Supplementary Materials: A Fast and Robust UHPLC-MRM-MS Method to Characterize and Quantify Grape Skin Tannins after Chemical Depolymerization

Lucie Pinasseau, Arnaud Verbaere, Maryline Roques, Emmanuelle Meudec, Anna Vallverdú-Queralt, Nancy Terrier, Jean-Claude Boulet, Véronique Cheynier and Nicolas Sommerer

Table S1. Correction values

	Correction Value
Catechin upper unit	2.8
Epicatechin upper unit	2.8
Epigallocatechin upper unit	11.6
Epicatechin gallate upper unit	2.4

Calculation of correction values

With the UV detection, the molar ratio (R) between $E C_{\text {term }}$ and the upper unit (X_{up}) is calculated:

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{ECterm}}{\text { Xup }} \rightarrow \mathrm{UV} \text { detection } \tag{S1}
\end{equation*}
$$

With the MRM detection, the same ratio (R) has to be obtained. So, the theoretical area of the upper unit is calculated (area Xuptheo) compared to the real obtained area of ECterm in order to have the same ratio (R) than in UV:

$$
\begin{equation*}
\text { Area Xuptheo }=\frac{\text { area ECterm }}{R} \rightarrow \text { MRM detection } \tag{S2}
\end{equation*}
$$

Then, the correction value to be applied to the upper unit (correction value $X_{u p}$) corresponds to the ratio between the theoretical area of the upper unit (area $X_{\text {uptheo }}$) and the experimental area obtained with MRM detection of the upper unit (area Xupexp):

$$
\begin{equation*}
\text { Correction value } \mathrm{x} \text { up }=\frac{\text { area Xuptheo }}{\text { area Xupexp }} \rightarrow \text { MRM detection } \tag{S3}
\end{equation*}
$$

Table S2. Concentration levels ($\mu \mathrm{mol} / \mathrm{L}$) for each compound in the standard solutions used for method validation.

	ECup	EGCup	ECGup	$\mathrm{C}_{\text {term }}$	ECterm	EGCterm	ECGterm
	(1) Solution of White Grape Skins at $20 \mathrm{~g} / \mathrm{L}$						
A (400 $\mu \mathrm{L}$ of (1))	n.d	572.0	n.d	n.d	n.d	n.d	n.d
B (300 $\mu \mathrm{L}$ of (1))	n.d	429.0	n.d	n.d	n.d	n.d	n.d
	(2) Solution of 50/50 Grape Skins/Seeds at $20 \mathrm{~g} / \mathrm{L}$ and (3) Commercial Standard Solution of EGC at $1 \mathrm{~g} / \mathrm{L}$						
$\mathrm{C}(400 \mu \mathrm{~L}$ of (2))	3339.2	339.3	320.8	1845.1	1709.8	n.a	384.0
$\mathrm{D}(200 \mu \mathrm{~L}$ of (2) $+164 \mu \mathrm{~L}$ of (3))	1669.6	169.6	160.4	922.5	854.9	400.0	192.0
$\mathrm{E}(50 \mu \mathrm{~L}$ of (2) $+41 \mu \mathrm{~L}$ of (3))	417.4	n.a	40.1	230.6	213.7	100.0	48.0
$\mathrm{F}(10 \mu \mathrm{~L}$ of (2) $+2 \mu \mathrm{~L}$ of (3))	n.a	n.a	n.a	46.1	42.7	5.0	9.6
$\mathrm{G}(1 \mu \mathrm{~L}$ of (2))	n.a	n.a	n.a	n.a	4.3	n.a	1.0

[^0]
[^0]: n.d: non detected; n.a: not applicable.

