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Abstract: This review studies biofuel expansion in terms of competition between conventional and
advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more
expensive than current biofuels because products are not yet cost competitive. What is overlooked
in the discussion about biofuel is the contribution the industry makes to the global animal feed
supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million
metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate
impact on the feed market contributing to just 8–9 million tonnes of protein meal output a year.
By economically displacing traditional feed ingredients co-products from biofuel production are
an important and valuable component of the biofuels sector and the global feed market. The return
of co-products to the feed market has agricultural land use (and GHG emissions) implications as
well. The use of co-products generated from grains and oilseeds can reduce net land use by 11%
to 40%. The proportion of global cropland used for biofuels is currently some 2% (30–35 million
hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation
of feedstocks declines to 1.5% of the global crop area.
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1. Introduction

In the last 35 years global energy supplies have nearly doubled but the relative contribution
from renewables has increased from 13% to 19%, including about 9.3% from traditional biomass and
about 9.7% from modern renewables (Figure 1). The contribution of “modern” renewables (e.g., solar,
wind, biofuel) is still a marginal component of total global renewable energy supply, however, they
are continuously growing. A major impetus for the development of bioenergy has been the search for
alternatives to fossil fuels, particularly those used in transportation [1].

The transport sector is responsible for about 20% of world total energy use. Transport biofuels are
currently the fastest growing bioenergy sectors, even though they represent around 3%–4% of total
road transport fuel and only 5% of total bioenergy consumption today. Most capacity expansion and
financing need is expected for next generation biofuels in the longer term and strong competition from
other renewable energy projects with lower risks (wind and solar) can be experienced. Liquid biofuels
for transport are generating the most attention, although just a small fraction of biomass is used
globally for biofuels production at present [1].
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Figure 1. Estimated renewable energy share of global final energy consumption in 2011. Source: [2].

Many countries support production and use of liquid biofuels for transportation to enhance
domestic energy security, spur economic development and reduce emissions of greenhouse gases
(GHG) and other pollutants. There is an increased focus on advanced biofuels in the past few years.
The actual production volumes were not available, the installed production capacity values shows
that the global advanced biofuel production capacity increased from 1.58 billion litres in the year 2010
to 4.21 billion litres in the year 2013 [3]. While considerable research and development is under way
to commercialize new types of biofuel and feedstocks, the two primary biofuels produced globally
today—ethanol and biodiesel—are predominantly derived from agricultural commodities, such as
grain, sugar and oilseeds.

Currently, around 80% of the global production of liquid biofuels is in the form of ethanol.
In 2012–2014 on average global fuel ethanol production reached 108 billion litres and global biodiesel
production amounted to 28 billion litres (Figures 2 and 3). The two world’s top ethanol producers, the
United States and Brazil, accounted for around 75% of total production. Biodiesel production is far less
concentrated than ethanol. The European Union remained the centre of global biodiesel production,
with 12 billion litres representing 43% of total output. Global expansion of biofuel production is
projected to continue during the next decade, although at a slower pace than over the last half decade.
Ethanol production in the United States is projected to be relatively flat over the next decade due
to the ethanol blend wall and declining gasoline use. Most of the additional ethanol production is
expected to take place in Brazil [4]. Indonesia will surpass the United States and Brazil in the latter
years of the outlook period to become the second largest biodiesel producer behind the European
Union. Global ethanol and biodiesel production are both expected to expand to reach, respectively,
almost 135 and 39 billion litres by 2024 [5]. In 2040 the share of biofuels in road transport fuels would
range—depending on policies—from 5% to 18% globally, from 11% to 31% in the European Union and
from 11% to 29% in the United States [6].
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Figure 3. Word biodiesel production, average 2012–2014 [5].

The share of bioethanol in total grains demand—i.e., corn, wheat and other coarse grains—is about
6% of global production. The bulk of the worldwide use of grains in alcohol production comprises
maize in the USA and China. However, an increase in the offtake of wheat for fuel ethanol can also be
observed in Canada and the European Union. The share of biodiesel in rapeseed, soybean and palm
oil demand is around 11% of global vegetable oil production. The share of waste biodiesel feedstocks
such as animal fat and used cooking oil increased to 15% in total biodiesel output [7].

Increased biofuel production has led to criticism and concerns about food availability while it
is feared that rising demand for agricultural land will lead to deforestation, grassland conversion
and increased Greenhouse Gas (GHG) emissions from these land use changes. The main criticism
is based on expected impacts of biofuel production following the introduction of dedicated biofuel
targets and policies [8,9]. Most models were developed to evaluate agriculture or climate policies
and were later adapted to incorporate biofuel production [9,10]. Early applications did not consider
generation of co-products (co/by-products of the biofuel production process which are mostly used
as animal feed) while second-generation biofuel production technology, at least in early applications,
was not included [10,11]. Other restrictions include limited ability to adjust to accelerations in
yield improvement or to changes in crop rotation [12]. Central to the debate on the impact of
biofuel production is the way increased biomass requirements are to be met by area expansion, yield
improvement or by increased cropping intensity. While the exact consequences of these limitations
remain unclear economic model impact assessments of biofuel policies should be considered with care.

Following changes in biofuel policies a strong expansion in biofuel production was observed in
the USA, the EU, China, and many other countries. These increases, however, were not sufficient to
fully satisfy biofuel policy objectives in the USA and the EU. Further expansion of biofuel production
is expected in the USA, Brazil, Argentina, and the EU. Co-product generation in early biofuel impact
assessments was ignored leading to an overestimation of land requirements and GHG emissions.
The output of feed co-products is relatively high in the USA, the EU and China due to the large share of
grains used in ethanol production with high feed yields. It is low in Brazil where ethanol production is
dominated by sugarcane which generates no feed co-products. Co-product yields are low for rapeseed
and soybean used in the biodiesel industry. Estimates on impacts of biofuel production often use
models with limited ability to incorporate economic and environmental implications by ignoring
generation of co-products from biofuel production. Significant research and development efforts are
under way to commercialize “second generation” feedstocks and biofuels, however, these are unlikely
to be produced in quantity in the short term. Furthermore, the co-products from many of these new
feedstocks are not likely to have applications in the animal feed market [4,13].

The review is organized as follows: first, it describes bioenergy potential including competition
between conventional and advanced biofuels. Next, it presents feedstocks and co-products of biofuel
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production. Furthermore, attributes of co-products are carefully analysed based on economic and
environmental implications of biofuel production. This is followed by materials and methods, and
some conclusions.

2. Results and Discussion

2.1. Bioenergy Potential

The worldwide potential of bioenergy is limited because all land is multifunctional and land
is also needed for food, feed, timber and fibre production, as well as for nature conservation and
climate protection. In addition, the use of biomass as an industrial feedstock (e.g., plastics) will become
increasingly important. At present, some 55 EJ/year of bioenergy are produced globally. Modern
forms of bioenergy in use in 2011 amounted to 23.6 EJ as heat, biofuel and electricity. An additional
31.4 EJ of traditional biomass was used very inefficiently for cooking/heating in poor rural areas,
mainly in Africa [2]. Based on this diverse range of feedstocks, the technical potential for biomass is
estimated in the literature to be possibly as high as 1500 EJ/year by 2050 (Table 1). However, most
biomass supply scenarios that take into account sustainability constraints, indicate an annual potential
of between 200 and 500 EJ/year (excluding aquatic biomass owing to its early state of development),
representing 40 to 100% of the current global energy use [14]. Forestry and agricultural residues and
other organic wastes (including municipal solid waste) would provide between 50 and 150 EJ/year,
while the remainder would come from energy crops, surplus forest growth, and increased agricultural
productivity (Figure 4).

Table 1. Statistical estimates of minimum and maximum values of global bioenergy potential (EJ/year).

Studies Referring to 2050 Low Range High Range

Smeets et al. [15] 215 1272
IEA Bioenergy [16] 50 1500
Dornburg et al. [17] 200 500

IPPC [18] 50 500
Haberl et al. [19] 160 270

Global Energy Assessment [20] 80 140
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Projected world primary energy demand by 2050 is expected to be in the range of 600 to
1000 EJ/year compared to about 500 EJ in 2008. The expert assessment suggests potential deployment
levels of bioenergy by 2050 in the range of 100–300 EJ/year. However, there are large uncertainties
in this potential, such as market and policy conditions, and there is strong dependence on the rate of
improvements in the agricultural sector for food, fodder and fibre production and forest products.
The entire current global biomass harvest would be required to achieve a 200 EJ/year deployment
level of bioenergy by 2050. Scenarios looking at the penetration of different low carbon energy
sources indicate that future demand for bioenergy could be up to 250 EJ/year [21] It is reasonable to
assume that biomass could sustainably contribute between a quarter and a third of the future global
energy mix (Figure 4). The total annual aboveground net primary production (the net amount of
carbon assimilated in a time period by vegetation) on the Earth’s terrestrial surface is estimated to
be about 35 Gt carbon, or 1260 EJ/year assuming an average carbon content of 50% and 18 GJ/t
average heating value [22], which can be compared to the current world primary energy supply of
about 500 EJ/year [14]. All harvested biomass used for food, fodder, fibre and forest products, when
expressed in equivalent heat content, equals 219 EJ/year [23]. The global harvest of major crops
(cereals, oil crops, sugar crops, roots, tubers and pulses) corresponds to about 60 EJ/year and the
global industrial roundwood production corresponds to 15 to 20 EJ/year [24].

Availability of land for non-food crops will be determined by increased yield potential, reducing
losses and wastes along the food chain and lower inputs. However, these volumes will remain limited
relative to total energy and transport sector fuel demand. Limited biomass resources will be allocated
to the sector (materials, chemicals, energy) that is most able to afford them. This will depend on the
price of existing fossil fuel products and the relative cost of converting biomass into substitute final
fuels such as bio-derived electricity, ethanol blends, biodiesel and bio-derived jet fuel. It will also
depend on factors such as cost of alternative fuel and energy sources, government policies including
excise rates, and the emission intensity of each sector. The sustainable use of residues and wastes for
bioenergy, which do not require any new agricultural land and present limited or zero environmental
risks, needs to be encouraged and promoted globally. Several factors may discourage the use of
these “lower-risk” resources. Using residues and surplus forest growth, and establishing energy crop
plantations on currently unused land, may prove more expensive than creating large-scale energy
plantations on arable land. In the case of residues, opportunity costs can occur, and the scattered
distribution of residues may render it difficult in some places to recover them [25]. Whatever is actually
realised will depend on the cost competitiveness of bioenergy and on future policy frameworks, such
as greenhouse gas emission reduction targets. The uptake of biomass depends on biomass production
costs, logistics, and resource and environmental issues [18].

2.2. Competition between Conventional and Advanced Biofuels

Significant development of advanced biofuels is necessary for diversification and decarbonisation
of transport in the longer term. Although a number of projects on 2nd generation bioethanol ended with
the opening of pilot and demonstration plants around the world and in spite of several proclamations,
none of them is operating at the industrial scale. To make this possible, further reductions in processing
costs will be necessary to achieve a product that is competitive with 1st generation bioethanol.
By-products, e.g., lignin separated after pre-treatment procedure can be used to generate energy for
ethanol plant operations or used as a dispersant and binder in concrete admixtures, as an alternative
to phenolic and epoxy resins, or as the principal component in thermoplastic blends, polyurethane
foams or surfactants. A combination of 1st and 2nd generation feedstocks (e.g., corn cobs together
with stover) can eliminate bottlenecks and lead to product competitiveness [26].

Biofuels from dedicated lignocelluloses energy crops on marginal land is likely to be a cost-efficient
contribution. However, extreme territorial and climatic conditions resistant species and varieties are
required. Perennial, herbaceous crops—such as Miscanthus sp., A. donax—may be sustainable because
the annual soil cultivation increases the air’s carbon-dioxide level and these plants can mobilize mineral
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nutrients from the stems and leaves to rhizomes at the end of growing season, reducing the fertilizer
needs. These species can rehabilitate the quality of marginal land [27–30]. Further requirements for
energy plants that growth rapidly produce high biomass without irrigation (high water-use efficiency)
and resistance to pests and diseases [31]. On the other hand, some potential biomass plants, such as
giant reed, have invasive potential widely in riparian areas. Particularly, during the floods along the
rivers, fragments of shoot and rhizome of giant reed can disperse and populate quickly and easily new
habitats [32–34].

Since 2013 advanced biofuels have made good progress, with nine commercial-scale plants
commissioned, seven of these in 2014 and 2015. Policies that mandate blending levels and provide
capital incentives, along with the development of secure local feedstock supply chains, have been
fundamental. New projects may require oil prices around USD 100/bbl or above to be attractive.
There is significant potential to reduce the costs but a sustained long-term policy commitment would
be needed, which may face risks from the lower oil price environment [35].

IEA [25] refer to the higher water consumption in the production of advanced compared with
conventional biofuels, referring specifically to lignocellulosic ethanol. However, the major part of
water consumed would be for feedstock cultivation, so that biofuels from wastes and residues should
have a reduced water footprint. Local impacts on water quality and availability should nevertheless be
monitored [36]. The processing of feedstocks into biofuels via advanced biochemical or thermochemical
conversion routes can require relatively high energy inputs. However, other environmental impacts
resulting from the processing of biomass through advanced conversion technologies such as water
consumption in processing should be investigated and if necessary be addressed by safeguards [35].

Even as several conventional biofuel production facilities closed their doors, several advanced
biofuel production facilities came on line in 2014. These included three new biorefineries using
cellulosic plant material (predominantly corn stover) in the United States: POET-DSM, DuPont,
and Abengoa. In Brazil, three commercial, 2nd generation biofuel projects started operation:
GranBio commercial cellulosic ethanol plant, Raizen/Iogens plant, and Solazyme-Bunge plant.
The advanced biofuels industry also faced challenges, however. US-based Kior filed for bankruptcy
and decommissioned its commercial-scale cellulosic biofuel plant in Mississippi. In Europe, EU
policy requires that every Member State obtain 10% of its transport fuel from renewable sources by
2020, however, new legislation limits the contribution of biofuels derived from sugars, starch, and
oil crops due to sustainability concerns, which are mainly about indirect land-use change. This, in
combination with amendments to some national biofuel policies, has raised uncertainty among
producers. So development of advanced biofuels has lagged due to the lack of EU-wide policy support,
although some Member States have started to enact national policies, for example Italy announced
a mandate of 0.6% advanced biofuels by 2018 [37].

Cellulosic biofuels may use crop residues or other wastes, but most plans for these biofuels rely
on planting and harvesting fast-growing trees or grasses. At least some direct competition with food is
still likely because such trees and grasses grow best and are most easily harvested on relatively fertile
lands already dedicated to crops. Using cropland to grow trees and grasses rather than food crops for
biofuels will probably not reduce, let alone eliminate, competition for cropland. Trees and grasses will
have a hard time producing more biofuels per hectare than today’s crop-based biofuels. Alternatively,
cellulosic biofuels might rely on harvesting existing forests or producing fast-growing trees or grasses
on the world’s grasslands or woody savannas. Some researchers also point to abandoned farmland
as a candidate for bioenergy production that avoids competition for land. But abandoned farmlands
typically regenerate into forests, woodlands, or grasslands if left alone, which provide climate benefits
that are already assumed and counted in climate change assessments. These benefits would be
sacrificed by using that land for bioenergy. Although there is capacity to increase plant production
on each hectare by increasing yields or by enhancing use of lands that are degraded, however, that
capacity is already needed to meet rising demands for food and wood products while preserving
ecosystems and their carbon. There are some biomass feedstocks that avoid the competition for land,
namely various forms of wastes and residues. In the long run, such wastes might contribute modestly
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toward replacing some uses of fossil fuels. Phasing out the dedicated use of land to generate bioenergy,
particularly biofuels, would reduce the food gap and, perhaps even more importantly, keep it from
greatly expanding [38].

Searchinger and Heimlich [38] defined the dedicated use of land for bioenergy as the production
of bioenergy that sacrifices alternative outputs from land. This narrow definition treats bioenergy
production in isolation. For instance, some feedstocks (such as soybeans and rapeseed) for biofuel
production would not fit into this definition because the land produces protein as animal meal as the
main product and, secondarily, oil (either as cooking oil or a biofuel feedstock as biofuel products).
That is, biofuel production from oil would not cause dedicated use of land for bioenergy production.
The authors certainly did not promote bioenergy production from those feedstocks. Also, “land” can be
very different in terms of suitability and productivity for different vegetation types. Land that may not
be suitable for row crops could be suitable for growth of other vegetation types because of differences
in nutrients, water, climate, and other requirements. Further, the authors treated marginal/degraded
lands as not existing [39].

Searchinger and Heimlich [38] correctly pointed out that directing wastes like crop residues and
municipal solid waste to biofuel production is a good use of these resources. They raised concerns,
however, that dedicated cellulosic crops are not a promising option for a biofuel feedstock because
they require land and do not have sufficiently high yield. Some of the studies on this topic indeed
indicate that doubling of currently low cellulosic biomass yields is achievable [40]. Reliable reports
indicate that significant areas of marginal lands exist that could be used to produce cellulosic crops
that are currently underutilized [41]. Many studies have identified land where cellulosic biomass can
be grown to avoid competition between cellulosic biomass and food production [42,43].

Conventional biofuels are currently produced in many countries and are based on well-known
processes and feedstock. Apart from sugarcane ethanol, conventional biofuels will hardly be
sustainable in the future as large-scale production would take away feedstock and land from food
production and forestry. In addition, they are rather expensive and offer only limited reductions in
greenhouse gas (GHG) emissions compared to fossil fuels.

Advanced biofuels promise to be more sustainable, with higher emissions reductions. They are
based on biomass resources and land not used for other primary needs, such as food production
and farming. Feedstock includes lignocellulosic residues from agriculture and forestry, fast- rotation
non-food crops (possibly grown on marginal, non-arable land), organic fraction of urban waste and
micro-algae. The conversion of these resources into biofuels requires processes that are currently under
commercial demonstration or under development, with small plants in operation and large plants
under construction or planned all over the world.

2.2.1. Giant Reed for Biofuels

Non-food energy crops, such as woody plants (poplar, willow, Eucalyptus sp.) or herbaceous
(Miscanthus sp., switchgrass or giant reed), is produced for bioenergy, biogas and biofuel
purposes [44,45]. Arundo donax L. (common name “giant cane” or “giant reed”) is a perennial,
rhizomatous species which has been introduced around the world by humans as an ornamental/crop
plant. Giant reed is a sterile plant without any viable seeds, it can be propagated vegetatively from the
rhizome or stems [10,35]. Propagules can be produced also by hydroponic or in vitro micropropagation
methods [36]. Among the promising biomass plants, A. donax has high biomass yield per hectare
and can be adapted to different types of soil and water condition [31,46]. It has lower agronomic
input requirement than traditional crops [47]. It can be a good candidate to restore and recover soil
ecosystem [48,49] and has ability to remediate the contaminated soil and water [50,51]. There is
increasing commercial demand for giant reed production [9,10], however, there are limited data
available about the production of biogas or bio-ethanol from giant reed.

From the second half of the 1990s, giant reed is regarded as one of promising plants of the
biomass industry due to high biomass production per hectare [10,37]. For example in Central Italy,
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a 12-year field trial without irrigation could produce 38 tonnes dry matter per hectare per average
year [38] and 20 tonnes dry matter with no fertilization on sandy soil [39]. For its cultivation low
agronomic and energetic input is required [10,40]. Due to the high biomass per hectare and chemical
composition of giant reed (Table 2.) large amounts bio-ethanol can be produced. Williams et al. [49] and
Jaradat [50] reported same bio-ethanol production (11,000 L¨ha´1) in case of 45 tones ha´1 biomass
yield. According to Corno et al. [14] 12,960–15,228 L¨ha´1 bio-ethanol can be produced, which is higher
than reported from other energy crops for example than Miscanthus x giganteus [31].

Table 2. Chemical composition of A. donax.

Hemi-Cellulose (%) Cellulose (%) Lignin (%) Ashes (%) References

24.2 41.6 24.9 3.2 [52]
34.8 20.9 23.0 n.d. [53]

25.61 ˘ 0.07 33.85 ˘ 0.06 24.02 ˘ 0.04 5.04 ˘ 0.03 [54]
24.4 ˘ 0.52 39.1 ˘ 0.25 19.2 ˘ 3.25 4.2 ˘ 0.67 [55]

14.5 39.6 24.3 5.3 [56]
35.27 ˘ 2.80 31.10 ˘ 1.03 18.49 ˘ 0.10 n.d. [57]

Source: Respective authors’ data.

Despite increasing interest in giant reed, propagation and production systems should be optimised
reducing costs of bioenergy and bioproducts production to enhance economic feasibility. For biofuels
production, it is necessary to improve sugar yield and reduce lignin content, therefore there have
been more studies concerning various pretreatments of giant reed. Energy inputs and efficiency of
converting giant reed to bioenergy and bioproducts are significantly influenced by the composition
characteristics, such as minerals, cellulose, hemicelluloses, lignin, moisture content and recalcitrant
compounds. It can be cultivated almost in all climatic zones. Cold seems to be a limiting factor,
therefore researchers have started to develop cold-resistant giant reed varieties [36,41]. It has invasive
potential in Mediterranean or warmer climates, so in case of establishment of giant reed plantations
surrounding water conservation areas have to be avoided to reduce potential hazards.

2.2.2. Algae for Biofuels

Algae have been cultivated commercially since the 1950s, mainly for the pharmaceutical industry,
but have only recently gained attention as a potential source of biomass. Third-generation biofuel
usually means biofuel from algae. To date, there have been numerous studies of algae and other water
based biomass in order to identify strong candidates for biomass accumulation rates as well as lipid
content for production of biodiesel. Marine and aquatic biomass can be a useful alternative source of
biomass that can be used to produce a wide range of biofuels for commercial use. Primarily, growth of
algae for the production of oils and energy conversion has focused on microalgae. Algae have potential
as a feedstock for biofuels. Depending on their composition, different algae species may be suitable
for a range of biofuels. Algae promise a potentially high productivity per hectare, could be grown on
non-arable land, can utilise a wide variety of water sources (fresh, brackish, saline and wastewater),
and potentially recycle CO2 and other nutrient waste streams. However, algae cultivation faces several
challenges, related to availability of locations with sufficient sunshine and water, required nutrient
inputs, and oil extraction [58].

Algae feedstocks for alternative fuels production are not economically competitive with fossil
fuels at the present time. Furthermore, it has not yet been demonstrated that algae production systems
offer improved sustainability characteristics. Like fossil fuel, algae fuel releases CO2 when burnt, but
unlike fossil fuel, algae fuel and other biofuels only release CO2 recently removed from the atmosphere
via photosynthesis as the algae or plant grew. Additionally, algal biomass productivity per hectare
could eventually be higher than for terrestrial energy crops. Based on the high level of innovation
demonstrated within the algal biofuels industry in just the past decade, it is likely that new technologies
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will continue to be introduced in the future. In fact, the introduction of these innovations will be critical
if the sector is ultimately going to achieve commercial success [59,60].

Growth of aquatic and marine biomass is not without challenges because maximum growth rates
of the microorganisms typically occur under very specific conditions. Furthermore, open pond algal
systems are susceptible to contamination from various airborne microorganisms that can decrease
overall productivity. But the main concern is the ability to separate algae from water, which due
to their very dilute nature, can be expensive and inefficient. However, it is feasible to use algae as
a means for tertiary wastewater treatment in order to utilize trace nutrients such as phosphorous- and
nitrogen-containing compounds, or can be used at industrial processes as a way to absorb carbon
dioxide by entraining algal cultures to gaseous exhaust streams [61].

Photosynthetic microorganisms such as microalgae and cyanobacteria could serve as an attractive
feedstocks because they have higher growth rates requiring much less land area compared to plants
and they can thrive in areas that cannot usually support mainstream agriculture. Algae can be
cultivated at sea or on non-arable land, so there is no competition with current food production [62].
However, despite significant progress, reliable and cost-effective production of lipid- and protein-rich
algal biomass have not been demonstrated at scales > 10 m2. Productivity and cost remain the two
fundamental barriers to commercialization [63]. Commercially viable production of biofuel from
algae will depend on effective strategies to generate high-volume, low-value biofuel along with
high-value co-products.

Several companies and government agencies are funding efforts to reduce capital and operating
costs and make algae fuel production commercially viable. Commercial cellulosic biofuel production
began in the US in 2013, while algae biofuels are not yet produced commercially [6,37].

Recently, microalgae have emerged as a source than can play the dual role of bioremediation of
wastewater and generation of biomass for biodiesel production. Growing microalgae on different
types of wastewaters has been studied over the past decades. The success of such studies depends on
the performance of the selected microalgae strains [64]. Moreover, the use of wastewater treatment
becomes an economically attractive alternative [65]. Various types of algal biofilm reactors integrated
with wastewater treatment were developed to overcome current limitation of algal biofuel production.
So far the integration of algal bioreactor and wastewater has been limited to municipal wastewater
while only a few agricultural wastewater have been used for algal bioreactors. However, algal biofilm
reactors integrated with wastewater would have high potential for high productivity of algal biomass
for biofuel and efficient wastewater treatment if various conditions are optimized [66]. In addition,
a prospective life cycle assessments (LCA) of two algal systems were studied. The LCA impact results
conclude that algal system producing biodiesel, animal feed, and succinic acid could be beneficial to
the environment compared to that algae system that produces biodiesel and animal feed. Thus algae
system could be a potential alternative or additional renewable system to mitigate environmental
impact [67].

2.3. Feedstocks and Co-Products of Biofuel Production

Sugarcane is the predominant feedstock for ethanol production in tropical regions (Brazil).
In temperate areas, ethanol is mostly made from cereals (maize in the USA and China, wheat in
the EU and China). Main biodiesel feedstocks are soybean (Brazil, USA), rapeseed (EU), and oil palm
(Indonesia and Malaysia). There are other feedstocks of minor importance, such as castor beans in
Brazil, sunflower in the EU and jatropha in Mozambique, but these are not included in the analysis.
Crop yield is high for sugarcane (Brazil, South Africa), sugarbeet, and oil palm. Cereal yields are
high for corn in the USA, but less so for corn and wheat in the EU and China. Rapeseed and soybean
yields are modest. Ethanol yields are highest for sugarbeet, and sugarcane (Brazil). Highest biodiesel
yields were observed for oil palm (Indonesia, Malaysia). Of the four largest sources of biofuels: maize,
sugarcane (bioethanol), soybean and rapeseed (biodiesel), only sugarcane appears to have a secure
future although in the case of maize this will depend on the rate of yield improvement that could be
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achieved. The progressive divide between increase in demand and increase in production suggests that
maize ethanol will lose long-term economic viability, unless the already high rate of yield per hectare
improvement can be accelerated yet further. With the exception of oil palm, the yields of biodiesel crops
(soybean and rape/canola) are too low to contribute significantly to future energy supply. Soybean
and rapeseed produce far too little fuel per unit land area to remain competitive without mandates
and subsidies. However, breakthroughs in engineering accumulation of oil in vegetative tissues may
provide an alternative with the potential of developing a sugarcane that accumulates oil in place of
sugar [68].

The bioethanol share in total grains demand—i.e., corn, wheat and other coarse grains—is about
6% of global production. The fuel ethanol sector accounts for 13% of global maize consumption and
20% of global sugar cane production. An estimated 143 million tonnes of grain is used globally for
ethanol. The US is the global leader in grain ethanol production, accounting for roughly 90% of total
grain use for ethanol, followed by the European Union, China and Canada. Maize accounted for the
majority of grain use for ethanol in the United States and China. European and Canadian producers
principally use wheat and maize for ethanol. About one-third of the volume of grain processed for
ethanol was used to produce animal feed as co-products, thus, the equivalent of two-thirds of the
of grain were used to produce fuel. Feed market impacts of increased maize use for ethanol are
smaller than that indicated by the total amount of maize used for ethanol production because of DDGS.
While ethanol expansion raised demand for maize, DDGS partially offsets the impact on the feed
market. Consequently, the net effect in the domestic feed market of a tonne of maize being used for
ethanol production is less than a tonne. For example, the amount of feed (corn and soybean meal)
replaced by the DDGS represents about 38% (weight basis) of the maize used in the associated ethanol
production process for a given crop year. Furthermore, grain use for ethanol is expected to moderate
in accordance with slowing national mandates in the US and the EU [4].

The biodiesel share of rapeseed, soybean and palm oil demand is around 11% of global vegetable
oil production. The share of waste biodiesel feedstocks such as animal fat and used cooking oil
increased to 15% in total biodiesel output. Continuously growing demand for protein meal has been the
main driver behind the expansion of oilseed production in recent years. This has increased the share of
protein meal in the value of oilseeds and favoured soybeans over other oilseeds. Compared with coarse
grains and other feed ingredients, protein meal prices have stayed relatively high. Global oilseeds
production reached 530 million tonnes (soybean 320 and rapeseed 70 million tonnes) in the 2014/15
marketing year. At the same time soybean production increased faster than production of rapeseed,
sunflower, increasing the sector’s concentration. Vegetable oil production increased to 180 million
tonnes (out of this 60 million tonnes palm oil). Demand growth has slowed in recent times due to
stagnating biodiesel production from vegetable oils in developed countries. Production of rapeseed
in Canada and the European Union is expected to grow much slower than in the previous decade
as high oil-containing oilseeds like rapeseed are more affected by the slower growth in vegetable oil
prices [7]. Vegetable oil use in biofuel production account for about 20 million tonnes a year. Soybean
and rapeseed oil has a 70% share of the total feedstocks used in biodiesel production worldwide.
Oilseeds such as rapeseed or canola and soybeans represent the most common source of vegetable
oil feedstocks for biodiesel production. An estimated 6 million tonnes of rapeseed oil and 7 million
tonnes of soybean oil is used globally in the production of biodiesel, representing roughly 70% of the
total feedstocks used in global biodiesel production [6,7].

Biofuel production from wheat, maize, rapeseed and soybean yields valuable protein-rich
co-products such as rape meal, soymeal and dried distillers' grains and solubles, which can be used as
animal feed in the livestock industry. Because protein-rich crops generally require a relatively large
amount of land for a given output compared with cereal crops, the use of co-products can reduce net
land use. Co-products considered in this study include dried distillers’ grains with solubles (DDGS),
soy meal, rapeseed meal. Palm kernel cake and sugar beet pulp is an important, though low quality
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component of feed concentrates. These co-products are produced in insignificant amounts and are
therefore not considered in this analysis.

Animal Feed Produced from the Ethanol and Biodiesel Industry

Over 90% of the ethanol produced today comes from the dry milling process and 10% from
wet milling. Both the wet and dry mill processes utilize only the starch portion of the corn kernel
for ethanol production. The remaining protein, fat, fiber and other nutritional components remain
available for use as animal feed. In distillers dried grains with solubles (DDGS) or distillers dried grains
(DDG), these remaining nutritional components from the corn kernel are essentially concentrated by
a factor of three, meaning typical distillers grains have at least three times as much protein and fat
as an equivalent amount of corn. If the distillers grains are being fed to livestock in close proximity
to the ethanol plant, the drying step can be avoided and the product is called wet distillers grains
(WDG). An estimated 85% of existing dry mills have the capability to extract corn oil, which is then
sold as an individual feed ingredient or as a feedstock for biodiesel production. In the wet milling
process corn oil from the germ is either extracted on-site or sold to crushers who extract the corn oil.
The remaining fiber, gluten and starch components are further segregated and sold as corn gluten feed
(CGF) or corn gluten meal (CGM). The remaining starch can then be processed in one of three ways:
fermented into ethanol, dried or modified corn starch, or processed into corn syrup.

In fact, one-third of every bushel of grain that enters the ethanol process is enhanced and returned
to the animal feed market, most often in the form of distillers grains, corn gluten feed and corn gluten
meal. These nutrient-dense co-products are fed to beef cattle, dairy cows, swine, poultry, and fish
in nations around the world. In the 2013/14 marketing year, the U.S. ethanol industry produced
an estimated 39 million metric tonnes, the EU 4 and China 2 million metric tonnes of high-quality feed,
namely 41 million tonnes of distillers grains and around 4 million tonnes of gluten feed and gluten
meal. Estimated average potential U.S. DDGS feed consumption is around 62 million tonnes a year,
an amount much higher than the current DDGS supply [16,18]. Corn gluten feed and meal production
has remained relatively constant in the last decade, as the majority of growth in ethanol production has
come from dry mills. As for the wet milling co-products, corn gluten feed is primarily fed to dairy and
beef cattle, while corn gluten meal is used to feed a wide variety of species, including poultry and fish.
Corn gluten meal, which features a very high concentration of protein, is often used as an ingredient
in pet food as well. While much has been learned over the past decade about the benefits of feeding
co-products, much more research is under way at public and private institutions to increase co-product
inclusion levels to best take advantage of their nutritional and economic benefits. While co-products of
the ethanol industry are used by the domestic markets in the EU and China the United States exported
around 10 million tonnes of distillers grains and approximately 2 million tonnes of corn gluten feed
and corn gluten meal—roughly 28% of total U.S. production—in to nearly 50 countries worldwide in
2013. These exports in 2013 were volumetrically equivalent to about 24% of total 2013/14 corn grain
exports. Increases in ethanol co-product exports are supplementing corn export levels, meaning total
exports of corn and corn products continue to trend upward [69,70].

By economically displacing traditional feed ingredients, ethanol co-products effectively reduce
the livestock and poultry industry’s demand for maize and protein meal. The return of co-products
to the feed market has agricultural land use implications as well; at least one-third of every hectare
“dedicated” to ethanol production should actually be characterized as producing feed, not fuel.
Co-products from grain ethanol production are an increasingly important and valuable component
of the biofuels sector and the global feed market. Today, more than 85% of existing dry mills have
the capability to extract corn distillers oil (CDO) in the U.S., which is then sold as an individual feed
ingredient or as a feedstock for biodiesel production. Distillers grains are increasingly recognized as
an extremely efficient feed source. In many cases, co-products are a more effective source of energy
and protein than the ingredients they are replacing in the diet. Distillers grains provide approximately
130%–150% of the energy of an equivalent amount of corn when fed to beef.
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Historically, distillers grains have generally sold at a significant discount to competing feed
ingredients, meaning they are a good value for livestock and poultry feeders around the world.
Over the past several years, DDG prices have consistently sold for 75%–90% of the Central Illinois corn
price and 40% of Central Illinois soybean meal prices. However, in 2011 and 2012, DDGS prices sold
for 83% the price of corn in the Central Illinois reference market but just 47% the price of soybean meal.
Moreover, as prices for soybean meal and other protein feeds spiked in 2013 due to the 2012 drought,
DDGS was increasingly used as a replacement for protein meals. Thus, DDGS prices have averaged
109% the price of corn and 40% the price of soybean meal since the beginning of 2013 until mid-2014.
A tonne of DDGS contains approximately 270 kilograms of protein, while a tonne of high-protein
soybean meal contains 436 kilograms of protein. Thus, DDGS served as a lower-cost means of meeting
protein needs during the period in which the 2012 drought affected global feed supplies [69].

Feed co-product output is expected to grow more slowly in the coming years. However, a number
of new and emerging technologies may change the composition and further improve the quality of feed
co-products. As discussed earlier, about 85% of dry mills today extract CDO from the stillage on the
back end of the process. This CDO can be sold into the feed market (particularly for poultry) or used
as a feedstock for biodiesel. When used as a biodiesel feedstock, CDO displaces higher value fats and
vegetable oils that are typically used in food or feed applications. The feed co-products resulting from
oil extraction practices typically have lower fat and higher protein content than conventional distillers
grains. These “reduced fat” co-products can be more useful for certain species. Dry fractionation
is another technology that may emerge more broadly in the dry mill ethanol industry. Essentially,
this practice allows dry mill ethanol producers to separate the corn germ and other components
from the starch on the front end of the ethanol process. The germ can then be processed and sold
as feed or as feedstock for further processing for other uses. Further, some dry mill facilities are
examining the potential of converting corn kernel fiber to cellulosic ethanol. This process would
reduce the fiber content of DDGS, which may make the product more palatable at higher inclusion
levels for monogastric animals. Additionally, a number of new and emerging ethanol processing aids
are likely to improve the nutritional quality and utility of ethanol co-products. The success of these
new technologies will depend on the demands of the ethanol industry’s customers in the animal feed
market. New technologies and practices promise to change the complexion of the ethanol co-products
market in the years ahead.

The main components used to make biodiesel are soybean or rapeseed oil and an alcohol source,
typically methanol. Seed meal co-products are left after oil is extracted from soybeans and canola oil.
An estimated 80% of soybean seed 60% of rapeseed is left from the extraction process as seed meal,
creating a significant quantity of this important co-product. The oilseed meal can be used immediately
as an animal feed without further treatment. About 7 million tonnes of soybean oil and 6 million tonnes
of rapeseed oil is used in biodiesel production contributing to almost 3.6 million tonnes of rapeseed
meal and 5.6 million tonnes of soybean meal output [6]. Taking into consideration that 210 million
tonnes of soymeal and 40 million tonnes of rapeseed meal is produced a year globally, the co-products
of biodiesel production have a moderate impact on the feed market. The main direct by-product
of biodiesel production is glycerine constituting about 10% of these materials on average. There is
a limited demand for glycerin, the by-product of biodiesel production for a number of food, beverage,
personal care and oral products, as well as pharmaceutical and other industrial uses. Glycerin can be
used effectively in livestock rations to replace fossil-based glycerine. Importantly, glycerine can also be
utilized as a feed ingredient for livestock rations. Crude glycerin contains similar energy to that of
maize for pigs [24].

2.4. Attributes of Co-Products of Biofuels Production

The biofuel production process produces the fuel and other co-products. The type and quantity
of co-products strongly depends on the biofuel production chain. The economic viability of the biofuel
industry depends to a large extent on the ability of the industry to derive value from the biofuel it
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produces as well as the co/by-products that are generated during the process. When co-products are
used credits can be attributed to the biofuel production chain. Credits include GHG emission savings,
avoided land use or avoided energy use. The challenge is to decide how to distribute quantities of
potential credits between the fuel and the co-products.

Credits for co-products are an important element in the calculation of greenhouse gas (GHG)
reductions of the different biofuel production chains compared to fossil fuel use. For the evaluation of
GHG emission savings common methods include mass based (allocation by mass), market value-based
(allocation by price), and energy content-based (allocation by energy content) calculations. For reasons
of feasibility the EC recommends in its regulatory framework of the proposal for a directive on
renewable energy targets to apply allocation by energy content to determine GHG savings compared
to fossil fuels [71]. However, for a fuel supplier it is not possible to know for certain what the
substituted product really is and thus GHG emissions of these substituted products are uncertain.
Moreover co-products used as animal feed can replace many different animal feed products, which
have differing GHG performances.

Co-products can be applied as animal feed, substituting other feeds, such as maize and soymeal.
When for example maize and soymeal is substituted, less land for feed cultivation is needed. This
substitution reduces the indirect land use and therefore the impact of indirect land use change and
intensification is substantially. The impact of the co-products on land use can be included. Recently
several studies have attempted to include attribution of those co-products, which can be used as
animal feed in an analysis of land use requirements of biofuels. When co-products are used for heat
and process energy the energy balance improves. In those cases, feed has to be produced elsewhere
and even ILUC effects cannot be excluded [1].

2.4.1. Economic Implications

Biofuels support policies in OECD countries are costly and there are alternatives to current
support policies for biofuels that would more effectively allow governments to achieve their objectives.
The impact of biofuels policies on GHG emissions is limited, however, biofuels support policies
have significant impacts on global commodity prices. Alternative policy approaches may offer
greater benefits including reduced energy demand and GHG emissions, and freer trade in biofuels.
Further research can contribute to second generation biofuels from more efficient feedstocks, such
as cellulose and other biomass [72]. Replacing fossil fuels with biofuels has the potential to generate
a number of benefits. Biofuels can be produced domestically, which could lead to lower fossil fuel
imports. Reducing the demand for petroleum could also reduce its price, generating economic benefits
for domestic consumers, but also potentially increasing petroleum consumption abroad [73]. Bioenergy
could enable farmers in poor regions to introduce agricultural technologies and improve infrastructure
to increase farm productivity and thus to raise farmers’ income [74]. Bioenergy and food production
can co-exist and enhance each other by advancing technologies and increasing yields [75], thus
complementing each other instead of competing against each other.

Feedstock generally accounts for around 70% of production costs, with processing, transportation,
and other costs making up the remainder. Therefore, declining feedstock prices helped industry by
reducing overall production costs. In 2014, most fuel ethanol was produced from sugar crops (roughly
61%), with the remainder from grains (roughly 39%). Feedstocks vary significantly depending on
the country or region. For example, fuel ethanol production in the United States is based largely
on corn, whereas Brazil relies primarily on sugar crops, and China on sweet sorghum, cassava, and
other non-grain crops. Global biodiesel production is based largely on vegetable oils, mostly from
rapeseed (Europe) and soybeans (United States, Brazil, Argentina), with smaller shares from palm
(Indonesia) and other sources such as jatropha and coconut. Biodiesel production also includes
industrial by-products such as used cooking oils (the main feedstock in China) and animal fat.
In Europe, the relative share of cooking oil and tallow in biodiesel production is increasing as EU
policy allows these feedstocks to be double-counted in transportation targets [37].
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Increased acres for corn farming in the U.S, are driven by the significant increase in corn
prices since 2005. However, several key factors cause increases in corn price, including U.S. corn
ethanol production, weather events, recent grain demand increases, and diet changes in emerging
economies [76]. Economic models show that biofuel use can result in higher crop prices, though the
range of estimates in the literature is wide. Projections for the effect of biofuels on corn prices in 2015
ranging from a 5 to a 53 percent increase [77]. The possible impact of developed countries’ biofuels
policies on global food prices became a significant concern in 2007, when global grain prices reached
historic heights. Though some experts associated the unprecedented price spikes in food grain and
oilseed with these countries’ biofuels policies [78–80], most of them now agree that these policies are
unlikely to have been the main culprit, although they may have been a factor emphasizing that biofuel
policy is only responsible for part of that fraction of price increases in food grain commodities that is
due to biofuels [81].

Another study estimates that the impact of EU biofuels demand from 2000 until 2010 has increased
world grain prices by about 1%–2% and oilseed prices by around 4%. It also estimates that without
any cap on crop-based biofuels, EU policy could raise grain prices by 1%, and oilseed prices by 10%
by 2020 [82]. Increasing the productivity of current and emerging bioenergy crops per unit land area
is not only critical to economic viability, but also to biodiversity by minimizing the total land area
needed. Land sparing is found far more effective than land sharing in strategies to realize bioenergy.
Maize ethanol, often portrayed as the villain of the piece in the food versus fuel debate, may in fact have
been key in stimulating yield improvement, including through genetically modified (GM) traits, that
has resulted in increased exports of grain from the USA while providing a buffer in drought years [69].

Concerns over the role of food crops in the energy sector are well-founded, and for this reason
(among others), the Renewable Fuel Standard caps corn ethanol volumes at 15 billion gallons. In short,
for biofuels to expand their role in the transportation sector in the United States, they must be produced
from cellulosic feedstocks, such as energy grasses, short rotation woody crops, crop residues, wastes,
and other sources. In the EU new legislation limits the contribution of biofuels derived from sugars,
starch, and oil crops due to sustainability concerns, which are mainly about indirect land-use change.

Biofuel co-products often substitute for higher priced feeds in animal rations. The increased use
of agricultural commodities for biofuels has led to higher costs for animal feeds, however, increased
substitution of co-products for traditional feedstuffs in feed rations mitigate input cost increases faced
by livestock and poultry producers. Growth in the use of agricultural commodities for biofuels is
expected to continue in the next 10 years, but with growth rates slowing in key producing countries as
government-imposed limits on grain use for biofuels are reached and new non-agricultural feedstocks
are commercialized [4,5].

DDGS and corn prices are highly correlated, and their correlation has strengthened in recent
years. Soy and rapeseed meals have always been a major component of animal feeds, because they
are excellent sources of protein. The impact of increased ethanol production is largely felt through
competing crops as increased production of DDGS and oilseed meals can jointly reduce the demand of
livestock industry for maize and oil meals and offset the increase in the demand of ethanol industry for
grains due to the US and EU biofuel mandates. With increasing biofuel production the production of
these co-products also increases. Prices of co-products are highly correlated with prices of feedstocks,
such as grains and oilseeds and they represent an important component of total industry revenues.
As a result, co-products prices fall relative to other feed ingredients. This encourages livestock
producers to use more biofuel co-products in their production processes. On the other hand, any
reduction in the prices of co-products diminishes total revenue and acts as a brake on growth of the
biofuel industry. Biofuel co-products function as both a shock absorber and a price adjuster [83].

Between 1983 and 2006 the price of DDGS relative to maize has fallen by nearly 50%. This has
provided a strong incentive for livestock producers to use more DDGS in their production process and
has also enhanced US exports of DDGS [83]. The ratio of the average price of DDGS to the average
price of maize reported for Iowa plants from 2007 through March 2015 ranged from 0.67 to 1.48 and
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averaged 0.91 for the entire period [84]. Further, the relative contribution of distillers’ grains to gross
returns has varied over time as the price of DDGS has varied.

The net contribution of DDGS to net returns for ethanol production is a function of the ratio of
the price of DDGS to the price of maize. When the ratio is high, distillers grains provide a larger
contribution to net returns and vice versa. With all other prices unchanged, a decline in the price of
DDGS would result in a corresponding decline in net returns. For example, the current high ratio is
contributing to net returns of ethanol production [84].

The global grain and oilseed supply has grown substantially in recent years and increased use
of these commodities for biofuels production has not led to reduced availability for feed or food use.
The amount of grain and oilseeds available for uses other than ethanol and biodiesel production is
expected to grow more significantly in the long term, as feedstock use for biofuel production moderates
in accordance with slowing national mandates.

2.4.2. Environmental Implications

Land Use Change and GHG Emission

Changes in land use, principally those associated with deforestation and expansion of agricultural
production for food, contribute about 15% of global emissions of GHG. Currently, less than 3% of
global agricultural land is used for cultivating biofuel crops and land use change associated with
bioenergy represents only around 1% of the total emissions caused by land-use change globally most
of which are produced by changes in land use for food and fodder production, or other reasons [85].
Indirect land-use changes, however, are more difficult to identify and model explicitly in GHG balances.
Most current biofuel production systems have significant reductions in GHG emissions relative to the
fossil fuels displaced, if no indirect LUC effects are considered.

Despite the availability of additional land, however, land use in agriculture has actually grown
very slowly for decades. The best rainfed cropland is already being used, and expansion to other
areas would incur higher input costs on average. Existing land is being used more intensively in
most regions, as the practice of multiple cropping has spread, particularly in areas where land is
relatively scarce, such as in Asia. Rising concerns and government regulations over climate change,
biodiversity and resource management will push agriculture towards greater sustainability and lower
environmental costs while competition between food and biofuels could also become more intense [86].

Changes in land use patterns may increase GHG emissions by releasing terrestrial carbon stocks to
the atmosphere [87]. Biofuel feedstocks grown on land cleared from tropical forests, such as soybeans in
the Amazon and oil palm in Southeast Asia, generate particularly high GHG emissions [88]. Even use
of cellulosic feedstocks can spur higher crop prices that encourage the expansion of agriculture into
undeveloped land, leading to GHG emissions and biodiversity losses [89].

Although biofuel production is only one of numerous contributors to land-use change, Fritsche
and Wiegmann [90] estimate that by 2020 the overwhelming majority of land-use change—both
direct and indirect—could be caused by feedstock production for biofuels. Because of its indirect
nature, ILUC is a not a local phenomenon that can be observed in a given place and time. It cannot
be monitored for individual feedstocks (e.g., biofuel crops), because production can be displaced
anywhere in the world and because displacement can be distributed through global trading or occur
with significant time lags.

Depending on the location of production, the total amount of area converted as well as the GHG
emissions per hectare converted can vary greatly. And this global distribution of production depends
on the assumptions made about the role of geography in international trade. Assumptions about yield
response on the extensive and intensive margins are certainly critical in determining land-use change
outcome and trade elasticity. Yield response for other commodities (other than the focus feedstock)
and other regions are even more important than the yield response of the specific feedstock/region
under examination (U.S. corn in this case). In addition to the intensive margin of yield response,
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changes in the assumption about crop yield response at the extensive margin can also have a dramatic
impact on the resulting net global cropland requirement. Furthermore, consumer demand elasticity for
food products play a critical role in determining the necessary expansion in global land-use following
expansion of ethanol production [11].

The demand for land to produce bioenergy feedstock can cause shifts in land use patterns that
can affect agricultural land. Land use change (LUC) impacts of biofuels have been a concern since
Searchinger and Heimlich [87] first published a paper investigating LUC associated with bioenergy
crop production and subsequent GHG emissions. Since that time, understanding of biofuel-associated
LUC has improved greatly because better land use data are available and economic models for
modeling LUC have been improved significantly. Recent LUC GHG results indicate that Searchinger
and Heimlich [87] originally over-estimated LUC GHG emissions significantly [91].

Later, Searchinger and Heimlich [38] maintained that additional biomass for bioenergy is the
key for bioenergy-derived GHG reductions. They further asserted that double counting of carbon
occurs in analyses of bioenergy because the biomass additionality issue is not addressed. The concept
of additionality for GHG reductions really asks what the counterfactual scenario is when bioenergy
does not exist or exists only at current levels. The authors concluded that any dedicated biomass
growth would result in double counting of biomass by assuming that biomass for bioenergy is grown
on the lands where biomass would be grown anyway and with the same yields with no differences
in land productivity of biomass between the two scenarios. Land biomass productivity differences
could be caused by biomass yields, changes from single cropping to double cropping (or even triple
cropping) because of bioenergy production [92], and the ability to use marginal/degraded lands for
bioenergy production. Careful characterization of counterfactual scenarios and bioenergy scenarios
has been conducted to address the biomass additionality issue. In fact, some analyses point to the need
to compare biofuels to marginally produced, high-GHG-intensity fossil fuels [93].

According to Searchinger and Heimlich [38] phasing out bioenergy that uses crops or that
otherwise makes dedicated use of land is a sound step toward a sustainable food future. However,
U.S. farm acres for different crops illustrate that while corn acreage has increased in parallel with the
build-up of the corn ethanol industry between 2004 and 2013, total principal crop acreage has remained
fairly constant in the U.S. [94]. These observed trends are consistent with Taheripour and Tyner [95],
who did observe crop shifting (e.g., wheat fields converted to corn agriculture) in the United States
in this time period as a key mechanism for additional corn production. Another mechanism is likely
the conversion of grasslands, wetlands, and other lands. The key point is that agricultural acreage
in the United States has not significantly increased despite a dramatic biofuel boom. Additionally,
the U.S. Renewable Fuel Standard states that biofuel feedstocks must come from land that was not
forested before 2007. This provision limits the expansion of agricultural land into forested lands for
biofuel production. In the case of woody feedstocks, the forests from which they derive must have
been managed plantations before 2007.

Reduced deforestation and increased agricultural production can occur simultaneously in tropical
forest frontiers, provided that land is available and policies promote the efficient use of already-cleared
lands (intensification) while restricting deforestation. It remains uncertain whether government- and
industry-led policies can contain deforestation if future market conditions favor another boom in
agricultural expansion [96].

Academic studies using economic models have also found that biofuels can lead to reductions
in lifecycle GHG emissions relative to conventional fuels [73,97]. Second and third generation
biofuels have significant potential to reduce GHG emissions relative to conventional fuels because
feedstocks can be produced using marginal land. Moreover, in the case of waste biomass, no additional
agricultural production is required, and indirect market-mediated GHG emissions can be minimal if
the wastes have no other productive uses.

Biofuel production and consumption, in and of itself, will not reduce GHG or conventional
pollutant emissions, lessen petroleum imports, or alleviate pressure on exhaustible resources.
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Biofuel production and use must coincide with reductions in the production and use of fossil fuels for
these benefits to accrue. These benefits would be mitigated if biofuel emissions and resource demands
augment, rather than displace, those of fossil fuels.

Biofuel production and processing practices can also release GHGs. Fertilizer application releases
nitrous oxide, a potent greenhouse gas. Most biorefineries operate using fossil fuels. Some research
suggests that GHG emissions resulting from biofuel production and use, including those from indirect
land use change, may be higher than those generated by fossil fuels, depending on the time horizon of
the analysis [89,98].

Regarding non-GHG environmental impacts, research suggests that production of biofuel
feedstocks, particularly food crops like corn and soy, could increase water pollution from nutrients,
pesticides, and sediment [99]. Increases in irrigation and ethanol refining could deplete aquifers [99].
Air quality could also decline in some regions if the impact of biofuels on tailpipe emissions plus the
additional emissions generated at biorefineries increases net conventional air pollution [99].

Biofuel co-products help mitigate the environmental consequences of expansion by the biofuel
industry. For example, DDGS substitutes for both maize and soybean meal in livestock rations.
This reduces the land use consequences of biofuel production and eases the demand for chemical
inputs, such as fertilizers and pesticides, in crop production. By reporting only the gross usage of
maize for ethanol, the implication was that all the maize going into ethanol production resulted in
fuel ethanol [1]. According to the conventional assumption ethanol producers return a full one-third
of the maize processed back to the feeding sector which is the difference between the gross and net
volume of maize used for ethanol. However, in aggregate, a metric tonne of DDGS can replace, on
average, 1.22 metric tonne of feed consisting of corn and soybean meal in the United States. In fact,
the amount of feed (maize and soybean meal) replaced by the DDGS represents 38% a weight basis
of the maize used in the associated ethanol production process for a given crop year. If co-products
are taken into account the net use of feedstocks decline [18]. More complicated, but no less important,
is the impact of DDGS on land use change and the GHG emissions associated with maize ethanol
production. Most existing biofuel regulations significantly undervalue the contribution of DDGS when
assessing the net GHG impacts of maize ethanol assuming that one metric tonne of DDGS replaces
only one metric tonne of corn, with no substitution of soybean meal. The importance of DDGS is being
undervalued by the regulatory agencies requiring a GHG assessment of ethanol. In the future accurate
DDGS accounting is of increasing importance [1].

The proportion of global cropland used for biofuels is currently some 2% (30–35 million gross
hectares) with wide differences among countries and regions. The review by [100] studies biofuel
expansion between 2000 and 2010 in Brazil, the USA, Indonesia, Malaysia, China, Mozambique, South
Africa plus 27 EU member states. In 2010, these countries produced 86 billion litres of ethanol and
15 billion litres of biodiesel representing 95% of global biofuel production. Land devoted to biofuel
production was calculated at 32 million ha in 2010, an increase of 25 million ha as compared to
2000. According to [101] land required to produce biofuels grows from 30 million hectares in 2010
to 100 million hectares in 2050. Ignoring co-product generation in early biofuel impact assessments
has led to an overestimation of land requirements, in most cases by 40% or more. The contribution
of feed co-products is relatively high in the USA, China, and the EU due to the large share of cereals
with high feed yields. It is low in Brazil where ethanol production is dominated by sugarcane which
generates no feed co-products. Implications for land use will, however, also depend on the role
of yield improvement [100]. Another report published in 2008 by CE Delft estimates that the use
of co-products generated from rapeseed, soy, wheat and maize can reduce net land use by 11% to
25%. Biofuels produced from some feedstocks such as sugarcane, where nearly the entire product is
used for producing biofuel, do not generate such co-products [102]. Co-products are supposed to be
credited with the area of cropland required to produce the amount of feed they substitute. By adding
co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines
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to 1.5% net land requirement of the global crop area. This substitution reduces the indirect land use
and therefore the impact of indirect land use change and intensification is substantially [1].

In 2010 about 30–35 million gross hectares of feedstock was needed for fuel ethanol and biodiesel
production. The proportion of global cropland used for biofuels is currently some 2% with wide
differences among countries and regions. In the cases of grains and oilseeds, DDGS, CGF/CGM and
oil cakes (mainly rapeseed and soybean cake/meal) substitute grain and soybean as feed. It means
that not all the feedstocks used for bioethanol production should be subtracted from the supplies.

Based on the land-use efficiencies land use for biofuel production would need to increase from
about 30–35 million hectares to around 100 million hectares in 2050. This corresponds to an increase
from 2.5% of total arable land today to around 6% in 2050. This expansion would include some
cropland, as well as pastures and currently unused land, the latter in particular for production of
lignocellulosic biomass [2].

Algae as Animal Feed

Many studies have shown the suitability of algae as a potential animal feed and as a replacement
for conventional protein sources such as soybean and fish meal. Unfortunately, the trend is to avoid
using live algae due to their high cost and production difficulties. The use of micro-algae as animal
feed is more recent. Algae biomass is a valuable feed supplement or substitute for conventional
protein sources. The incorporation of algae into poultry rations offers the most promising prospect
for their commercial use in animal feeding. Another growing market is the utilization of micro-algae
in aquaculture [103]. In poultry, algae can be used as a partial replacement for conventional proteins
with the incorporation of 51% [104]. Also, according to [105], they may serve as almost the sole protein
source in laying hens, and in several countries, they are officially approved as chicken feed. In pigs
ration, [106] assumed the incorporation of even 33%, without negative symptoms. According to
another study the feed intake of the pigs on the algal meal diets was not affected until the third period
of the experiment and suggests that the acceptance from a palatability point of view when added at
10% is not a major issue although the manipulation of the gut microbiome to algae meal is possibly
of some concern although a larger number of piglets raised in commercial environments would be
required to better define this as an issue [107]. However, it should be expected that the most suitable
for feeding with algae are ruminants, because they are able to digest even an unprocessed algal cell
wall [105]. Manufacturers of these organisms worldwide have recognized different potentials and
therefore focused just on the food and feed industry [108]. Although, microalgae are eaten as a food
in China and Chad and had been considered as a solution to the world’s food shortage, their use on
a global scale appears limited to health food and food supplements [109].

New Market Opportunities for Biofuel Co-Products

The biofuels industry has evolved rapidly over the last three decades with developments in
processing techniques and an expansion of the range of plants and other natural energy sources
being considered as feedstocks. On-farm application of the co-products, on which the viability of
the industry depends, is often ahead of unbiased research to support its use. Much of the potential
research identified as needed is concerned with co-product feeding value, the need for standardization
of products from within an individual plant and between plants, and the search for new feedstocks
together with safety standards. However, the economic importance of biofuel industrial production
chains will increase in the coming years and will be a promising source of co-products that are useful
for sustainable farming systems, biomaterials applications and crop disease management.

A potential market for DDGS and oilseed meals that biofuel producers may consider is the
fertilizer/agriculture market. DDGS and oilseed meal co-products can be effective fertilizer sources
for plants. In addition to containing most macronutrients and micronutrients needed to support plant
growth, these co-products have low C:N ratios, which means that they are rapidly decomposable and
can release nutrients to plants in a timely manner. This property is of particular interest to organic
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agriculture markets, where nutrient sources and fertilizers containing enough readily mineralizeable N
to impact yield are scarce. Competition with animal feed markets has prevented widespread adoption
of biofuel co-products as fertilizers. DDGS and many oilseed meals hold more value as an animal feed
than as a fertilizer source, therefore animal producers are willing to pay for feed materials based on feed
value instead of the lower fertilizer value. However, fertilizer markets may become more appealing to
biofuel producers due to over-production of DDGS, high costs of oilseed meals, DDGS feed quality
issues, and interest from organic growers in alternative nutrient-rich fertilizer sources [110–112].

The growth of biofuel industries caused the generation of a huge amount of under-valued
co-products of different types including DDGS, bagasse, lignin, protein-rich meals and crude glycerol.
In order to claim biofuel production as the sustainable technology of future, it is necessary to create
value-addition to these co-products. This also provides solution to the emerging issues on the
environmental impact of the accumulation of these co-products. Furthermore, the technological
development related to the value-added uses of biofuel co-products in biomaterials applications is
expected to create new ecofriendly products and strengthen the bioeconomy. Among these co-products,
DDGS, CGM and soybean meal are traditionally used for animal feed applications. However, recent
researches show the huge potential of these co-products for biomaterial applications (polymeric
biocomposites, thermoplastic, biobased films for food packaging applications ect.). Crude glycerol
co-produced in biodiesel industry has huge opportunities in biomaterial applications including
chemicals/monomers, plasticizer, hydrogen generation, carbon source for bacterial growth and
polyesters production. Lignin, the major co-product of lignocellulosic ethanol can be used as polymer
blends/composites, adhesives, and carbon fibres. In addition to that, these biofuel co-products
also create opportunity for the fabrication of various nanostructured materials for the high value
applications [113].

Moreover, the use of co-products from the biofuel production chains, especially for crop disease
management, is an under-explored area in the research community. In recent years, a relevant
number of studies for the control of plant diseases have been carried out on bio-chars, oil-less seed
meals, suppressive composts that are derived from agricultural waste and exhausted biomass, and
steam-exploded liquid waste. The co-products of particular interest in crop protection are oil-less
seed meals and glycerin derived from the biodiesel chain, steam-exploded liquid waste derived
from a 2nd generation bioethanol chain, and charcoal obtained from the pyrolysis of plant biomass.
Biofuel chain co-products have great potential but sometimes give inconsistent disease control, which
limits their use in crop protection. Nevertheless, the benefits of biofuel chain co-products outweigh
their drawbacks, but the impact of this approach on pathogen populations and disease suppression
is often unpredictable. Future research should mainly focus on the development of biofuel chain
co-products that enhance the activity of beneficial microbes and improvement of the effectiveness of
biofuel chain co-products via applications of multicomponent bio-fungicides [114].

3. Materials and Methods

The literature on the impacts of biofuel expansions is already substantial, however, the feed
value of increasing biofuels co-products, which are supposed to be credited with the area of cropland
required to produce the amount of feed they substitute have received much less attention.

The search platform Web of Knowledge and search engine Google Scholar are primarily used
to collect the relevant literature. In addition, backward searches through bibliographies of academic
studies and reviews as well as hand searching websites of academic projects and conferences on
biofuel are also applied. Only literature in English is included in this paper so as to ensure accessibility.
Since the rapid progress of this research filed, literature is also limited to the papers mainly published
in or after 2010. The literature reviewed is selective and critical. Highly rated journals in scientific
indexes are the preferred choice. We carefully select 114 papers which are considered as important or
innovative studies, or comprehensive reviews offering us a big picture of biofuels and their co-products
as livestock feed. The literature review is categorized into three topics:
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1. Co-products of biofuels as livestock feed: biofuel’s co-products refer to co-products that are
generated during the process and used as animal feed

2. Economic, environmental and land use implications of biofuel’s co-products. When co-products
are used credits can be attributed to the biofuel production chain including economic viability,
GHG emission savings and avoided land use. Impact on land use and GHG emissions are the
main focuses the existing studies paid attention to.

3. Advanced biofuels: future production is influenced by the competition between conventional
and advanced biofuels based on food crops and lignocellulosic feedstocks.

Amount of literature examined in this paper classified by topic:

Topic Amount

Co-products 14
Land use 26

Economics 18
Environment 13

Bioenergy potential 12
Conventional biofuels 11

Advanced biofuels 20

4. Conclusions

Estimates on impacts of biofuel production often use models with limited ability to incorporate
economic and environmental implications by ignoring generation of co-products from biofuel
production. Co-product generation in early biofuel impact assessments was ignored leading to
an overestimation of land requirements and GHG emissions. The output of feed co-products is
relatively high in the USA, the EU and China due to the large share of grains used in ethanol production
with high feed yields. It is low in Brazil where ethanol production is dominated by sugarcane which
generates no feed co-products. Co-product yields are low for rapeseed and soybean used in the
biodiesel industry. By economically displacing traditional feed ingredients co-products from biofuel
production are an important and valuable component of the biofuels sector and the global feed market.
Moreover, the return of co-products to the feed market has economic, land use and GHG emissions
implications as well. Models used to evaluate biofuel policies should be enriched by incorporating
more and better information on changes in land use, and economic and environmental implications of
co-products. This information should be considered in discussions on food, feed versus fuel debate
and land-use change caused by biofuel policies.

Recent years have seen a tremendous increase in the production of biofuels from agricultural
commodities. Food-crop based feedstocks are expected to continue to dominate ethanol and biodiesel
production over the coming decade. Growth in biofuel production has been accompanied by increased
output of animal feed co-products from common biofuel processes. Globally, these feed co-products are
growing in volume and importance. While the increased use of agricultural commodities for biofuels
is generally expected to contribute to slightly higher input costs for certain livestock and poultry
feeds, the impacts are expected to be modest and can be mitigated in part by increased substitution
of co-products for traditional feedstuffs. Increased agricultural productivity has allowed the global
supply of crops available for non-biofuel uses to continue to grow over the long term. The future use of
agricultural crops for biofuel resulting in a small increase in livestock feed costs, which will be offset to
some extent by the use of co-products as feed and by increases in crop yields over time. Feed co-product
output is expected to grow more slowly in the coming years. However, a number of new and emerging
technologies may change the composition and further improve the nutritional quality and utility of
feed co-products. New technologies and practices promise to change the complexion of the ethanol
co-products market in the years ahead.
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Co-products are supposed to be credited with the area of cropland required to produce the
amount of feed they substitute. If co-products are taken into account, the net use of feedstocks
decline. By adding co-products substituted for grains and oilseeds the land required for cultivation of
feedstocks declines from about 2% to 1.5% net land requirement of the global crop area. Moreover, it
is important to include the co-products in GHG assessment, because of their potential impact on
the overall emissions. Most existing biofuel regulations significantly undervalue the contribution of
co-products when assessing the net land use and GHG impacts of biofuel production. In the future
accurate co-products accounting is of increasing importance.

Growth in the use of agricultural commodities for biofuels is expected to continue through
to 2020, but growth rates will slow in key producing countries as government-imposed limits on
grain use for biofuels are reached and advanced biofuels capacity is expected to expand only slowly.
The second reason for moderation in the growth in the use of agricultural commodities for biofuels is
the expectation that future growth in biofuels production will primarily come from new feedstocks
that currently have no or limited application in the animal feed market, such as perennial grasses
(Miscanthus sp. and A.donax), agricultural residues, algae and other materials.
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The following abbreviations are used in this manuscript:

CO2 carbon dioxide
DDG dried distillers’ grains
DDGS dried distillers’ grains with solubles
dLUC direct land use change
FAO Food and Agriculture Organization of the United Nations
DME dimethyl ether
GHG greenhouse gas
ILUC indirect land use change
OECD Organisation for Economic Cooperation and Development
RED renewable energy directive
RFS renewable fuel standard
WDG Wet distillers’ grain
CGF corn gluten feed
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