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Abstract: The application of headspace-solid phase microextraction (HS-SPME) has been 

widely used in various fields as a simple and versatile method, yet challenging in 

quantification. In order to improve the reproducibility in quantification, a mathematical 

model with its root in psychological modeling and chemical reactor modeling was 

developed, describing the kinetic behavior of aroma active compounds extracted by SPME 

from two different food model systems, i.e., a semi-solid food and a liquid food. The model 

accounted for both adsorption and release of the analytes from SPME fiber, which occurred 

simultaneously but were counter-directed. The model had four parameters and their 

estimated values were found to be more reproducible than the direct measurement of the 

compounds themselves by instrumental analysis. With the relative standard deviations 

(RSD) of each parameter less than 5% and root mean square error (RMSE) less than 0.15, 

the model was proved to be a robust one in estimating the release of a wide range of low 

molecular weight acetates at three environmental temperatures i.e., 30, 40 and 60 °C. More 

insights of SPME behavior regarding the small molecule analytes were also obtained 

through the kinetic parameters and the model itself.  
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1. Introduction 

Headspace analysis is defined as a vapor-phase extraction which is commonly used for sampling of 

volatile organic compounds from a non-volatile liquid or solid [1]. Among various techniques, 

headspace-solid phase microextraction (HS-SPME) is being valued as a simple and versatile method 

with the capability in measuring trace compounds with concentrations in the ppb to low ppm range, 

while some applications even reaching the ppt range [1,2]. Furthermore, the advancement of 

instrumentation has propelled HS-SPME into the mainstream of routine GC analysis [1]. Until now, 

HS-SPME has been widely applied across many disciplines, e.g. environmental analysis [3], in-field air 

quality tests [4], the petroleum industry [5], and biomedical analysis [6]. It has also been widely used in 

food industry for safety [7], flavor generation [8] and flavor profiling [9]. HS-SPME provides 

alternative approach over traditional extraction methods, such as steam distillation or direct solvent 

extraction that analyze the flavor profile from food matrices. HS-SPME could facilitate the 

understanding on flavors released from a food matrix into the headspace, which are responsible for 

the smell perceived by olfactory system. Nevertheless, it is important to note that the complexity of 

HS-SPME analysis usually rises when analyzing a mixture of volatile compounds, which could be 

further complicated by other factors such as matrix effect, the choices of fiber coatings, incubation 

temperature, extraction time and pressure [10]. 

HS-SPME is an extraction process where analytes are in a dynamic equilibrium among the three 

phases, namely sample matrix, headspace and fiber coating, across two interfaces (i.e., sample 

surface/headspace and headspace/SPME fiber coating) [11]. This equilibrium depends on not only the 

composition of volatile organic compounds but also the matrix effect which influences the volatility of 

volatile compounds. Due to the differences of volatility, volatile compounds would release from 

sample matrix into headspace at different rates. On the other hand, selective adsorption and/or 

absorption happened on the fiber based on the affinity between analytes and polymeric fiber coating [3]. 

Chemicals with high affinity toward the SPME polymer are concentrated and have higher sensitivity 

compared to other analytes. In particular, Carboxen/PDMS fiber is a unique coating comprising a 

mixed carbon phase with small micropores. It extracts analytes via adsorption similar to that for porous 

polymer coatings as generally described while the unique pore structure of Carboxen enables 

extraction of all analytes without displacement of lighter analytes [12]. 

As intermolecular interactions play the most important role in extraction by SPME, a non-linear 

dependence between the amounts of analytes in food matrices and extracted by the sample is expected. 

The number of sites on fiber surface is limited for adsorption, which resulting in various distribution 

coefficients between analytes due to competition. As a result, the repeatability of HS-SPME 

measurement is easily affected by extraction parameters and sample matrix. Therefore, optimization of 

the extraction parameters is done to improve the quantitative determination of volatiles [13]. Many 

research works have evaluated the extraction condition and attempted to increase the extraction 

efficiency and consistency through different approaches, for example, response surface methodology [14], 
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chemometric data treatment via partial least squares model [15], kinetic modeling [16] and 

improvement of fiber coating [17]. For instance, the regression models used in Ma and Hamid’s 

research [14] showed a good correlation between measured and predicted data of volatile compounds 

in cooked beef, including 24 aldehydes, ketones, furans, alkanes, ketones and alcohols, with relatively 

high R2 values, ranging from 0.8455 to 0.9740.  

In our previous studies characterizing kinetic models of flavor molecules released from the model 

foods of chewing gum [18] and alcoholic beverages [19], the characteristic flavor molecules were 

mainly esters which are relatively small and light molecules. These compounds are highly sensitive 

with lower boiling point and high aroma activity. The quantification of these molecules is also strongly 

influenced by extraction parameters, resulting in low repeatability [20]. Through the studies, kinetic 

models of the targeted molecules were developed based on their order of release, i.e., zero-, first- and 

second-order. It was proven that the combination of HS-SPME/GC-MS/FID analysis and mathematical 

modeling could provide more reproducible information compared to the direct measurement of flavor 

compounds by the HS-SPME/GC-MS/FID method alone. However, among the kinetic models, the 

quality of the second-order model was yet optimal in term of the variation of model parameters and the 

model fitness to experimental values. It is therefore necessary to build a new second-order model with 

improved reproducibility of its kinetic parameters in comparison to that of the experimental results.  

This paper focuses on the use of mathematical modeling to optimize the HS-SPME analysis 

outcome of second-order flavor release kinetics. In this study, a new model was developed to describe 

the adsorption and release behavior, achieving high reproducibility of model parameters. The model 

had a root in describing the amount of intermediate products in a chemical reactor with parallel first-order 

reactions [21] as well as psychological modeling such as the anxiety information equation [22]. By a 

two-loop optimization process that minimized the relative standard deviations (RSD) of model 

parameters and the root mean square deviation (RMSE) of model fitness, the model was able to 

describe the release profiles of different analysts and conditions with high performance. This model 

together with the models reported in our previous studies [18,19], once established, could provide a 

systematic description of the SPME fiber behavior regarding wide range of low molecular weight 

compounds, which could be applied to many fields, such as environmental, pharmaceutical and flavor 

analysis with similar kinetics or dynamics. 

2. Methodology 

2.1. Principle of Existing Model 

In our previous studies [18,19], a second-order kinetic model was developed by solving a secondary 

ordinary differential equation: ߬ଶ ݀ଶݐ݀ܥଶ + 2߬ζ ݐܥ݀݀ + ܥ = ஶ (1)ܥ

where ܥ and ܥஶ were the concentration at time t and equilibrium concentration of an analyte on the 

fiber, respectively. It describes the release pattern where a drop in analytes’ concentration occurs after 

reaching its maximum. Such a drop might be due to the competition for limited space on the fiber with 

other flavor compounds that had stronger affinities to the fiber. Two kinetic constants (i.e., τ and ζ) 
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were defined to characterize the behavior of release, where τ represented the natural period or the 

extraction’s dynamic response speed, and that ζ was the damping factor of the process. Through 

mathematical modeling, the RSD of the model parameters were reduced. However, it was found that 

compared to zero- and first-order release models, the RSD values, especially those of ζ, were large and 

the fitness of predicted values to experimental results was poorer due to the oscillation nature of the 

model [18,19,23]. 

2.2. Principle of New Model 

A new second-order kinetic model was developed to describe the dynamic balance between the 

adsorption amount of a flavor compound in the headspace onto the SPME fiber and the amount of the 

compound released from the fiber to the headspace. It was modeled as a combined effect of two 

parallel first-order reactions, namely the release kinetics and the adsorption kinetics of volatile 

compounds onto the fiber, as follows: ܥ௔ௗ௦(ݐ) = ݇ଵ ൬1 − ݁ି ௧ఛଵ൰ , ݇ଵ > 0, ߬ଵ > (ݐ)௥௘௟ܥ(2) 0 = ݇ଶ(1 − ݁ି ௧ఛଶ), ݇ଶ > 0, ߬ଶ > 0 (3)

where Cads(t) and Crel(t) are the concentrations of a flavor compound due to adsorption and release, 

respectively, on the fiber at time t. k1 and τ1 are model parameters of adsorption, while k2 and τ2 are 

model parameters of release. k1 and k2 are the equilibrium constants while τ1 and τ2 are time constants 

of the reactions. In addition, C∞ is the equilibrium concentration of the flavor compound on the fiber 

after a prolonged period.  

Subtracting Equation (3) from Equation (2) yields the actual amount of the compound on the fiber, 

where C(t) is defined as the concentration of analyst on the fiber at time t:  (ݐ)ܥ = (ݐ)௔ௗ௦ܥ − =  (ݐ)௥௘௟ܥ ݇ଵ ቀ1 − ݁ି	 ೟ഓభቁ − ݇ଶ ቀ1 − ݁ି	 ೟ഓమቁ  = (݇ଵ − ݇ଶ) − ݇ଵ݁ି ௧ఛଵ + ݇ଶ݁ି ௧ఛଶ 

(4)

Therefore, the concentration of an analyte on the fiber can be described as a function of time, 

involving four model parameters, i.e., k1, k2, τ1 and τ2. The maximum concentration Cmax, time at the 

maximum concentration tmax and the equilibrium concentration C∞ can be derived from Equation (4),  

as follows: ܥஶ = ݇ଵ − ݇ଶ (5)ݐ௠௔௫ = ߬ଵ߬ଶ߬ଶ − ߬ଵ ln (݇ଵ߬ଶ݇ଶ߬ଵ) (6)

௠௔௫ܥ = ஶܥ + ݇ଵ(ߙ − 1) ൬ߙ ݇ଵ݇ଶ൰ି ఈఈିଵ
 (7)

where 	ߙ = ఛమఛభ and τ1 < τ2. 
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2.3. Modeling Data 

In the model system of chewing gum, sugar-base chewing gum samples were made up of fine icing 

sugar, glucose syrup, gum base, glycerin and flavoring, while the sugar-free chewing gum samples 

were made up of sorbitol powder, xylitol, sorbitol syrup, gum base, aspartame, mannitol, glycerine and 

flavoring. The flavorings consisted of 33 selected flavoring compounds dissolved in vegetable oil. On 

the other hand, alcoholic beverage samples consisted of 40% v/v ethanol and 0.62% v/v flavoring that 

was prepared by dissolving selected 10 esters in 100 mL ethanol. The experiments were conducted by 

a combined technique of HS-SPME and GC–MS/FID. The release profile of each compound was 

measured in triplicate, recording peak area changes against SPME extraction time. The extraction-time 

profiles were examined at three different temperatures (i.e., 30, 40 and 60 °C) of which the first two 

corresponded to the typical storage condition (i.e., room temperature) and approximate consumption 

temperature (i.e., mouth temperature), respectively. Furthermore, 60 °C was selected as a typical 

processing temperature of chewing gum, and for a better knowledge of the kinetic release behavior of 

less volatile flavor compounds in alcohol beverages. From the flavor release patterns observed in the 

alcoholic beverage model system, flavor compounds behaved quite differently at the three designated 

temperatures. Among them, a number of flavor compounds namely ethyl hexanoate, ethyl decanoate, 

hexyl acetate, cis-3-hexenyl acetate, allyl hexanoate, ethyl octanoate, isoamyl hexanoate, and ethyl 

lauroate were found to exhibit second-order kinetics. However, poor reproducibility in model fitness 

(i.e., RSD values of ζ) was observed. With the experimental dataset, the release profiles of these 

compounds were reexamined in the present study for testing the new kinetic model. From the release 

profile of the chewing gum model system observed at different environmental temperatures, three 

compounds (i.e., ethyl butanoate, ethyl hexanoate and isopentyl acetate) exhibited second-order flavor 

release behavior, and they were also used to fit into the new model. The experimental dataset was 

normalized first by dividing the peak areas to C∞ of each run. 

Derived model parameters (i.e., k1, k2, τ1, τ2 and W) were validated using one experimental data 

point for each of the compounds at t = 300 min in the alcoholic beverage and data points at t = 20 min 

in the chewing gum. If the peak time tmax of a certain compound, e.g., isoamyl hexanoate from 

alcoholic beverages at 30 °C, appeared at the 300th min, another data point would be chosen for 

this compound.  

2.4. Modeling Process 

The modeling process was implemented through a two-loop optimization procedure using Matlab 

R2011b (The MathWorks, Inc., Natick, MA, USA). Five model parameters were included in the 

modeling procedure, namely, k1, k2, τ1, τ2 and W. Parameters k1, k2, τ1, and τ2 described the release 

kinetics of an analyte for each experimental run, while weighting factor W indicated the relationship 

among the triplicate runs. The statistical quantity, RSD was used to describe variations of the model 

parameters, while RMSE described the overall fitness of the model to the experimental data.  

The programme consisted of two optimization procedures as illustrated in Figure 1. The inner loop 

optimized the model fitness to the experimental data, i.e., fitting the experimental data in the flavor 

release model to derive four kinetic parameters, k1, k2, τ1, and τ2. The inner loop aimed to achieve the 
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lowest RMSE. On the other hand, the outer loop was to find the smallest RSD of each model 

parameter by adjusting a weighting factor W, based on the results from the inner loop. The inner loop 

yielded four model parameter values, i.e., k1, k2, τ1 and τ2, simultaneously for each experimental run 

with a set of equations including Equations (4)–(7) and the measured data set. The outer loop 

optimized W, which yielded the smallest sum of RSD of the four model parameters, i.e., the value of F.  

In both loops, Matlab’s fmincon function and the interior-point algorithm were used to adjust the 

model parameters and the weighting factor. A set of initial values of the four parameters k1, k2, τ1 and 

τ2, and the weighting factor W were assigned at the start of the optimization procedure together  

with a set of lower and upper bounds. The data points used for validation were not used in the 

modeling procedure.  

Figure 1. Block diagram of optimization procedure.  

 

3. Results and Discussion 

3.1. Model Performance 

The performance of the developed model was demonstrated on seven flavor compounds commonly 

present in alcoholic beverages, which were known to exhibit second-order kinetics at different 

temperatures. As the experimental dataset was normalized by dividing the peak areas to C∞ of each 

run, the predicted modeling results were compared with normalized peak areas. With respect to the 

normalized peak area, models for isoamyl hexanoate, allyl hexanoate and ethyl octanoate fitted very 

well to their corresponding experimental data (Figure 2).  
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Figure 2. Predicted profile by the second-order kinetic model for flavor release of selected 

flavor compounds in alcoholic beverage (a) isoamylhexanoate; (b) allylhexanoate; (c) ethyl 

octanoate. The averaged peak areas are presented as normalized quantities.  

 
(a) 

 
(b) 

 
(c) 

Table 1 summarizes the evaluation results and demonstrates the good precision of the developed 

model based on the RSD values of the four kinetic parameters. Compared to the previous model [19], 

the RSD values obtained for all of the selected flavor compounds were further reduced.  
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Table 1. Summary of weighting factor, RSD of parameters and RMSE of triplicates for flavor compounds in alcoholic beverage and chewing gum. 

Model Food Systems W F (%) 
k1 k2 τ1 τ2 

RMSE 
Average RSD (%) Average RSD (%) Average RSD (%) Average RSD (%) 

Alcoholic Beverage 
30 °C 

Ethyl Hexanoate 5.95 13.48 3.11 × 109 2.41 3.10 × 109 2.36 13.34 4.33 13.50 4.37 0.17 
Hexyl Acetate 326.38 15.33 1.77 × 109 3.62 1.75 × 109 3.52 21.93 4.15 22.44 4.04 0.10 

Cis-3-Hexenyl Acetate 199.50 7.16 4.06 × 109 3.54 4.04 × 109 3.56 22.00 0.00 22.09 0.05 0.08 
Allyl Hexanoate 1.15 3.61 6.23 × 109 1.09 6.18 × 109 1.03 47.96 0.77 48.40 0.72 0.09 
Ethyl Octanoate 304.83 8.89 6.93 × 109 2.36 6.85 × 109 2.26 106.94 2.39 108.82 1.87 0.06 

Isoamyl Hexanoate 349.99 7.52 9.27 × 109 3.58 9.17 × 109 3.65 113.10 0.29 115.00 0.00 0.05 
40 °C 

Ethyl Hexanoate 3.53 2.55 2.58 × 109 0.36 2.57 × 109 0.35 13.63 0.87 13.80 0.98 0.19 
Hexyl Acetate 885.24 12.72 1.67 × 109 0.81 1.65 × 109 0.92 11.72 5.49 11.90 5.51 0.06 

Cis-3-Hexenyl Acetate 28.86 10.69 8.30 × 108 3.11 8.18 × 108 3.28 14.17 1.99 14.37 2.30 0.12 
Allyl Hexanoate 30.88 5.84 3.01 × 109 0.73 2.98 × 109 0.67 35.79 2.16 36.53 2.28 0.12 
Ethyl Octanoate 227.48 5.94 8.71 × 109 2.55 8.66 × 109 2.52 58.30 0.46 59.08 0.41 0.11 

Isoamyl Hexanoate 34.02 4.85 8.01 × 109 0.17 7.94 × 109 0.23 61.86 2.20 63.09 2.25 0.10 
Ethyl Decanoate 863.01 16.56 2.25 × 1010 3.56 2.23 × 1010 3.72 322.53 4.71 326.39 4.57 0.04 

60 °C 
Allyl Hexanoate 748.05 4.69 1.38 × 109 2.36 1.36 × 109 2.31 9.10 0.00 9.26 0.02 0.07 
Ethyl Octanoate 2.00 7.74 2.67 × 109 1.16 2.64 × 109 1.18 19.82 2.58 20.26 2.81 0.09 

Isoamyl Hexanoate 2.81 6.55 3.51 × 109 1.34 3.47 × 109 1.37 20.27 1.82 20.77 2.02 0.08 
Ethyl Decanoate 241.21 13.48 8.10 × 109 4.85 8.02 × 109 4.82 73.81 1.90 75.34 1.90 0.04 
Ethyl Lauroate 642.31 13.42 6.10 × 1010 2.21 6.08 × 1010 2.28 358.69 4.51 360.80 4.42 0.06 

Chewing Gum at 60 °C 
Sugar-free ethyl butanoate 37.94 3.28 1.34 × 1010 1.05 1.33 × 1010 0.99 6.17 0.67 6.23 0.56 0.09 
Sugar-base ethyl butanoate 1.01 5.10 3.68 × 109 2.18 3.63 × 109 2.06 2.49 0.27 2.51 0.58 0.04 
Sugar-free ethyl hexanoate 8.51 2.88 2.81 × 1010 0.26 2.77 × 1010 0.34 9.71 1.11 9.84 1.17 0.10 
Sugar-base ethyl hexanoate 11.38 8.31 2.18 × 1010 0.57 2.16 × 1010 0.58 4.29 3.57 4.32 3.58 0.07 
Sugar-free isopentyl acetate 13.00 5.68 3.40 × 109 0.37 3.36 × 109 0.38 6.11 2.28 6.28 2.65 0.13 
Sugar-base isopentyl acetate 81.08 13.33 1.86 × 109 2.28 1.85 × 109 2.34 2.05 4.36 2.10 4.34 0.08 
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All of the RSD values were less than 5%, except for hexyl acetate at 40 °C in the alcoholic 

beverage model system (for which the RSD values of τ1 and τ2 were at 5.49% and 5.50%, 

respectively), indicating a satisfactory reproducibility of the characterization results. In addition, the 

total RMSE of each compound was relatively low, with most of the values being less than 0.15. It 

indicated that the average RMSE for each measurement data set was less than 0.05 and therefore the 

model had a good fitting to the experimental data.  

Regarding the previous second-order kinetic model ߬ଶ ௗమ஼ௗ௧మ + 2߬ζ ௗ஼ௗ௧ + ܥ =  ஶ [18,19], the modelܥ

yielded high RSDs for some of the flavor compounds in the alcoholic beverage system. The RSDs of ߬	and ζ values in the previous model ranged from 0% to 5.7% and 3.6% to 63.3%, respectively. This 

reflected the poor reproducibility of ζ values due to large variations in the amplitude of the overshoot 

between Cmax and C∞ in the experimental replicates. In the plot of model predicted values vs. 

experimental values, data points were scattered around the diagonal line in low concentration range 

illustrating a good fitting in the range; however, notably a clear trend of becoming horizontal at high 

experimental concentration range was observed (data not shown).  

To improve the fitness of the model to the experimental results and reduce the RSD values of the 

model parameters at the same time, a weighting factor W was introduced in the newly developed 

model. Empirical guidelines for choosing the initial values of τ1 and τ2 (Table 2) were also developed 

to facilitate the inner loop of the optimization procedure. As a result, the new model and the 

corresponding kinetic parameters, which provide a measure of the combined effect of a release kinetics 

and an adsorption kinetics onto the fiber, can provide more reproducible information on the overall 

release profile of those volatile compounds of second-order release behavior, compared to the direct 

measurement of the compounds by using the HS-SPME/GC-MS/FID method alone.  

Table 2. Selection rules for the initial values of τ1 and τ2, depending on the value of tmax. 

tmax (min) τ1 and τ2 *

3–5 1–3 
10 4–9 
20 9–14 
30 13–22 
45 20–30 
60 30–40 
90 45–80 

300–720 100–370 

* Generally applicable when the initial values assigned to k1 and k2 were between 50–200. 

3.2. Compromise between RMSE and RSD: Role of Weighting Factor and Prediction of Initial Model 

Parameter Values 

Two statistical quantities were used to evaluate the modeling results, of which RSD described the 

variations of the model parameters and RMSE described the fitness of the model to the experimental 

data. Therefore, a compromise between small RMSE and small RSD implies a balance between good 

fitness to characteristic data points (e.g., the peak point) and that to the rest experimental data points, in 

order to get the smallest RSD of the parameters. It was especially a concern when the triplicate 
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experimental data differed a lot from each other, e.g., when the RSD of peak points was larger than 

10%, or when tmax or Cmax differed significantly within the triplicates. Therefore, when the triplicate 

data sets deviated too much from each other, minimizing the RMSE would lead to a large RSD of the 

parameters, and vice versa.  

The weighting factor W was introduced to the optimization procedure, enabling the procedure to 

automatically achieve an optimized result, i.e., a balance between the smallest RMSE and the smallest 

RSD. The weighting factor W decided the fitting priority to either the characteristic data point (tmax, 

Cmax) or the rest of the measurement data points. The differences among the three data sets (i.e., 

experimental triplicates) were taken into consideration, and the weighting factor was adjusted to avoid 

over-fitting to the point of (tmax, Cmax) or the rest of the measurement data points. As a result, W was 

able to minimize the RMSE and RSD values to an acceptable range, even when the three triplicate 

measurement data sets had large variations. A large value of W would be expected when tmax or Cmax 

differed greatly among the three data sets. For instance, the release profiles of allyl hexanoate at 40 °C 

in the alcoholic beverage model system had all three Cmax values appearing at t = 60 min. The 

optimized weighting factor W was at 30.88, with F = 5.84% and RMSE = 0.21. Under the same 

experimental condition, ethyl decanoate profiles had their Cmax appearing at significantly different 

times among the triplicates. The optimized weighting factor was at 863.00, which was much higher 

than that of allyl hexanoate. The corresponding F value was 16.56%, and RMSE was 0.04, which were 

of similar scale to those for allyl hexanoate. For allyl hexanoate at 60 °C, Cmax appeared at three 

significantly different times, and the optimized weighting factor became 748.05, with F = 4.69%, and 

RMSE = 0.07. 

On the other hand, W could be large when the data points prior to or after the peak deviated greatly 

from each other, even though tmax of the three sets of measurement data were the same. For instance, 

ethyl decanoate had an optimized weighting factor of 241.21 even though all of its three peak values 

appeared at t = 90 min. The large W value was yielded from the large deviation of the data points prior 

to the peak (more than 10%). Due to the large W value resulted from the optimization process, the 

fitness of the data points prior to the peak point was improved. The RMSE of this compound was 0.04 

which was the lowest among all the compounds at 60 °C. As the values of τ1 and τ2 changed with tmax, 

the peak of some compounds appeared at significantly different tmax among the three measurement data 

sets, e.g., ethyl octanoate at 40 °C had the peak at t = 90 min twice and at t = 60 min once. The 

modeling results of τ1 and τ2 were within 50–53, lying at the lower part of the predicted range for the 

initial values of τ1 and τ2 when t = 90 min as shown in Table 2. Similar results were observed in hexyl 

acetate and cis-3-hexenyl acetate at 40 °C, where the ߬ values lied in the range of tmax of two profiles 

among the three replicates. It implied that the third data set with a different tmax needed to compromise by 

adjusting the weighting factor or accepting a relatively large RMSE. In general, data with smaller tmax 

would have smaller τ1 and τ2. Based on the modeling results, a guideline for selecting the initial values of 

τ1 and τ2 was derived and is shown in Table 2. 

3.3. Validation of the Developed Model 

Given the estimated parameters from the modeling and optimization procedure, the predicted 

chromatogram peak area of each compound was compared to the experimental peak area at those 
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validation data points described in Section 2.3. These experimental data points were not used in the 

modeling procedure. The predicted values were very close to the experimental data, as shown in  

Figure 3. The discrepancies between them were largely within ± 10%, except for few compounds. 

Large discrepancies were observed in the alcoholic beverage model for ethyl octanoate at 40 °C and 

isoamyl hexanoate at 40 °C (Figure 3c), which were as high as 18%. The flavor release profiles for 

both compounds indicated that the equilibrium might not have been reached at the end of the 

experiment period. Due to that the model assumed the last experimental point as the equilibrium point, 

the validated results at t = 300 min were therefore higher than the corresponding experimental results.  

3.4. Adsorption and Release of Targeted Flavor Molecules on the SPME Fiber  

The newly developed second-order kinetic model described an overshoot scenario, which arises 

from two competing dynamics that operate on different time scales. This model was designed as a net 

effect of two parallel, counter-directional first-order reactions, namely, release and adsorption of each 

analytes on the fiber (Equation (4)). The faster effect of volatile compounds adsorption on the fiber 

contributed to the initial increase in peak areas, while the slower effect of compounds release from the 

fiber contributed to the decreases in peak areas. This overshoot response occurred when the initial 

response, which was adsorption onto the fiber described by Equation (2), was in one direction, while 

the release effect was in the opposite direction as described by Equation (3) on another time scale. As 

adsorption is a competitive process, the amount of analytes adsorbed on the fiber depended on its 

diffusion coefficient in the coating, and the molecules would release back into the headspace when the 

fiber polymer is attached to a new molecule with higher affinity or kinetic mobility. On the other 

hand, partition coefficient between matrices and fiber resulted in an equilibrium partitioning 

process between matrices, headspace and fiber coating. The second-order profile was consisted of 

the initial increase in the analyte concentration, followed by overshoot and equilibrium at the end. 

It indicated that adsorption and partitioning happened simultaneously, yet their impact on the fiber 

changed with time. 

Each of the first-order reactions was described by a pair of parameters k and τ. The parameter k was 

the equilibrium constant for each first order reaction, indicating the point when the release or 

adsorption reached equilibrium, while τ was the time constant, indicating the speed of release or 

adsorption on the fiber. At higher temperature, τ became smaller (as shown in Table 1), which 

corresponded to the increasing slope of each first order reaction. At higher temperature, the 

intermolecular activity between analytes in the headspace and polymers on fiber was enhanced, 

resulting in smaller τ. 
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Figure 3. Predicted results versus experimental results for flavor compounds in different food models or processing conditions at designated 

extraction time. For each compound, the triplicates of Y1, Y2, and Y3 are shown. (a) Chewing gum at 60 °C; (b) Alcoholic beverage at 30 °C; 

(c) Alcoholic beverage at 40 °C; (d) Alcoholic beverage at 60 °C.  
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Figure 4 illustrates the two reactions for ethyl octanoate in the alcoholic beverage system at 40 °C. 

The increasing slope of each first-order reactions is related to τ1 and τ2, respectively. The larger the 

value of τ, the smaller was the slope, reflecting a slower reaction. At the beginning, the adsorption was 

faster than the release which had a smaller model parameter τ2. As the time proceeded, the rate of 

increasing decreased and a maximum difference between the two reaction curves appeared at a certain 

point, i.e., Cmax. After that time, the adsorption and the release were quickly approaching the 

equilibrium and the amount of compound remained on the fiber was almost a constant. Furthermore, 

the values of k and τ depended on the compound, food matrix and environmental temperature. The 

difference between τ1 and τ2 also varied among the compounds. The value of weighting factor W may 

reflect the instrumental uncertainties during experiment. Therefore, the new model, together with its 

parameters, might provide more insight to the nature of flavor release, especially the dynamic balance 

between adsorption and release of flavor compounds onto the fiber. 

Figure 4. Two first-order reactions, i.e., adsorption onto and release from the fiber of ethyl 

octanoate in alcohol beverage model system at 40 °C. 

 

4. Conclusions 

The novel approach of combining HS-SPME/GC-MS and mathematical modeling has been proved 

to be able to improve the reproducibility of the release behavior characterization of flavor compounds 

from food matrices that were analysed through HS-SPME. Through mathematical modeling, the model 

parameters were shown to perform better and be more reproducible in describing flavor release in both 

semi-solid and liquid food systems, i.e., chewing gum and alcoholic beverages. In the current study, a 

significant improvement was achieved by developing a new second-order model through a two-loop 

optimization procedure, which yielded both reproducible results and better fitness of the model to the 

experimental data. Furthermore, the model provided much more insights to the release mechanisms of 

the flavor compounds, which could have significantly different behaviors at various environmental 

temperatures and in different food matrices.  
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