋ݎݐ݊݋ܥ݈݇݊ܽܤ − ൰݈݇݊ܽܤ × 100% (4)
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We used untreated cells as the control (100% survival) and non-cell wells as the blank to substrate 

solvent absorbance. All experiments were replicated six times. 

4. Conclusions  

In this study, we describe a simple method to synthesize and characterize a novel GAP NP carrier of 

encapsulated CUR that could improve the solubility and stability of CUR in a simulated physiological 

environment. The CUR-GAP NPs showed a sustained and pH-dependent release behavior, which is 

key to reducing the systemic distribution of CUR by reducing the release of CUR under neutral 

conditions such as into blood plasma and normal liver. HepG2 cells treated with both free and 

encapsulated CUR showed green fluorescence, which confirmed the successful delivery of CUR into 

cells. Furthermore, the CUR-GAP NPs could significantly improve the water solubility, stability and 

cytotoxicity of CUR in HepG2 cells in vitro, which may due to the liver target of GA and the inherent 

affinity for the liver from pullulan. 
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