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Abstract: Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced 

cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) 

reactions (more specifically for cationic ring opening polymerization (ROP)) together with  

the involved mechanisms are briefly reviewed. The recent developments of novel two- and 

three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights 

is emphasized in details. Examples of such reactions under various experimental conditions 

are provided. 

Keywords: photoinitiator; cationic polymerization; free radical promoted cationic 

polymerization; visible light; LED; laser diode 

 

1. Introduction 

Ring opening polymerization (ROP) reactions are very well known in macromolecular science (see 

e.g., in [1,2]). Thermally initiated ionic and coordination ROP as well as controlled ROP have been 

recently reviewed and detailed in [3]. Cationic polymerization (CP) reactions (of e.g., divinylethers) 

and the particular cationic ROP of cyclic monomers (e.g., epoxides, oxiranes such as cyclohexene 

oxide) can also be initiated by light (see, e.g., in books [4–16] and in review papers [17–32]). 

OPEN ACCESS



Molecules 2015, 20 7202 

 

 

The applications of light induced CP are extensively developed in the Radiation Curing (RC) area 

(e.g., in coatings). Applications are also noted, e.g., in printing inks, microelectronics or manufacture 

of optical elements. On industrial grounds, the benefits of the RC technology are, e.g., use of  

non-polluting and solvent-free formulations (almost no Volatile Organic Compounds (VOC)), low 

energy requirements, low temperature treatments (suitable for heat sensitive substrates), rapid  

through-cure, small space requirements, and low costs. Cationic photopolymerizations are, however, 

less encountered than free radical photopolymerization reactions. Indeed, although they exhibit some 

decisive advantages (e.g., no oxygen inhibition, important dark post-effect, less shrinkage problems in 

the cured material), they present several drawbacks (e.g., moisture and water sensitivity, very limited 

choice of monomer formulations, slower rates of polymerization for the epoxides, higher costs for 

monomers). The range of monomers and oligomers available for ROP has been, however, largely 

expanded. Epoxides are widely used and give coatings with high thermal capability, excellent adhesion, 

good chemical resistance and environmentally friendly characteristics. Cyclic ethers such as oxetanes are 

alternatives to epoxides for getting fast curing speeds in industrial lines. Recent developments include, 

e.g., cationic monomers possessing readily abstractable hydrogen atoms, mono and bifunctional 

epoxides, hybrid monomers such as epoxide-vinyl ethers (or -propenyl ethers, -acetals), spiro 

orthocarbonates, epoxy modified silicone monomers, renewable monomers (e.g., epoxidized sunflower, 

soybean oil, linseed oil, vernonia oil, castor oil; limonene dioxide LDO, epoxidized natural rubbers). 

CP reactions require the presence of a photoinitiator PI or a photoinitiating system PIS (consisting 

in a photosensitizer PS/PI couple or a PI/additive(s) system) that can absorb the light and generate 

cations or radical cations being able to initiate CP (Scheme 1). The absorption properties, the excited 

state processes, the easiness of production of the initiating species as well as their reactivity towards the 

addition reaction to the cationic monomer ring govern the overall efficiency of the polymerization reaction. 

Photoinitiator
          or
Photoinitiator/Additive
          or 
Photosensitizer/photoinitiator

cation
radical cation

Monomer

Monomer
+

Polymer

Monomer

Light 

 

Scheme 1. General scheme for cationic photoinitiator. 

Conventional polychromatic UV and visible light sources (Hg lamps, Xe-Hg lamps, Xe lamps, 

doped Hg lamps) are usually employed. The recent design of high intensity quasi-monochromatic LED 

or monochromatic laser diode arrays as well as the use of sunlight (in sunlight-assisted processes: no 

irradiation device, possibility of curing large dimension pieces or surfaces) or low intensity household 

devices delivering visible lights (no UV rays, no Hg lamps, no ozone release) allow new opportunities 

of applications. 

Both the relatively small number of originally available cationic PIs and the difficulty to find 

efficient photosensitizers (PSs) have forced CP to mostly operate under UV lights for a long time, even 

though some interesting novel PIs or PS/PI couples already ensured long wavelength sensitivity (see 

below). Today, the development of novel free radical promoted cationic polymerization (FRPCP) 

reactions (Scheme 2) using well adapted photoinitiating systems (PISs) (in order to decrease the 
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oxygen inhibition due to the radicals) has noticeably enhanced the possibilities and allowed a 

photosensitivity from the violet to the red (see below).  

Photoinitiator
/Additive 1

cation Polymer
Monomer

radicals
additive 2

Light Photoinitiator
/Additive 1

cation Polymer
Monomer

radicals
additive 2

Light 

 

Scheme 2. Principle for the free radical promoted cationic polymerization. 

In the present paper, we will briefly present the PIs and PISs that have been developed for CP and 

FRPCP reactions, more specifically for the cationic ROP of epoxides. The involved mechanisms will 

also be reviewed. As many review papers and books on the currently existing PIs and PISs already 

appeared (see above), we will focus the attention of the reader on a recently newly proposed strategy 

for the design of original two- and three-component PISs for CP and FRPCP upon exposure to low 

intensity blue to red lights. Several examples will be provided.  

2. Backgrounds: Photoinitiation of Cationic ROP 

Iodonium (Iod) and sulfonium (Sulf) salts, originally proposed in the 1970s [33,34] (see also 

reviews in [5,29]) and extensively studied [35–42] are the most widely used PIs for the CP of a large 

variety of monomers such as epoxides. In the near UV, the simplest Iod (diphenyl iodonium salt Ph2I+) 

exhibits a less intense absorption (located at ~230 nm) than the corresponding triphenyl sulfonium salt 

Ph3S+ (absorption at ~260 nm). 

The photodecomposition process is well established and involves a primary heterolytic or/and 

homolytic cleavage of the C-I or C-S bond. A phenyliodide/phenyl cation or a phenyliodinium 

cation/phenyl radical pair is thus produced in irradiated Iod. In Sulf, a heterolytic cleavage also occurs. 

Further out-of-cage processes (due to the presence of abstractable hydrogen atom in the medium) and  

in-cage processes arise; in any case, a strong Brönsted acid is generated and can initiate ROP (Scheme 3). 

Light 
iodonium salt 

out-of-cage

in-cage

cleavage H+

 

Scheme 3. Formation of acid from iodonium salts. 

The photosensitized decomposition of Iod or Sulf in the presence of a suitable compound (denoted 

as a photosensitizer (PS) in photochemistry; in the RC area, PS can also be considered as a PI as it 

leads to initiating species) is possible. It occurs through energy (ET) or electron (eT) transfer processes 

governed by energetic considerations (in the usual triplet-triplet ET, the energy level of the excited 

donor must be higher than that of the acceptor) or thermodynamical requirements (the free energy 

change (ΔG) for the reaction must be negative), respectively (e.g., in Scheme 4). The possibilities for 
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an ET route are rather limited (a low lying excited single state for getting a visible light absorption is 

not compatible with a high lying triplet state required for energy transfer). 

Light Ph2I+

Ph2I
.PS PS* PS +. + Ph

.PS +. + + PhI
eT

Light Ph2I+
PS PS* PS + PS 

ET
Ph2I+ *  H++

 

Scheme 4. Energy (ET) or electron (eT) transfer to sensitize the decomposition of iodonium salts. 

On the opposite, the eT route is more successful in PS/Iod couples (this redox reaction is less 

favorable in PS/Sulf couples). Using, e.g., hydrocarbons, phenothiazines, ketones, dyes, metal 

complexes, various aromatic moiety linked to an epoxide unit, thiophene derivatives, poly(phenylene 

vinylene)s, as PS, a radical cation is produced (PS•+) and the formed diphenyl iodide radical cleaves 

into iodobenzene and a phenyl radical. The main drawbacks are the ability of PS•+ to initiate ROP 

(subsequent reactions of PS•+ with water, the phenyl radical or its dimerization have been shown in 

some cases) as long wavelength excitations and efficient PS/Iod electron transfer processes can be 

relatively easily obtained. 

The eT can also occur (Scheme 5) through an electron transfer between a radical R• (generated from 

a cleavable PS) and Iod (the R•/Sulf redox reaction is very often not favorable due to the less favorable 

reduction potential of Sulf compared to Iod [5]). This way leads to a FRPCP reaction. Selecting PS 

allows changing the absorption but the initiating cation R+ is also changed (examples of such PS are 

ketones, ketone/amine, phosphine oxides, polysilanes, benzoyl germanes, dimanganese decacarbonyl/alkyl 

halide). The main drawbacks were the few available efficient systems (mostly restricted to the UV or 

near UV/vis range), the oxygen sensitivity of the system and the reactivity of R+. Another eT route 

concerns the addition/fragmentation process where R• adds to a suitable allyl onium salt that further 

cleaves into a radical cation and an ethylenic product. 

Ph2I
.

PS*
.

+
Light Ph2I+

PS R R+

eT  

Scheme 5. Oxidation of radicals to generate initiating species for ring opening 

polymerization (ROP). 

Recent successful results using PS/Iod systems and allowing visible light irradiations for ROP 

reactions can be found in, e.g., [43–62]. The design of one-component PI (e.g., the ferrocenium salts) 

is certainly an interesting answer to avoid such bi-component systems where compatibility and 

diffusion of the reactants in the polymerizable matrix might be a problem. In all cases current 

applications, however, except the use of Iod or Sulf alone under UV lights, a PS/Iod couple is 

conveniently employed as soon as UV radiations must be avoided. As stated above, in all these PS/Iod 
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systems, the PS•+ initiating ability is decisive and the PS absorption has to match the emission 

spectrum of the light source: therefore, each couple will exhibit a characteristic behavior. Obviously, 

such systems cannot be versatile. A great progress has certainly been made using a novel strategy  

(see below). 

Adequate structural modifications on Iod and Sulf led to compounds exhibiting red-shifted and 

enhanced absorption (e.g., bis triaryl sulfonium salts), suppressed benzene release (e.g., aryl iodonium 

salts) or allowed a better solubility (salts containing long alkyl chains) and compatibility (polymeric 

iodonium salts). Original and different cationic skeletons include dialkyl and cycloalkyl sulfonium 

salts, phenylethynyl sulfonium salts, acylsulfonium salts, dialkyl aryl sulfonium salts, thianthrenium 

salts or onium salts centered on a N (e.g., quinolinium, ammonium, anilinium salts, P (pyridinium, 

phosphonium salts), O (pyrilium salts) or a S atom (thiopyrilium, thiazolinium salts). Interesting 

results can be found in e.g., [63–86]. 

Other chemical structures that can initiate CP are e.g., the diazonium salts (e.g., in Ar2N+ BF4
−, a 

BF3 Lewis acid is generated) [87,88]. Various organometallic derivatives (transition, non-transition and 

inorganic transition complexes) have also been proposed in the past [89] or recently revisited  

(see e.g., [70]); among them, the ferrocenium salt series (e.g., the (η6-cumene) (η5-cyclopentadienyl) iron 

(II) representative) ensure a blue light absorption: it works according to a ligand transfer reaction that 

expels the arene moiety, which is replaced by three epoxides, the initiating carbocation being obtained 

through a thermal cleavage of the epoxy C-O single bond (then, the polymerization proceeds outward 

through the coordination sphere of the iron atom). Non-ionic photoacid generators are also used (see 

e.g., in [90]). 

The degree of separation in the propagating ion pair (oxonium cation/anion) is dependent on both 

the size and the electron density of the anion. Indeed, for this anion, with a larger size and/or a lower 

nucleophilicity, the polymerization rates become higher. Usual non-nucleophilic anions in onium salts 
allow excellent rates of polymerization, e.g., SbF6

− > AsF6
− > PF6

− > BF4
− >> I− or Cl−. The bulky 

tetrakis (pentafluorophenyl) borate B(C6F5)4
− anion, which exhibits a low nucleophilicity together with 

a large size, leads to a high propagation rate constant and avoids Sb containing systems has ensured  

a substantial progress [91]. 

The UV intensity, temperature and dark-curing effects in CP/ROP have been recently considered 

again (see [92] and references therein). 

The photoinitiated CP of renewable monomers (such as limonene 1,2-oxide and α-pinene oxide) 

was recently discussed ([93] and references therein). 

3. Development of a New Strategy and Design of Novel Cationic Photoinitiating Systems 

3.1. The New Strategy 

To avoid the drawbacks inherent to the photosensitization of cationic PIs in CP or the particular 

character of the FRPCP reactions observed so far (one kind of initiating radical cation PS•+ (Scheme 4) 

or cation R+ (Scheme 5) for one kind of PS in the PIS as recalled above), we have defined a novel 

strategy using the FRPCP procedure and being able to lead to the formation of the same initiating 

cation whatever the starting light absorbing compound (referred here as a dye D). This has been 
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realized using a dye, a silane R3SiH such as tris-(trimethylsilyl)silane ((TMS)3SiH), or  

N-vinylcarbazole NVK) and an iodonium salt (such as Ph2I+, referred to as Iod) [94–97]. Upon light 

exposure, the excited dye (D*) (Scheme 6) reacts with Iod thereby generated a phenyl radical that 

interacts with R3SiH; the formed silyl radical R3Si• is oxidized by Iod into a silylium cation R3Si+. 

Therefore, at any wavelength (this only depends on D), the same R3Si+ cation is produced. The 

criticism concerning a possible oxygen inhibition is ruled out as silyl radicals consume oxygen, 

scavenge all peroxyl radicals and regenerate new silyls (oxygen becomes a mediator in the initiating 

radical production). N-vinylcarbazole (NVK) appeared as a cheap and efficient alternative to the silane: the 

same mechanism is observed except that Ph• adds to the NVK double bond (and formed Ph-NVK•) instead 

of abstracting a hydrogen atom on the silane. These three-component PISs (D/Iod/(TMS)3SiH or 

D/Iod/NVK) are really versatile and allows many possibilities as it will be seen below. 
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Scheme 6. Photoinitiating systems using silyl radicals. 

The decomposition of iodonium salts in the presence of a dye is largely encountered in the 

literature. The electron transfer reaction is usually fast as resulting from highly favorable free energy 

changes, but, unfortunately, back electron transfer reactions can more or less reduce the yield of 

electron transfer and decrease the overall efficiency of the system. The phenyl/silane hydrogen 

abstraction reaction is also a fast process. The silyl/iodonium salt interaction (contrary to that of 

silyl/sulfonium salt) is largely favorable. The silylium efficiently adds to the epoxide. Thus, the 

starting point of the research consists in looking for dyes D exhibiting suitable absorptions (from the 

UV to the red region) together with molar extinction coefficients ε as high as possible. In fact, the 

initiation step of a photoinduced CP is dependent on the amount of absorbed energy Iabs and the 

initiation quantum yield Φi:Iabs is linked to the incident light intensity Io of the light source and the ε of 

the dye (and obviously, path length l and reactant concentration c) according to Iabs = I0 (1 − 10−εcl) and 

the Φi term exhibits a rather complex dependence on the rate constants of the different excited state 

processes involved.  

In addition to the use of already known dye structures [5], the development of highly absorbing 

dyes in the 380–700 nm wavelength range has required a search for novel skeletons, a specific design 

of novel architectures with a strong coupling of the molecular orbitals or the quest for compounds 

existing in other application areas. 
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Such dyes include (see a review in [27]): (i) modified known compounds such as ruthenium,  

iridium, iron and copper salts, titanocenes, benzophenones, thioxanthones, Michler’s ketones, 

thiopyrilium salts, metal carbonyls, decatungstates, polyoxometalates; (ii) commercial compounds 

such as violanthrone; (iii) available derivatives of structures in other areas such as thiophenes, 

dihydropyrenes or squarianes; and (iv) synthesized novel skeletons such as bi- and tri-functional 

compounds with an extending delocalization. 

These dye/silane (or NVK)/iodonium salt combinations can easily work in very different experimental 

conditions. They all allow FRPCP under air. In the absence of silane or NVK, they initiate CP. Various 

aspects of such reactions as well as the characteristics of the PISs are the following. 

3.2. Examples of What Can Be Achieved  

Use of Polychromatic lights. Polychromatic as well as monochromatic lights can be used. They 

range from the UV to the red. Possible sources are Hg, Xe-Hg or Xe lamps (band emission spectra or 

continuous spectra), laser diodes and LEDs but also low intensity household lamps (e.g., halogen  

lamps, fluorescent bulbs). With the best PISs, the conversions of (3,4-epoxycyclohexane)methyl  

3,4-epoxycyclohexylcarboxylate (EPOX) used as a benchmark cyclic monomer for ROP are above 

60% and can even reached 80%–90% under air upon exposure to various visible light sources having  

light intensities of 50–100 mW/cm−2. Competitive-reference PISs are ketone/Iod in the UV, phosphine 

oxides/Iod in the violet range, camphorquinone/Iod (optionally with alcohol) in the blue region, 

xanthene dye/Iod in the green range or polymethine/Iod in the red region. None of these systems is 

better than the best dye/Iod/silane (or NVK) combinations gathered in [27] for the ROP of 25 µm 

EPOX films in contact with air under exposure to relatively low light intensity sources. Many details 

can be found in a recent review [27]. Nice recent and particular examples (Figures 1–3) include the 

ROP reactions of EPOX under air in the presence of suitable PISs upon exposure to various LEDs or 

laser diodes (80–100 mW/cm2): 

- violet LED: dyes are, e.g., boranyls [98], benzophenones, thioxanthones, or benzoin ethers, 

phenylene, moiety coupled scaffolds [99–102] 

- blue LED: dyes are, e.g., indanediones [103], pyrromethenes [104], naphtalimides [105], Ru [106] 

or Ir [107], complexes (Figure 1) 

- green LED: dyes are, e.g., Ru [108] or Ir [109], complexes, diketopyrrolopyrroles [110] (Figure 2) 

- red LED: dyes are, e.g., pentacenes [111], violanthrones [112], perylenes [113], anthraquinones [114] 

(Figure 3) 

Panchromatic PIs. The design of multicolour PI and panchromatic cationic formulations can also 

be achieved using a broad absorption band possessing dye (e.g., dihydropyrenes [115]) (Figure 4) or a 

careful mixing of several well adapted dyes, such as indanediones [103] and squaraines [116] (Figure 5). 

Photoinitiator Catalysts. The elaboration of photoinitiator catalysts PIC was also described. In that 

case, the starting photoinitiator (dye) is recovered (and thereby not consumed) during the polymerization 

thanks to the use of adequate dyes as metal-based photocatalysts (MPC, e.g., [107–109]) or metal-free 

photocatalysts (organic photocatalysts OPC, e.g., pentacenes [111]) where redox reactions allow such 

behavior (Figure 6). 
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Figure 1. (A) UV-visible absorption spectra of ND10 and ND4; (B) Photopolymerization 

profiles for EPOX under air in the presence of (i) ND4/Iod/NVK (0.5%/2%/3%, w/w/w) 

upon the laser diode at 457 nm (curve 1) exposure; and (ii) ND10/Iod/NVK (0.5%/2%/3%, 

w/w/w) upon the laser diode at 457 nm exposure (curve 2) [105]. 
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Figure 2. (left part) Photopolymerization profiles of EPOX under air in the presence of 

DPPDT/Iod (0.5%/2%, w/w) upon the halogen lamp (a) and laser diode at 532 nm (b); 

DPPDT/Iod/NVK (0.5%/2%/3%, w/w/w) upon the laser diode at 532 nm (c); (right part) 

Steady state photolysis of DPPDT/Iod in tetrahydrofuran upon the laser diode at 532 nm 

exposure under air, respectively; [Iod] = 3.1 × 10–2 M. from [110]. 

Renewable Monomers. The photopolymerization of renewable cationic monomers, that can be 

easily expected, has been demonstrated [117] (see also Figure 7). Tack-free coatings are formed. In 

any case, a decrease of the band at ~790 cm−1 (due to the epoxy ring) is monitored, whereas an 

increase of the IR absorption band of the polyether network is observed in the 1050–1150 cm−1 range.  

Polymerization of LDO, ELO and ESO. Due to the very excellent photosensitivity of the newly 

developed dye/silane (or NVK)/iodonium salt combinations, the irradiation under extremely soft irradiation 

conditions or sunlight exposure becomes feasible which should open new opportunities [23,117].  

Figure 7 shows the epoxide consumption and the formation of the polyether network under a 

household fluorescent bulb (~10 mW/cm−2) or sunlight (<5 mW/cm−2) exposure under air. In outdoor 
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conditions, tack-free coatings are obtained with LDO, ELO and ESO. As before, the polymerization 

profiles of these monomers are also clearly improved by the presence of a silane, e.g., for ELO, a  

tack-free coating is obtained within only 9 min in the presence of a silane (TTMSS) vs. 50 min in the 

absence of the silane [23]. 
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Figure 3. (left) UV-vis absorption spectrum for OBN and (right) Cationic 

photopolymerization upon red lights using an anthraquinone derivative (OBN) as 

photoinitiator: Photopolymerization profile of EPOX under air in the presence of  

(1) OBN/Iod/NVK (0.5%/2%/3%, w/w/w) upon the halogen lamp exposure; and  

(2) OBN/Iod/NVK (0.5%/2%/3%, w/w/w) upon the laser diode at 635 nm exposure [114]. 
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Figure 4. A multicolor photoinitiator for cationic polymerization and interpenetrated 

polymer network synthesis: 2,7-Di- tert—butyldimethyldihydropyrene (DHP) [115]: 

Photopolymerization profiles of EPOX under air using the dihydropyrene DHP/Iod/NVK 

photoinitiating system (1%/2%/3% w/w) upon irradiation with: (a) a laser diode (473 nm); 

(b) a laser diode (457 nm); (c) a halogen lamp; (d) a laser diode (635 nm); (e) a laser diode 

(405 nm); and (f) a laser diode (532 nm). 
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Figure 5. Panchromatic photopolymerizable cationic films using indoline and squaraine  

dye based photoinitiating systems [116]: (A) absorption spectra for the dyes and  

(B) Photopolymerization profile of EPOX under air in the presence of (1) D102/Iod 

(0.5%/2%, w/w) upon the halogen lamp exposure; and D102/Iod/NVK (0.5%/2%/3%, 

w/w/w) under the (2) halogen lamp; (3) laser diode at 457 nm; (4) laser diode at 473 nm.  

For mixture of photoinitiators (D102/SQ02), polymerization profiles are given in [116]. 

IPN synthesis. As most of the proposed dye/silane (or NVK)/iodonium salt PISs are also able to 

generate radicals, the synthesis of interpenetrating polymer networks (IPN) through the concomitant 

photopolymerization of epoxide/acrylate blends (one-step hybrid cure) was efficiently carried out 

using suitable dyes, e.g., naphthalene, derivatives [118] (Figure 8). 

(A) 

(B) 
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Figure 6. Tunable organophotocatalysts for polymerization reactions under visible lights: 

(a) reaction scheme for OPC and (b) polymerization profiles of EPOX under air upon:  

a red LED bulb irradiation in the presence of: (1) Pent/Ph2I+ (0.5%/2% w/w); and  

(2) Pent/(TMS)3Si-H/Ph2I+ (0.5%/3%/2% w/w) [111]. 
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Figure 7. IR spectra recorded in the course of a photopolymerization of ELO; initiating 

system: BPSK/Ph2I+/TTMSS (1%/2%/3% w/w) upon a fluorescent bulb irradiation (from  

t = 0 to 30 min); under air [23]. 
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Figure 8. Interpenetrating polymer network production. Design of high performance 

photoinitiator (NA3) at 385–405 nm based on the naphthalene scaffold [118]: (left) 

absorption spectrum of NA3 and (right) Photopolymerization profiles of an 

EPOX/TMPTA blend (50%/50%, w/w) in the presence of NA3/Iod/NVK (0.5%/2%/3%, 

w/w/w) in laminate upon the halogen lamp exposure. 

Metal Nanoparticles. Finally, the simultaneous in-situ incorporation of metal nanoparticles (e.g., 

Ag) from a metal salt in the photopolymerizable cationic film using suitable PISs based on, e.g. 

malonates [119] was achieved (Figure 9). Other suitable reaction strategies have been very recently 

proposed: they allow the photochemical incorporation of nanoparticles NPs where the starting metal source 

does not exist as a salt: for example, Ti NPs have been generated in a photopolymerized EPOX matrix. 

Ph.
Light Ph2I+

+Mal Mal*
NVK

Ph-NVK
Ag+.

Ph-NVK+ Ag  

Figure 9. Push-pull malonate and malonitrile based dyes in photoinitiating systems for 

ROP and in-situ incorporation of silver nanoparticles in EPOX matrixes upon a Xe lamp 

exposure: (a) TEM micrograph and (b) chemical scheme for the formation of Ag(0)NP [119]. 
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4. Conclusions 

This paper shows that CP and FRPCP of cyclic monomers (here the ROP of a representative 

diepoxide) can now be easily triggered at any wavelengths, under air, even under low light intensity 

sources (LEDs, household lamps...), using more or less viscous monomer formulations, in the presence 

of novel photoinitiating systems. These recent results have likely introduced a breakthrough in the 

development of cationic PISs under visible lights, which was relatively restricted so far (although 

some interesting and successful results have been obtained with the conventional PISs as recalled 

above). Up to now, 400–700 nm light induced polymerization reactions were conveniently achieved 

mostly when using radical monomers. Therefore, although they present some drawbacks (e.g., oxygen 

inhibition, shrinkage), radical matrices were required in many applications aiming at employing soft 

irradiation conditions, laser lines or LEDs. According to the degree of performance attained, it seems 

today that cationic matrices can be used with the same success in these experimental conditions 

together with decisive arguments (e.g., no oxygen inhibition and less shrinkage). This certainly opens a 

lot of promising novel applications in various areas. 
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