Supplementary Material

Figure S1. Cont.

ŅН

Įз

-OH

O-P-coumaroyl

	к ₁	R_2	R_3	R_4	R ₅	R_6	R_7
24	н	ОН	н	н	ОН	Н	ОН
25	OH	ОН	н	н	OGlu-6"-O-protocatechuoyl	OH	OH
26	OH	ОН	OGlu	н	OH	н	ОН
27	OH	ОН	н	OH	OGlu	н	н
28	OH	ОН	н	н	OGlu	Н	OH
29	OH	OH	н	н	OGlu	OH	ОН
30	OH	ОН	н	н	OGIu-3"-O-HMG-ester	OH	ОН
31	OH	OH	н	н	OGlu-6"-O-Glu	н	ОН

35

 R1
 R2
 R3
 R4

 38
 COOH
 OH
 OH
 H

 39
 OMe
 OMe
 H
 OMe

 40
 CHO
 H
 OMe
 OH

HO

Figure S1. Cont.

Figure S2. HRESI mass spectrum of compound 1.

Figure S3. ¹H-NMR spectrum of compound 1 (600 MHz, in DMSO-*d*₆).

Figure S4. ¹³C-NMR spectrum of compound 1 (150 MHz, in DMSO-*d*₆).

Figure S5. DEPT spectrum of compound 1 (150 MHz, in DMSO-*d*₆).

Figure S6. HSQC spectrum of compound 1 (600 MHz, in DMSO-*d*₆).

Figure S7. ¹H-¹H COSY spectrum of compound 1 (600 MHz, in DMSO-*d*₆).

Figure S8. HMBC spectrum of compound 1 (600 MHz, in DMSO-*d*₆).

Data Ellename	PEN 740 d	Comunic Norma	PEN 740	
Data Filename	BFM-ZAU.d	Sample Name	BFM-ZAU	
Sample Type	Sample	Position	P1-D7	
Instrument Name	Instrument 1	User Name		
Acq Method	TEST-POS-01-WL.m	Acquired Time	11/11/2014 4:26:53 PM	
IRM Calibration Status	Success	DA Method	Default.m	
Comment				
Data Filename	BFM-ZAO-NEG.d	Sample Name	BFM-ZAO	
Sample Type	Sample	Position	P1-D7	
Instrument Name	Instrument 1	User Name		
Acq Method	TEST-NEG-01-WL.m	Acquired Time	11/11/2014 4:58:04 PM	
IRM Calibration Status	Success	DA Method	Default.m	
Comment				

Qualitative Analysis Report

User Spectra

--- End Of Report ---

🔆 Agilent Technologies

Page 1 of 1

Printed at: 18:10 on: 2014/12/9

Figure S10. ¹H-NMR spectrum of compound 2 (600 MHz, in CD₃OD).

Figure S11. ¹³C-NMR spectrum of compound 2 (150 MHz, in CD₃OD).

Figure S12. DEPT spectrum of compound 2 (150 MHz, in CD₃OD).

Figure S13. HSQC spectrum of compound 2 (600 MHz, in CD₃OD).

Figure S14. ¹H-¹H COSY spectrum of compound 2 (600 MHz, in CD₃OD).

Figure S15. HMBC spectrum of compound 2 (600 MHz, in CD₃OD).

Qualitative Analysis Report

Data Filename	BFA-6.d	Sample Name	BFA-6
Sample Type	Sample	Position	P1-D8
Instrument Name	Instrument 1	User Name	
Acq Method	TEST-POS-01-WL.m	Acquired Time	11/11/2014 4:28:31 PM
IRM Calibration Status	Success	DA Method	Default.m
Comment			
Data Filename	BFA-6-NEG.d	Sample Name	BFA-6
Sample Type	Sample	Position	P1-D8
Instrument Name	Instrument 1	User Name	
Acq Method	TEST-NEG-01-WL.m	Acquired Time	11/11/2014 4:59:40 PM
IRM Calibration Status	Success	DA Method	Default.m
Comment		-	

User Spectra

Frag	gment 12	or Vo 20	ltage		Collision 0	Energy	Ionization Esi	Mode							
x10 ⁵	-ESI	Sca	n (0.2	227	min) Frag=1	20.0V BFA-6-N	IEG.d								
-						593	.1316								
						(M	1-H)-								
0.0-															
0.6-	2														
0.4-	8														
0.2-	2											629.	1073		
0-										line to			l.l.		
Ū	5	55	560	565	570 575	580 585 590	595 600	0 60	5 6	10 615	620	625 6	630 635	640	645
Peak Lis	at					Counts	vs. Mass-	to-Cl	harge	e (m/z)					
m/z		z	Abu	nd	Formula		Ion								
68.9963			7665	8											
112.9857	,		1469	37											
160.842			2242	1											
197.8083	3		2095	3											
593.1316	5	1	9628	9	C30 H25 O13	3	(M-H)-								
594.1345	5	1	2895	5	C30 H25 O13	3	(M-H)-								
955.9712	2	1	5632	9											
966.0007	,	1	6095	8											
982.9909)	1	7144	6											
1033.986	6		2558	5											
Formula	Calc	ulat	or Ele	mer	t Limits										
Element	:	Min		Max	:										
С			3	6	0										
Н			0	1	20										
0			0	2	0										
Formula Calculator Results															
Formula			Best		Mass	Tgt Mass	Diff (ppr	n)	Ion	Species		Score	-		
C30 H26	013		TR	UE	594.138	9 594.1373		2.64	C30	H25 013		94.2	26		
Frag	gment 12	or Vo 20	ltage		Collision 0	Energy	Ionization Esi	Mode	•						,

Agilent Technologies

Page 1 of 2

Printed at: 13:39 on: 2014/12/9

Figure S17. ¹H-NMR spectrum of compound **3** (600 MHz, in DMSO-*d*₆).

Figure S18. ¹³C-NMR spectrum of compound 3 (150 MHz, in DMSO-*d*₆).

Figure S19. DEPT spectrum of compound 3 (150 MHz, in DMSO-*d*₆).

Figure S20. HSQC spectrum of compound 3 (600 MHz, in DMSO-*d*₆).

Figure S21. 1 H- 1 H COSY spectrum of compound 3 (600 MHz, in DMSO- d_{6}).

Figure S22. HMBC spectrum of compound 3 (600 MHz, in DMSO-*d*₆).

Mobile phase of HPLC-DAD analysis for compounds 1, 2, 3, 9, 15, 21, 24, 51 and EtOH extract of *B. frondosa* with Diamonsil C18 column (250 mm \times 4.6 mm, 5.0 μ m, Dikma Technologies, Beijing, China)

No.	Time (min)	CH ₃ OH (%)	0.1% Aqueous Formic Acid (%)	Flow (mL/min)
1	0.00	10.0	90.0	0.10
1	30.00	100.0	0.0	0.10
2	0.00	20.0	80.0	0.10
2	80.00	100.0	0.0	0.10

Figure S23. HPLC profile of compound 1. Mobile phase of 0 min 10% MeOH–30 min 100% MeOH, Time = 30 min.

Figure S24. HPLC profiles of compound 2 (**a**) and EtOH extract of *B. frondosa* (**b**). Mobile phase of 0 min 20% MeOH–80 min 100% MeOH, Time = 80 min. Compound **2** is a natural chemical constituent, which is identified by HPLC.

No.	Time	Area	Height	Width	Area%
2	18.24	19459	917.3	0.2955	99.662

Figure S25. HPLC profile of compound **3**. Mobile phase of 0 min 10% MeOH–30 min 100% MeOH, Time = 30 min.

Figure S26. HPLC profile of compound 9. Mobile phase of 0 min 10% MeOH–30 min 100% MeOH, Time = 30 min.

No.	Time	Area	Height	Width	Area%
2	21.185	16489.1	1751	0.1459	99.293

Figure S27. HPLC profile of compound **15**. Mobile phase of 0 min 10% MeOH–30 min 100% MeOH, Time =30 min.

Figure S28. HPLC profile of compound **21**. Mobile phase of 0 min 10% MeOH–30 min 100% MeOH, Time =30 min.

Figure S29. HPLC profile of compound **24**. Mobile phase of 0 min 10% MeOH–30 min 100% MeOH, Time =30 min.

Figure S30. HPLC profile of compound **51**. Mobile phase of 0 min 10% MeOH–30 min 100% MeOH, Time =30 min.

		LDC		Compound + LPS	
Compound	Cell	LPS	C-1 μg/mL	C-10 µg/mL	С-100 µg/mL
1	2132.00 ± 281.13 **	73268.00 ± 4999.01	65479.00 ± 2675.95	62319.67 ± 4230.77 *	59421.67 ± 4993.19 *
2	2132.00 ± 281.13 **	73268.00 ± 4999.01	66488.00 ± 3148.37	62489.67 ± 3724.55 *	56398.67 ± 4119.77
3	2132.00 ± 281.13 **	73268.00 ± 4999.01	68896.00 ± 3696.88	62387.67 ± 3843.46 *	59076.33 ± 6732.61 *
4	2132.00 ± 281.13 **	73268.00 ± 4999.01	68333.00 ± 5552.84	65038.67 ± 5021.67	62632.00 ± 4289.43 *
5	2132.00 ± 281.13 **	73268.00 ± 4999.01	69027.00 ± 4565.20	61769.67 ± 4480.88 *	58630.67 ± 2551.23 **
6	2132.00 ± 281.13 **	73268.00 ± 4999.01	68977.33 ± 4635.98	65313.00 ± 3016.18	60990.67 ± 3209.34 *
7	2132.00 ± 281.13 **	73268.00 ± 4999.01	68038.67 ± 4100.52	67432.00 ± 6221.41	64396.67 ± 5314.31
8	2132.00 ± 281.13 **	73268.00 ± 4999.01	69060.00 ± 4137.77	64708.00 ± 2633.98	60614.67 ± 4016.71 *
9	2132.00 ± 281.13 **	73268.00 ± 4999.01	62253.33 ± 3875.6 *	56677.33 ± 5258.80 *	45549.67 ± 8023.69 **
10	2132.00 ± 281.13 **	73268.00 ± 4999.01	67950.33 ± 4247.37	67385.67 ± 3348.19	58837.00 ± 6131.49 *
11	2132.00 ± 281.13 **	73268.00 ± 4999.01	65528.00 ± 4876.20	64122.33 ± 3531.52	59963.67 ± 3575.50 *
12	2132.00 ± 281.13 **	73268.00 ± 4999.01	67828.33 ± 4365.55	63674.33 ± 4035.83	53432.00 ± 4547.24 **
13	2132.00 ± 281.13 **	73268.00 ± 4999.01	69319.33 ± 4163.59	65280.67 ± 4343.88	56975.67 ± 5995.17 *
14	2132.00 ± 281.13 **	73268.00 ± 4999.01	68371.33 ± 5603.29	63247.67 ± 3694.65 *	58347.33 ± 4447.21 *
15	2132.00 ± 281.13 **	73268.00 ± 4999.01	59902.00 ± 5734.5 *	58715.33 ± 4789.37 *	$35417.00 \pm 7285.47 **$
16	2132.00 ± 281.13 **	73268.00 ± 4999.01	69980.67 ± 4109.9	67088.67 ± 2854.42	63264.67 ± 4006.62
17	2132.00 ± 281.13 **	73268.00 ± 4999.01	68069.33 ± 2254.6	64314.67 ± 3788.37	$59662.67 \pm 4631.43 *$
18	2132.00 ± 281.13 **	73268.00 ± 4999.01	65444.67 ± 2904.9	60307.00 ± 3656.06 *	$56705.00 \pm 5944.80 \texttt{*}$
19	2132.00 ± 281.13 **	73268.00 ± 4999.01	65878.00 ± 3992.27	64450.67 ± 3680.85	$55090.33 \pm 4504.16 \texttt{**}$
20	2132.00 ± 281.13 **	73268.00 ± 4999.01	69457.00 ± 2955.76	65315.33 ± 2724.70	58030.00 ± 5092.78 *
21	2132.00 ± 281.13 **	73268.00 ± 4999.01	61918.33 ± 3548.9 *	50924.00 ± 3502.17 **	45476.00 ± 8498.07 **
22	2132.00 ± 281.13 **	73268.00 ± 4999.01	58070.00 ± 4334.8 *	51643.33 ± 6534.49 *	40122.67 ± 4886.15 **
23	2132.00 ± 281.13 **	73268.00 ± 4999.01	65622.00 ± 3349.58	66220.33 ± 5212.61	59923.33 ± 6084.11 *
24	2132.00 ± 281.13 **	73268.00 ± 4999.01	65046.00 ± 4545.51	64802.33 ± 4082.00	59672.67 ± 3753.96 *
25	2132.00 ± 281.13**	73268.00 ± 4999.01	66629.67 ± 3227.20	63780.33 ± 4066.85	63819.67 ± 4675.25

Table S1. Inhibitory effects of compounds 1–34, 36, 39, 43, 47, 51, 52 (1, 10, 100 μg/mL) on NF-κB in luciferase activity assay.

Compound + LPS Compound Cell LPS C-1 μ g/mL C-100 µg/mL C-10 µg/mL 2132.00 ± 281.13 ** 59010.00 ± 5472.91 * 26 73268.00 ± 4999.01 65229.67 ± 4410.53 64029.00 ± 4013.51 27 2132.00 ± 281.13 ** 73268.00 ± 4999.01 66429.00 ± 3131.58 60575.00 ± 4677.45 * 57566.33 ± 4433.86 * 28 2132.00 ± 281.13 ** 73268.00 ± 4999.01 67093.00 ± 3899.88 65215.00 ± 2716.62 $59226.00 \pm 5025.35 *$ 29 2132.00 ± 281.13 ** 73268.00 ± 4999.01 67276.00 ± 3507.74 63942.33 ± 3294.88 $59497.33 \pm 4052.66 *$ 30 2132.00 ± 281.13 ** 73268.00 ± 4999.01 67418.00 ± 4181.95 64804.67 ± 3725.58 59233.67 ± 4645.91 * 31 2132.00 ± 281.13 ** 73268.00 ± 4999.01 67722.33 ± 2772.07 64602.67 ± 3300.97 $58969.00 \pm 4565.26 *$ 32 2132.00 ± 281.13 ** 73268.00 ± 4999.01 69157.00 ± 4731.34 63617.00 ± 4047.05 59162.67 ± 4481.74 * 33 2132.00 ± 281.13 ** 73268.00 ± 4999.01 67359.00 ± 3514.87 64555.67 ± 4021.52 56640.00 ± 4919.46 * 34 2132.00 ± 281.13 ** 73268.00 ± 4999.01 68007.67 ± 4107.68 63242.33 ± 4638.23 52565.67 ± 4279.69 ** 36 2132.00 ± 281.13 ** 73268.00 ± 4999.01 70055.33 ± 4111.44 64733.33 ± 4174.56 $59247.00 \pm 4648.29 *$ 39 2132.00 ± 281.13 ** 62314.00 ± 4492.91 * 73268.00 ± 4999.01 67420.00 ± 3259.34 $57646.67 \pm 3659.60 *$ 66801.00 ± 3696.52 43 2132.00 ± 281.13 ** 73268.00 ± 4999.01 64209.3 ± 3814.68 59015.00± 4434.44 * 47 2132.00 ± 281.13 ** 73268.00 ± 4999.01 68683.33 ± 4069.28 63742.67 ± 3990.68 62942.00 ± 4080.98 51 2132.00 ± 281.13 ** 73268.00 ± 4999.01 61368.33 ± 3827.01 * 51393.67 ± 5605.39 ** 38543.67 ± 7726.72 ** 52 53650.00 ± 3463.12 ** 2132.00 ± 281.13 ** 73268.00 ± 4999.01 65899.00 ± 2711.02 * 62089.00 ± 5475.50 ** 2132.00 ± 281.13 ** 73268.00 ± 4999.01 63530.33 ± 4994.17 60789.67 ± 4489.31 * 36894.67 ± 6013.18 ** Ibuprofen

 Table S1. Cont.

** p < 0.01, * p < 0.05 versus LPS-treated group. Data presented is the mean \pm S.D. of samples run in triplicate.