Supplementary Materials: A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters

Dominik M. Peter, Bastian Vögeli, Niña Socorro Cortina and Tobias J. Erb

S1-6: Octanoyl-CoA; calculated: 894.2275, found: 894.2281.

S1-7: Lauryl-CoA; calculated: 950.2901.

The corresponding mass could not be detected, presumably due to hydrophobicity of the side chain. However, a clear UV-Vis peak was detected that corresponds to the expected retention time of Lauryl-CoA

S1-8: Acrylyl-CoA; calculated: 822.1336, found: 822.1344.

Counts vs. Mass-to-Charge (miz)

Not synthesized in this study.

S1-28: Methylmalonyl-CoA; calculated: 868.1391, found: 868.1391.

S1-29: Ethylmalonyl-CoA; calculated: 882.1547.

Not synthesized in this study.

S1-30: Malonyl-CoA; calculated: 854.1234, found: 854.1228.

Figure S1. High resolution MS and MS/MS spectra of the CoA thioesters synthesized in this study. CoA thioesters were analyzed using an Agilent 6550 iFunnel Q-TOF LC-MS system equipped with an electrospray ionization source set to positive ionization mode. Compounds were separated on a RP-18 column (50 mm × 2.1 mm, particle size 1.7 μ m, Kinetex XB-C18, Phenomenex) using a mobile phase system comprised of 50 mM ammonium formate pH 8.1 (A) and methanol (B). Chromatographic separation was carried out using the following gradient condition at a flow rate of 250 μ L/min: 0 min 0% B; 1 min 0% B, 3 min 2.5% B; 9 min 23% B; 14 min 80 % B; 16 min 80%; 17 min 0% B; 18 min 0% B. Capillary voltage was set at 3.5 kV and nitrogen gas was used as nebulizing (20 psig), drying (13 L/min, 225 °C) and sheath gas (12 L/min, 400 °C). The TOF was calibrated using an ESI-L Low Concentration Tuning Mix (Agilent) before measurement (residuals less than 0.04 ppm for ten reference ions) and was recalibrated during a run using 922 *m/z* as reference mass. MS data were acquired with a scan range of 750–1000 *m/z*. The CoA esters were fragmented by collision induced dissociation with an isolation width of approximately 4 *m/z*, a collision energy of 35 eV, and an acquisition time of 1000 ms/spec.

Figure S2. Examples of acyl-CoA dehydrogenase screen assays. The progress of the dehydrogenase reaction can be easily followed by eye as the reaction mixtures turns from light blue to yellow and starts to precipitate. On the left side, the almost not reacted assay of 424 with isobutyryl-CoA after 2 h of incubation. On the right side, the completely reacted assay of 605 with isobutyryl-CoA after 2 h of incubation.

Figure S3. Spectrophotometric assay for the determination of the stereochemical outcome of the MatB catalyzed ligation of CoA and methylmalonyl-CoA. The assay containing ATP, CoA, NADPH, MgCl₂, NaCl MatB, Mcm, SucD in NaPO4 buffer at pH 8 was started by adding methylmalonate and the progress of the reaction was followed at 340 nm at 30 °C. After the reaction reached steady state methylmalonyl-CoA racemase was added. The Δ Abs_{360nm} before the addition of the racemase corresponds to the consumption of (*S*)-methylmalonyl-CoA produced by MatB, the Δ Abs_{360nm} after the addition to (*R*)-methylmalonyl-CoA.

Figure S4. SDS page gel of the three acyl-CoA dehydrogenases screened. Expected size for 423: 42.5 kDa; for 424: 43.6 kDa, and for 605: 41.8 kDa. Molecular weight marker: PageRuler Plus Prestained Protein Ladder (Thermo scientific).

Figure S5. Model UV-Vis trace of 2-Methylbutyryl-CoA before and after desaturation by 424. Green: before desaturation reaction, black: after incubation with 424.

Acyl-CoA	Yield (%)	Used Method
Butyryl-CoA 3	40	CDI
Acrylyl-CoA 8	0	CDI
3,3-Dimethylacrylyl-CoA 9	4	CDI
Crotonyl-CoA 10	0	CDI
Octenoyl-CoA 11	2	CDI
Sorbityl-CoA 12	9	CDI
Cinnamoyl-CoA 13	1	CDI
Methylmalonyl-CoA 28	0	CDI
Ethylmalonyl-CoA 29	0	CDI
Glyoxylyl-CoA 27	0	CDI
Methylmalonyl-CoA 28	0	ECF
Ethylmalonyl-CoA 29	0	ECF
Glyoxylyl-CoA 27	0	ECF
Crotonyl-CoA 10	44	ECF

Table S1. Results of syntheses not listed in Table 1.

Table S2. Protein sequence of the three acyl-CoA dehydrogenases screened.

Protein	Protein Sequences
	MGSSHHHHHHHSSGLVPRGSHMSVLTDEQRLVQEMARTFAREVLAPGAAARAKAKAIE
	PAVLAQMGELGFFGMTVPEEMGGVGADYMSYALALIEIAAGDGAVSTVMSVHNAPFN
	AILQRFASPAQRERVLRPAAQGAFIGAFALTEAHAGSDASALRSRARRAGGDYVIDGEK
423	VFITSGRLAGWAILFARMEGSTGKEGITCFLTPTDTPGYEVVKVEDKLGQEASDTCALRF
	DSLRVPEALRIGAEGEGYRIALSSLETGRIGIAAQSVGMAQAALEAAVAYARERTSFGRP
	LIEHQAVGFRLAEAKTRLEAARQMVLHAARMKDAGQPCLTEAAMAKLFASEAAERIV
	SDAIQTFGGYGYSRDFPVERIYRDVRVCQIYEGTSDIQKMLILRGMA
	MGSSHHHHHHHSSGLVPRGSHMAGSADFDLYRPSEEHDMLRDAVRSLAEAKIAPYAAA
	VDEEARFPQEALDALTANDLHAVHVPEEYGGAGADALATVIVIEEVARACASSSLIPAV
	NKLGSLPVILSGSEELKKKYMTPLAKGDGMFSYCLSEPDAGSDAAGMKTRAVRDGDFW
424	VLNGVKRWITNAGVSEYYTVMAVTDPDKRSKGISAFVVEKSDEGVSFGAPEKKLGIKGS
	PTREVYLDNVRIPADRMIGAEGTGFATAMKTLDHTRITIAAQALGIAQGALDYAKGYV
	KERKQFGKPIADFQGIQFMLADMAMKIEAARQLTYAAAAKSQRGDSDLTFQGAAAKC
	FASDVAMEVTTDAVQLLGGYGYTRDYPVERMMRDAKITQIYEGTNQVQRIVMARNLP
	MGHHHHHHHHHHSSGHIEGRHMDFALSEEQQAIFDMARAFGAEEIAPHARAWEEA
	GTIPRTLWPKVAELGLGGVYVSEDHGGSGLGRLDATLVFEALAMACPSVAAFLSIHNM
	CAGMIDRYGSEELKARWLPGICALTTLVSYCLTEPGAGSDAAALRTRADATPEGYRLSG
605	TKAFISGGGYSDAYLTMCRTGGAGPKGISTLLVPAGTPGLSFGGLEDKMGWRAQETRQ
	VQFDECLVSTDLLVGEEGQGFAYAMAGLDGGRLNIAATALGGAQAAFDATRAYMAER
	KAFGQRLDGFQALQFRLAEMEVKLQQARIFLRQAAWKLDQGAPDATKFCAMAKLAV
	TDSAFEVANQCLQLHGGYGYLADYGIEKIVRDLRVHQILEGTNEIMRVIVARALGAA

Table S3. DNA sequence of the three acyl-CoA dehydrogenases screened.

Protein	DNA Sequences
	ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGCG
	AGCCATATGAGCGTCCTGACCGACGAGCAGCGCCTCGTGCAGGAGATGGCGCGC
	ACCTTCGCCCGCGAGGTGCTGGCACCCGGCGCCGCGGCGCGCGC
	GCGATCGAGCCGGCCGTGCTCGCGCAGATGGGCGAGCTCGGGTTCTTCGGCATG
	ACGGTGCCCGAGGAGATGGGCGCGCGTCGGCGCCGACTATATGAGCTATGCGCTG
	GCGCTGATCGAGATCGCGGCGGGGGGGGGGGGGGGGGGG
	CATAACGCCCCCTTCAACGCGATCCTCCAGCGGTTCGCGAGCCCCGCGCAGCGC
	GAGAGGGTGCTGCGGCCGGCGCACAGGGCGCCTTCATCGGCGCCTTCGCCCTG
	ACCGAGGCCCATGCGGGTTCGGACGCCTCGGCGCTGCGCAGCCGGGCGCGCGC
	GCGGGCGGAGACTATGTGATCGACGGCGAGAAGGTCTTCATCACCTCGGGGCGG
	CTCGCGGGCTGGGCAATCCTGTTCGCGCGGATGGAGGGAAGCACGGGCAAGGA
423	GGGCATCACCTGCTTCCTCACCCCACCGACACGCCGGGCTACGAGGTGGTCAA
	GGTCGAGGACAAGCTCGGGCAGGAGGCGTCCGACACCTGCGCGCTGCGCTTCGA
	CAGCCTGCGGGTGCCCGAGGCGCTGCGGATCGGGGCCGAGGGCGAGGGCTACC
	GGATCGCGCTCTCCAGCCTCGAGACCGGGCGCATCGCCATCGCGGCCCAGTCGG
	TCGGCATGCCGCAGGCGCGCGCTCGAGGCGGCGGTGGCCTATGCGCGCGAGCGG
	ACCTCGTTCGGGCGGCCGCTGATCGAGCATCAGGCGGTGGGCTTCCGGCTTGCCG
	AGGCGAAGACGCGGCTCGAGGCGGCGCGGCGGCAGATGGTGCTTCATGCGGCGCGG
	ATGAAGGATGCGGGCCAGCCCTGCCTGACCGAGGCCGCGATGGCCAAGCTCTTC
	TACCCCTACACCCCCCACTTTCCCCTCCACCCCATCTACCCCCC
	CCCAGATCTACGAGGGCACCTCCGGACATCCAGAAGATGCTGATCCTCAGGGGCA
	TGGCGTGA
	AGCCATATGGCCGGATCGGCTGACTTCGACCTGTACCGCCCGTCCGAGGAGCAC
	GACATGCTCCGGGACGCCGTCCGCTCGCTCGCCGAGGCGAAGATCGCGCCGTAC
	GCCGCCGCGTGGACGAGGAGGCGCGCGCTTCCCCGCAGGAGGCGCTGGACGCGCTC
	ACCGCGAACGACCTGCACGCGGTGCACGTCCCCCGAGGAGTACGGCGGCGCGGG
	CGCCGACGCGCTCGCCACGGTCATCGTGATCGAGGAGGTGGCCCGCGCCTGCGC
	GTCCTCCTCCTCATCCCGGCCGTGAACAAGCTCGGCTCG
	CCGGCTCCGAGGAGCTGAAGAAGAAGTACATGACCCCGCTCGCCAAGGGCGAC
	GGCATGTTCTCCTACTGCCTCTCCGAGCCCGACGCCGGCTCCGACGCGGCCGGC
	TGAAGACCAGGGCCGTCCGCGACGGCGACTTCTGGGTGCTCAACGGCGTCAAGC
	GCTGGATCACCAACGCCGGCGTCAGCGAGTACTACACCGTCATGGCGGTCACCG
424	ACCCCGACAAGCGCTCCAAGGGCATCTCCGCCTTCGTGGTCGAGAAGTCCGACG
	AGGGCGTGTCCTTCGGCGCCCCGGAGAAGAAGCTCGGCATCAAGGGCTCCCCGA
	CCCGCGAGGTCTACCTCGACAACGTCCGCATCCCCGCCGACCGCATGATCGGCG
	CGGAGGGCACCGGCTTCGCCACCGCGATGAAGACGCTGGACCACACCCGCATCA
	CCATCGCCGCCCAGGCCCTCGGCATCGCCCAGGGCGCCCTCGACTACGCCAAGG
	GCTACGTCAAGGAGCGCAAGCAGTTCGGCAAGCCGATCGCCGACTTCCAGGGCA
	TCCAGTTCATGCTCGCCGACATGGCCATGAAGATCGAGGCCGCCGCCAGCTGA
	CGTACGCGGCGGCCGCCAAGTCGCAGCGCGGCGACAGCGACCTGACCTTCCAGG
	GCGCCGCCGAAGTGCTTCGCCTCGGACGTGGCCATGGAGGTCACCACGGACG
	CCGTCCAGCTGCTCGGCGGCTACGGCTACACCCGGGACTACCCGGTGGAGCGCA
	TGATGCGCGACGCCAAGATCACGCAGATCTACGAGGGCACCAACCA
	CGCATCGTCATGGCGCGCAACCTGCCGTAG
	ATGGGCCATCATCATCATCATCATCATCATCACAGCAGCGGCCATATCGAAG
	GTCGTCATATGGATTTCGCGCTGAGCGAGCAGCAACAGGCGATCTTCGACATGG
	CACGCGCGTTCGGGGCCGAGGAGATCGCCCCCATGCGCGGGCCTGGGAAGAG
	GCGGGGACGATCCCCCGCACGCTCTGGCCCAAGGTGGCGGAACTGGGTCTGGGC
605	GGGGTCTATGTCTCGGAAGATCATGGAGGATCCGGGCTCGGGCGGCTCGATGCG
	ACGCTCGTCTTCGAGGCGCTGGCCATGGCCTGTCCGTCGGTTGCGGCGTTCCTCTC
	GATCCACAACATGTGCGCGGGCATGATCGACCGCTATGGCTCGGAGGAGCTGAA
	GGCGCGCTGGCTGCCGGGCATCTGCGCGCTCACCACGCTCGTCTCCTACTGCCTG
	ACCGAGCCCGGAGCGGGATCGGACGCGGCGGCGCTCCGCACCCGCGCCGACGC

CACCCCAGAAGGCTACCGGCTGAGCGGGACCAAGGCCTTCATCTCCGGAGGCGG CTATTCGGACGCCTATCTCACCATGTGCCGCACCGGCGCGCGGGGCCGAAGGG CATCTCGACGCTCCTCGTGCCGGCGGGGGAACCCCCGGCCTCAGTTTCGGCGGGGCTC GAGGACAAGATGGGCTGGCGGGGCGCAGGAGACGCGGCAGGTGCAGTTCGACGA GTGCCTCGTGTCGACGGATCTTCTGGTCGGCGAGGAGGGGCAGGGCAGGGCTTGCCTAT GCGATGGCGGGGGCTCGACGGCGGACGGCTCAATATCGCGGCCACCGCTCTCGGC GGCGCGCAGGCAGCCTTCGACGGCGACCGCCTACATGGCGGAACGGAAGGC TTTCGGGCAGCGGCTCGACGGGCGGACCGCCTGCAGTTCCGACTGGCCGAGGC GAGGTGAAGCTCCAGCAGGCGGGGATCTTCCTGCGGCAGGCGGCCTGGAAGCTC GATCAGGGCGCCCCCGACGCCACCAAGTTCTGCGCCATGGCCAAACTCGCGGTG ACGGATTCGGCCTTCGAGGTGGCCAACCAGTGCCTTCAGCTGCACGGGGGCTAC GGCTACCTTGCCGATTACGGCATTGAGAAGATCGTGCGCGACCTGCGCGTGCAC CAAATTCTCGAAGGCACCAACGAGATCATGCGGGTGATCGTGGCCCGGGCCTTG GGGCCGCATGA