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Abstract: Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising
next-generation solar cells due to their advantages of low-cost precursors, high power conversion
efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few
to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits
ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction
(PHJ) perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature
sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and
tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are
introduced between a perovskite film and the anode/cathode. The hole and electron transporting
layers are expected to enhance exciton separation, charge transportation and collection. Further,
the supporting layer for the perovskite film not only plays an important role in energy-level
alignment, but also affects perovskite film morphology, which have a great effect on device
performance. In addition, interfacial layers also affect device stability. In this review, recent progress
in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular
interfacial materials. The supporting interfacial layers for the optimization of perovskite films will
be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will
be discussed.
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1. Introduction

Clean and renewable energy have become increasingly important for human society due to the
increasing demand for energy and environmental concerns. Solar energy, which is abundant, widely
distributed, and pollution-free, is one of the most important renewable energy sources. Solar cells
represent a direct way to transform solar energy into electrical energy. Crystalline silicon-based solar
cells are currently the dominant technology, with high power conversion efficiency (PCE) and stability,
however, they suffer from relatively high production costs at large scale, resulting in only small-scale
applications. Thin film solar cells based on copper-indium-gallium-selenide (CIGS) and CdTe could
lower the cost, but have problems of material abundance. Organic solar cells, dye-sensitized solar cells
(DSSC) and quantum dot solar cells display potential for low cost and easy of fabrication, but their
performance is still not comparable to that of their traditional inorganic-counterparts.

Organic-inorganic hybrid perovskite solar cells are considered one of the most promising
next generation photovoltaic technologies due to their high PCE, low cost and easy fabrication.
Organic-inorganic hybrid perovskites have nearly all the good properties that a solar cell requires,
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including high absorption coefficients, low exciton binding energy, high charge-carrier mobility, long
exciton diffusion length and easy tunable bandgap [1–10]. The PCEs of perovskite solar cells have
rapidly increased from approximately 4% to over 20% in the past few years, which is by far the highest
PCE among the novel solar cells [11–13]. The developments of different kinds of solar cells are depicted
in Figure 1. Perovskite is the material described by ABX3, where X is an anion, and A, B are cations,
respectively. Figure 2 shows the crystal structure of perovskite, where A = CH3NH3

+, B = Pb2+ and
X = Cl´, Br´, I´.
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The original work for the development of perovskite solar cells was carried out in 2009 by
Miyasaka et al., who first introduced CH3NH3PbI3 and CH3NH3PbBr3 as a photoactive layer, resulting
in a PCE of 3.81% [11]. By optimizing the method of depositing the perovskite and electrolyte
formulation, Park et al. increased the PCE to 6.5% [15]. Park and Grätzel replaced the liquid
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electrolyte with 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (spiro-OMe TAD),
and fabricated a sensitized all-solid-state perovskite solar cell, leading to an efficiency exceeding
9% [16]. Snaith et al. employed the mesoporous scaffold of Al2O3, further increasing the PCE to 10.9%
by reducing energy losses. The mesoporous Al2O3 was reported to be an inert scaffold, which can force
electrons to transport within the perovskite [7]. Etgar et al. proposed a hole conductor-free mesoscopic
perovskite solar cell, which suggested that perovskite can act as a hole conductor in the perovskite
solar cell [17].

The discovery of ambipolar properties for perovskite thin films allows for the development of
planar heterojunction (PHJ) perovskite solar cells. A big breakthrough was carried out by Snaith et al.,
who fabricated a simple PHJ perovskite solar cell on a compact layer of TiO2 by a vapour-deposition
method, resulting in a PCE of up to 15.4% [3]. By optimizing the method of depositing perovskite
and using Y-doped TiO2 as the electron transporting layer, Yang et al. further improved the PCE to
19.3% [12]. By depositing a thin C60 or fullerene-derivative (acceptor) layer on the perovskite, Guo et al.
reported an inverted PHJ perovskite solar cell [18]. With the employment of an inverted PHJ structure
in perovskite solar cells, different perovskite casting methods and various contact materials are
introduced to improve the PCE of perovskite solar cells [19–21]. A solution-based hot-casting method
was reported to grow perovskites with millimeter-scale crystalline grains. As a result, the device
with such large crystalline grains showed an efficiency approaching 18% in an inverted structure [22].
Recently, Huang et al. reported that by growing large-size perovskite grain on non-wetting hole
transport layers, the PCE of inverted devices could be further improved to 18.3% [23].

The use of conventional and inverted structures in PHJ perovskite solar cells eliminates the use
of a mesoscopic metal oxide layer, which simplifies the fabrication process. The device structures of
conventional and inverted PHJ perovskite solar cells are respectively depicted in Figure 3, where the
transparent conductive oxide (TCO) and metal act as electrode, hole transport layer (HTL) and electron
transport layer (ETL) function as interface modification. The perovskite itself takes on light harvest
and charge transportation before the respective electrodes.
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Although electrons and holes can transport within the perovskite, they are inclined to recombine
with each other before reaching the respective electrodes. A number of methods have been employed
to avoid the recombination of charges. Among them, interfacial engineering is one of the most
valuable methods to depress charge recombination at the interface between the perovskite layer and
the electrodes. On the one hand, the charge transporting properties and extraction can be engineered
with the modification of energy-levels by appropriate interfacial layers. On the other hand, the film
morphology of perovskite can be controlled by manipulating the supporting underlayer, leading to the
improvement of film quality. Furthermore, the stability of perovskite solar cells can also be enhanced
by the protection of interfacial layers [24].
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Hence, interface engineering plays a critical role in the development of PHJ perovskite solar
cells. A few reviews have been published that provide an overview on the rapid development of
PHJ perovskite solar cells in the past few years, especially the efforts dedicated to optimize the
perovskite film and the development of inorganic interfacial materials [25,26]. Only in the past few
years, various interfacial materials, especially organic interfacial materials, have been developed to
further improve the device performance and stability [27–35]. To systematically understand the role
of interfacial layers in the fast development of perovskite solar cells, especially the novel molecular
interfacial materials, which have the advantages of simple solution processing, a low-temperature
annealing process, tunable work function, high mobility, and good compatibility with the perovskite
film growth, we present an insightful overview of PHJ perovskite solar cells with interface engineering
that was employed recently. Metal oxides, molecular interfacial materials, and other novel materials as
interfacial layers will be discussed, respectively.

2. Metal Oxide

A conventional device structure for perovskite solar cell is TCO/ETL/perovskite/HTL/metal
(Figure 3a). Generally, the TCO is fluorine tin oxide (FTO) or indium tin oxide (ITO). The ETL is
generally a compact TiO2 layer, which works as a selective contact for electron collection at the
anode [3,36,37]. The works used TiO2 based ETL are summarized in Table 1. Traditionally, a mildly
acidic solution of titanium isopropoxide in ethanol is spin-coated on the FTO substrate followed by
sintering at 500 ˝C, then a compact TiO2 is formed. Although the compact TiO2 shows good electron
transporting properties, the processing is complicated and the high temperature required is not suitable
for the fabrication of flexible solar cells. Therefore, low temperature and simple processed TiO2 are
a requisite for low cost fabrication. Nanocrystalline rutile TiO2 was first introduced into perovskite
solar cells by Yella et al., resulting in a high Voc of 1.1 V [38]. The nanocrystalline rutile TiO2 was
obtained at a low temperature of 70 ˝C using a hydrothermal method, in which the FTO substrate
was immersed into a solution of TiCl4 and reacted at 70 ˝C. The device with nanocrystalline rutile
TiO2 showed a PCE of 13.7%, significantly higher than that of the device with planar TiO2 obtained
at 500 ˝C (PCE: 3.7%). The result was attributed to the nanocrystalline rutile TiO2, which can form
an intimate junction with a large interfacial area. As a result, charge extraction was enhanced, leading
to significant increase in device efficiency. To enhance electron selectivity, Yang et al. further modified
the ETL for perovskite solar cells. On the one hand, they used ethoxylated poly-ethyleneimine (PEIE)
to reduce the work function of ITO, leading to enhanced electron transport between the ETL and ITO
layers (Figure 4). On the other hand, yttrium was doped into TiO2 (Y-TiO2), further enhancing electron
transport and extraction. The Y-TiO2 ETL which was annealed at 150 ˝C, showed good conductivity of
2 ˆ 10´5 S¨ cm´1, overcoming the low conductivity of the traditional TiO2. The Y-TiO2 ETL offers good
Ohmic contact and balances charge transport, leading to a high PCE of 19.3% [12]. Different processes
were also introduced to improve the properties of pristine TiOx, such as TiCl4 treatment, anodization,
Zn-doping, y electron beam evaporation, and anodic oxidation, which resulted in a perovskite solar
cell efficiency of around 15%. This is comparable with traditional TiO2-based devices, but is still lower
than that of Y-TiO2–based devices [39–44].

The inferior electron mobility of pristine TiO2 is not an ideal electron transporting layer for
highly efficient perovskite solar cells. Better candidates are expected for further enhancing the
PCE of PHJ perovskite solar cells [45]. In contrast to TiO2, ZnO offers a higher electron mobility
(200–300 cm2¨ V´1¨ s´1) at low temperature processing (requires no heating or sintering step), which
makes it favorable for depositing on thermally sensitive substrates [46]. In addition, the ZnO
solution-deposition process is simple, which makes it better choice over high-temperature deposited
TiO2. PHJ perovskite solar cells using ZnO as an electron transporting layer exhibited a PCE as high
as 15.7%. Furthermore, flexible devices that incorporated ZnO, also showed good performance, with
a PCE of 10% [47].
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image of the device. The layers from the bottom are: (i) ITO/PEIE; (ii) Y-TiO2; (iii) perovskite;
(iv) spiro-OMeTAD, and (v) Au; (B) Diagram of energy levels (relative to the vacuum level) of each
functional layer in the device; (C) XRD patterns corresponding to perovskite film evolution with
annealing time (stage I: 20 min, stage II: 60 min, stage III: 85 min); (D,E) Top-view SEM images of
perovskite films at stage II (D) and stage III (E).

The morphology of perovskite film is not only determined by its internal growth mechanism,
but is also related to the surface properties of the substrates. A method for modifying ZnO-coated
substrates was reported using a self-assemble monolayer (SAM) C3-SAM [48] (Figure 5). The C3-SAM
on the sol-gel ZnO layers would induce significant improvements in the morphology of the perovskite
film due to the enhanced wetting of perovskite on the ZnO, where the amino group was expected to
change into ammonium by hydrogen ion exchange and promotes the crystalline structure of perovskite.
Additionally, the C3-SAM also can tune the work function of the ZnO surface, which would improve the
energy-level alignment and enhance electronic coupling between the ZnO and perovskite. As a result,
charge transportation and extraction can be improved. With the introduction of the C3-SAM, highly
crystalline perovskite films were formed, and better energy-level alignment was available, significantly
increasing the device efficiency from 11.96% to 15.67%. A fullerene derivative (PC70BM) was also
introduced to modify the surface of ZnO as ETL, since charge transfer from perovskite to PC70BM is
very fast. The device used ZnO/PC70BM as electron transport layer allowing the efficient collection
and dissociation of a larger number of excitons [49].

Indium oxide (In2O3), as a promising n-type semiconductor material, has been widely employed
in optoelectronic applications. A low-temperature solution-processed In2O3 nanocrystalline film was
introduced as an ETL in PHJ perovskite solar cells [50]. By taking the advantages of high mobility,
wide band gap, and high transmittance of In2O3, the PHJ perovskite solar cells using In2O3 as an ETL
achieved an efficiency exceeding 13%.
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In addition, to further modify the surface of In2O3 film with PCBM molecule, the pinholes or
cracks along In2O3 grain boundaries were deactivated, further reducing the charge recombination.
As a result, the efficiency of In2O3-based PHJ perovskite solar cells was improved to 14.83%, with Jsc of
20.06 mA¨ cm´2, Voc of 1.08 V, and FF of 0.685. Other metal oxides, such as SnO2, were also introduced
in PHJ perovskite solar cells as an ETL. The corresponding devices showed an promising efficiency of
16.92% [51].

Another device structure for PHJ perovskite solar cells is TCO/HTL/perovskite/ETL/metal
(Figure 3b). The HTL generally is poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS), which is hygroscopic and acidic, making it unsuitable for stable perovskite solar cells.
In addition to functioning as a cathode interface, metal oxides can also be used as anode interfaces
in PHJ perovskite solar cells. To avoid the use of acidic interfacial layers, NiOX was introduced as
an anode buffer layer to replace PEDOT:PSS [52,53]. Although better energy-level alignment was
observed using NiOX, the perovskite cannot form a continuous film on the NiOX. As a result, the ETL
(e.g., PCBM) may contact directly with NiOX through the pinholes. To improve the surface properties,
the NiOX was treated with UV-ozone, whereby the resulting device showed a PCE of 7.8%. However,
the performance of perovskite solar cells based on NiOX HTL is still not satisfactory when compared
with other HTLs due to the low FF and Jsc [29,54]. To solve this problem, doping was employed to
improve the conductivity of NiOx [55]. Copper was used to dope in NiOX (Cu-NiOX) with a solution
processing method, which is simple and allows for the fabrication of high performance perovskite
solar cells due to the improved electrical conductivity and favorable perovskite crystallization [28].
The devices based on Cu-NiOX showed a high PCE of 15.4%, with Jsc of 19.01 mA¨ cm´2, Voc of
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1.11 V, and FF of 0.73. This result indicated that less potential losses can be achieved with Cu-NiOx as
an HTL, which confirms the promising applicability of Cu-NiOX in perovskite solar cells. However, the
Cu-NiOX HTL has to be annealed at temperatures above 400 ˝C in order to achieve high crystallinity.
Recently, a low-temperature, Cu-NiOX hole-transporting layer was reported [56]. The resulting
perovskite solar cells exhibited a high PCE up to 17.8%, with Jsc of 22.23 mA¨ cm´2, Voc of 1.05 V,
and FF of 0.76. A low-temperature processed NiO-based nanocrystal ink (LT-NiO) was introduced as
an HTL, which increased the efficiency to 17.5%, with Jsc of 20.57 mA¨ cm´2, Voc of 1.111 V, and FF of
0.77 [57]. Additionally, a solution-derived NiOx or NiOx nanoparticle was also introduced as an HTL
to replace PEDOT:PSS, the devices showed the efficiency of 16.47% and 16.1%, respectively, and the
device performance were retained for up to 60 days [58,59].

Table 1. Device characteristics of representative PHJ perovskite solar cells employing metal oxide as
the supporting layer.

Device Structure Voc (V) Jsc (mAcm´2) FF PCE (%) Ref.

ITO/TiCl-TiO2/CH3NH3PbI3´xClx/Spiro-OMeTAD/Au 1.09 19.7 0.759 16.4 [39]
FTO/A-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Ag 1.06 20.5 0.7 15.2 [40]
FTO/Zn-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Ag 1.04 23.83 0.649 16.07 [41]
ITO/AO-TiO2/CH3NH3PbI3´xClx/Spiro-OMeTAD/Au 1.00 19.08 0.71 13.47 [44]
FTO/PW12-TiO2/CH3NH3PbI3´xClx/Spiro-OMeTAD/Au 1.1 20 0.7 15.45 [43]
ITO/E-TiOX/CH3NH3PbI3/P3HT/MoO3/Ag 0.93 27.8 0.57 14.7 [42]
FTO/Zn-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au 1.05 19.8 0.64 13.7 [38]
ITO/PEIE/Y-TiO2/CH3NH3PbI3´xClx/Spiro-OMeTAD/Au 1.13 22.75 0.75 19.3 [12]
ITO/ZnO/ CH3NH3PbI3/Spiro-OMeTAD/Ag 1.03 20.4 0.75 15.7 [47]
ITO/ZnO/SAM/ CH3NH3PbI3/Spiro-OMeTAD/Ag 1.07 22.5 0.65 15.67 [48]
ITO/In2O3/CH3NH3PbI3/Spiro-OMeTAD/Au 1.07 17.9 0.68 13 [50]
ITO/In2O3/PCBM/ CH3NH3PbI3/Spiro-OMeTAD/Au 1.08 20.06 0.685 14.83 [50]
ITO/SnO2/(FA0.85MA0.15Pb(I0.85Br0.15)3/Spiro-OMeTAD/Au 1.09 23.06 0.68 16.92 [51]
ITO/Cu-NiOX/CH3NH3PbI3/C60/Bis-C60/Ag 1.12 19.16 0.73 15.4 [60]
ITO/Cu-NiOX/CH3NH3PbI3/C60/Bis-C60/Ag 1.05 21.6 0.77 17.46 [56]
ITO/NiOX/CH3NH3PbI3/ZnO/Al 1.01 21 0.76 16.1 [59]
ITO/LT-NiO/CH3NH3PbI3´xClx/PCBM/PDINO/Ag 1.111 20.57 0.77 17.5 [57]
ITO/NiOX/CH3NH3PbI3/PCBM/Ag 1.07 20.58 0.748 16.47 [61]
ITO/MoOX/CH3NH3PbI3/PCBM/C60/BCP/Al 0.96 16.5 0.41 6.5 [62]
ITO/VOX/CH3NH3PbI3/PCBM/C60/BCP/Al 0.9 22.29 0.71 14.23 [63]

Besides NiOX, another p-type metal oxide, VOX, which shows high transmittance and quenching
efficiency with perovskite, was introduced as an HTL in inverted PHJ perovskite solar cells [63]. Firstly,
the numerical value of x in VOX was 2.428, indicating the good conductivity due to the presence of
oxygen vacancy. Secondly, the VOX layer was able to enhance the wettability of the substrate surface.
Thirdly, the valence band energy level of VOx is 5.36 eV, which can be matched well with perovskite
film. Fourthly, the steady-state photoluminescence (PL) of perovskite thin films on the VOX indicated
that holes could be effectively extracted from perovskite. Finally, with a solvent-assisted process,
perovskite thin film can be formed with high percentage coverage. In view of the integrated properties
of the VOX, the corresponding inverted PHJ perovskite solar cells showed a PCE of 14.24%, with Jsc of
22.29 mA¨ cm´2, Voc of 0.9 V, and FF of 0.71. Other p-type metal oxide, MoOX, was also introduced in
inverted PHJ perovskite solar cells as an HTL, which showed a PCE of 6.5% with a Jsc of 16.5 mA¨ cm´2,
Voc of 0.96 V, and FF of 0.41, much lower than the efficiencies mentioned above [62].

3. Molecular Interfacial Materials

Molecular interfacial materials were introduced in PHJ perovskite solar cells only in the past
few years, offering a promising method to improve the performance. The details are summarized in
Table 2. PEDOT:PSS is usually used in organic electronics because of its simple solution processing,
planarization effect on the underlying ITO layer, and a low-temperature annealing process [64].
In polymer solar cells, the PEDOT:PSS has been widely used as an HTL [65,66]. The PEDOT:PSS
was first introduced in perovskite solar cells by Guo et al., who employed a glass/ITO/PDOET:PSS
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substrate as the anode, CH3NH3PbI3/fullerene(C60) as an active layer, and BCP/Al as the cathode.
The corresponding device showed an efficiency of 3.9% [18]. Soon after, various perovskite casting
methods were employed to improve the PCE to about 18%. To study the role of HTL (e.g., PEDOT:PSS),
HTL-free inverted perovskite solar cells were fabricated. The devices achieved a remarkable efficiency
of 12.5%, with Jsc of 16.1 mA¨ cm´2, Voc of 0.99 V, and FF of 0.739. This is promising though it is still
not satisfactory when compared with traditional PEDOT:PSS HTL due to the low FF and Jsc [67,68].
This indicated that HTL is critically important in efficient perovskite solar cells. Various additives,
such as grafted sulfonated-acetone-formaldehyde lignin (GSL), TiO2/MoO3, and nanoparticle MoOX

were introduced to dope PEDOT:PSS, which are expected to increase the conductivity of HTL and
modify the morphology of perovskite films. The corresponding devices showed efficiencies of 14.94%,
15.79%, and 13.63%, respectively [69–71].

Table 2. Device characteristics of representative PHJ perovskite solar cells employing molecular
interfacial materials as the supporting layer.

Device Structure Voc (V) Jsc (mAcm´2) FF PCE (%) Ref.

FTO/PEDOT:PSS/CH3NH3PbI3´xClx/PCBM/Ag 0.94 22.4 0.83 17.47 [22]
ITO/PEDOT:GSL/CH3NH3PbI3/PCBM/Al 1.03 20.1 0.72 14.94 [69]
ITO/TiO2-MoO3-PEDOT:PSS/CH3NH3PbI3´xClx/C60/Bphen/Ag 0.96 17.35 0.84 13.63 [71]
ITO/MoOx-PEDOT:PSS/CH3NH3PbI3´xClx/PCBM/Bphen/Ag 0.97 21.59 0.754 15.79 [70]
ITO/PEDOT:PSS-Ag/CH3NH3PbI3´xClx/PCBM/Bphen/Ag 0.93 21.51 0.79 15.75 [72]
ITO/PEDOT:PSS/PolyTPD/CH3NH3PbI3/PCBM/Au 1.05 16.12 0.67 12.04 [30]
ITO/SOHEL/CH3NH3PbI3/PCBM/Al 0.98 16.7 0.71 11.7 [73]
PET/ITO/PEDOT:PSS/PhNa-1T/CH3NH3PbI3/PCBM/Ag 1.03 18.4 0.774 14.7 [74]
ITO/VB-DAAF/CH3NH3PbI3/C60/BCP/Al 1.02 18.92 0.78 15.17 [24]
ITO/CPE-K/CH3NH3PbI3´xClx/PCBM/Al 0.89 20.1 0.77 12.51 [60]
ITO/PT/CH3NH3PbI3/C60/BCP/Ag 0.96 22.4 0.78 15.8 [61]
ITO/PBT/CH3NH3PbI3/C60/BCP/Ag 1.01 21.1 0.764 16.3 [61]
ITO/PCT/CH3NH3PbI3/C60/BCP/Ag 1.01 21.4 0.764 16.5 [61]
ITO/c-OPTD/CH3NH3PbI3/PCBM/C60/BCP/Al 1.05 22.4 0.756 17.8 [23]
ITO/PTAA/CH3NH3PbI3/PCBM/C60/BCP/Al 1.07 22 0.768 18.1 [23]

Although the perovskite can form good film quality on the ITO/PEDOT:PSS, the work function of
PEDOT:PSS cannot match well with the perovskite. In addition, the ambipolar properties of perovskite
itself may allow the electrons from the perovskite to inject into the ITO/PEDOT:PSS electrode [75].
PolyTPD were selected for electron-blocking layers as its appropriate highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels, can match well with the
valence band and conduction band of the perovskite, respectively, allowing for efficient hole transport
from perovskite to polyTPD (Figure 6). As the LUMO of polyTPD is closer to vacuum level than the
conduction band of perovskite, polyTPD can efficiently block the flow of electrons from perovskite.
The corresponding device with polyTPD showed an efficiency of 12.04% and a Voc of 1.05V [30].
Additionally, since the work function of PEDOT:PSS is lower than the ionization potential of perovskite,
the potential energy loss would present at the PEDOT:PSS/perovskite interface. By the introduction
of polyTPD, the energy loss in perovskite solar cells could be decreased. To modify the interface
between the perovskite and the ITO electrode, a self-organized HTL (SOHTL), which is composed of
PEDOT:PSS and perfluorinaated (PFI), was introduced in perovskite solar cells. This SOHTL affords
a good energy level alignment with the ionization potential of perovskite, which could reduce the
potential energy loss at the PEDOT:PSS/perovskite interface [73]. A polymeric material obtained from
the copolymerization of 1,4-bis(4-sulfonatobutoxy)benzene and thiophene moieties (PhNa-1T) was also
deposited on PEDOT:PSS. The incorporation of PhNa-1T into to the HTL, charge extraction from the
perovskite to HTL was enhanced and charge recombination in the bulk perovskite and HTL/perovskite
interface were thus suppressed. As a result, the flexible perovskite solar cells achieved a high efficiency
of 14.7%, with Jsc of 18.4 mA¨ cm´2, Voc of 1.03 V, and FF of 0.774. More importantly, the PhNa-1T
interlayer allowed perovskite solar cells to have better stability than PEDOT:PSS in air [74].



Molecules 2016, 21, 837 9 of 18

Molecules 2016, 21, 837 9 of 17 

 

 
Figure 6. (a) Stacked layer structure; (b) Schematic of the relative energy levels of each layer; (c) 
Chemical structure of the polyarylamine (polyTPD); (d), Chemical structure of PCBM. Reprinted 
from [30] with permission . Copyright 2013, rights managed by Nature Publishing Group. 

 
Figure 7. (a) Device configuration of the hybrid solar cell in this study of glass/ITO/electrode 
interlayer/CH3NH3PbI3 perovskite/C60/BCP/Al. The inset depicts the molecular structure of the 
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Copyright 2015, American Chemical Society. 

The polymerized VB-DAAF HTL exhibited good energy-level alignment with the 
valence-band-edge level of perovskite, enhancing hole transportation. The large energy barrier 
between the polymer and perovskite in the conduction-band-edge level effectively blocked electrons 
from reaching the positive electrode and reduced the photon energy loss due to recombination. By 
depositing VB-DAAF on PEDOT:PSS, the recombination of photo-generated charge carriers was 

Figure 6. (a) Stacked layer structure; (b) Schematic of the relative energy levels of each layer;
(c) Chemical structure of the polyarylamine (polyTPD); (d) Chemical structure of PCBM. Reprinted
from [30] with permission . Copyright 2013, rights managed by Nature Publishing Group.

Recently, a functional p-type, polymerized organic electrode interlayer was reported [24] (Figure 7).
The styrene-functionalized 9,9-diarylfluorene-based triaryldiamine monomer (VB-DAAF) was directly
cast on the substrates by a spin-coating process. Then, the uniform and flat polymerized VB-DAAF
HTL was formed after thermal annealing at 195 ˝C.

Molecules 2016, 21, 837 9 of 17 

 

 
Figure 6. (a) Stacked layer structure; (b) Schematic of the relative energy levels of each layer; (c) 
Chemical structure of the polyarylamine (polyTPD); (d), Chemical structure of PCBM. Reprinted 
from [30] with permission . Copyright 2013, rights managed by Nature Publishing Group. 

 
Figure 7. (a) Device configuration of the hybrid solar cell in this study of glass/ITO/electrode 
interlayer/CH3NH3PbI3 perovskite/C60/BCP/Al. The inset depicts the molecular structure of the 
VB-DAAF monomer; (b) Diagrams the energy levels of each layer. Reprinted with permission [24]. 
Copyright 2015, American Chemical Society. 

The polymerized VB-DAAF HTL exhibited good energy-level alignment with the 
valence-band-edge level of perovskite, enhancing hole transportation. The large energy barrier 
between the polymer and perovskite in the conduction-band-edge level effectively blocked electrons 
from reaching the positive electrode and reduced the photon energy loss due to recombination. By 
depositing VB-DAAF on PEDOT:PSS, the recombination of photo-generated charge carriers was 

Figure 7. (a) Device configuration of the hybrid solar cell in this study of glass/ITO/electrode
interlayer/CH3NH3PbI3 perovskite/C60/BCP/Al. The inset depicts the molecular structure of the
VB-DAAF monomer; (b) Diagrams the energy levels of each layer. Reprinted with permission [24].
Copyright 2015, American Chemical Society.

The polymerized VB-DAAF HTL exhibited good energy-level alignment with the valence-band-
edge level of perovskite, enhancing hole transportation. The large energy barrier between the polymer
and perovskite in the conduction-band-edge level effectively blocked electrons from reaching the
positive electrode and reduced the photon energy loss due to recombination. By depositing VB-DAAF
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on PEDOT:PSS, the recombination of photo-generated charge carriers was reduced and the energy loss was
decreased, resulting in the Voc increasing from 0.85 V to 0.99 V and the Jsc increasing from 16.37 mA¨ cm´2

to 21.53 mA¨ cm´2. Meanwhile, the removal of PEDOT:PSS decreased the series resistance of the
device and further enhanced the efficiency of solar cells to 15.17%. To overcome the acid PEDOT:PSS,
a pH-neutral and low-temperature deposited conjugated polyelectrolyte poly[2,6-(4,4-bis-potassium
butanylsulfonate-4H-cyclopenta-[2,1-b;3,4-b’]-di-thiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (CPE-K)
was also introduced to fabricate PHJ perovskite solar cells, resulting in a PCE of 12.51% [60,76].
Moreover, poly(3-methylthiophene) (PMT), poly(thiophene) (PT), poly(3-bromothiophene) (PBT) and
poly(3-chlorothiophene) (PCT) were also introduced to replace PEDOT:PSS, resulting in PCEs of 12.3%,
15.8%, 16.3%, and 16.5%, respectively [61]. Previous results indicated that it is difficult for perovskite
to form a continuous film on the non-wetting substrate. Nevertheless, this issue was overcome by
Huang et al., who developed a new method to grow perovskite film with large crystalline grains on
non-wetting HTL [23]. The resulting large crystalline grains in perovskite reduced the grain boundaries
which could cause charge recombination due to the presence of large density of charge traps [12,77–80].
The perovskite device with large-size grain showed a PCE of 18.3% due to enhanced Jsc, Voc and
FF (Figure 8). The reason was attributed to the surface tension dragging force from the wetting
PEDOT:PSS substrates, which could reduce the grain boundary mobility. However, the dragging force
can diminish if the substrate is non-wetting, which enables the growth of larger grains, yielding higher
grain boundary mobility. They found that non-wetting hole transporting layers can increase nucleus
spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain
growth by imposing less drag force. Thus, non-wetting hole transporting layers are favorable for the
growth of perovskite grain with high average aspect ratio. Consequently, all photo-generated charges
could diffuse to the charge transport layers over grain boundaries without recombination, and the
device efficiency was only determined by the charge recombination at grain boundaries or at electrode
interfaces. Also studied different non-wetting substrates with several polymers. When a crosslinked
N4,N41-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)-N4,N41-diphenylbiphenyl-4,41-diamine
(c-OTPD) or poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA) was used as a HTL, the PHJ
perovskite solar cells showed efficiencies of 17.8% and 18.1%, respectively. The PTAA allowed for the
presence of larger perovskite grains and had higher work function than that with c-OTPD. By doping
a strong electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) in PTAA
for enhancing the conductivity, the device with non-wetting PTAA HTL showed a high PCE of 18.3%.
These works demonstrated that the use of non-wetting HTLs is an effective way to improve the
efficiency of the devices. In addition, the non-essential of acidic PEDOT:PSS is expected to achieve
better stability.

4. Other Interface Materials

Besides the interface materials mentioned above, other emerging novel interface materials are also
developed for PHJ perovskite solar cells, including graphene oxide and inorganic materials [81–83].
These materials have shown promising characteristics in device efficiency and stability (Table 3).

Graphene oxide was introduced to be a hole transporting layer in polymer solar cells for enhancing
efficiency and stability because of its suitable work function and acceptable vertical resistivity or its
surface effect on the active layer [84–86]. Graphene oxide, an intimate graphene derivative, was also
introduced into PHJ perovskite solar cells as a hole conductor by replacing the acidic PEDOT:PSS
(Figure 9). The graphene oxide layer can efficiently extract hole from perovskite, and facilitate the
formation of homogenous large domains as well as surface coverage. By optimizing thickness of the
graphene oxide layer, balanced charge transport within the perovskite was achieved, which contributed
to the improvement of Jsc and FF.

Furthermore, the presence of graphene oxide allows the perovskite film to grow into larger
textured domains, resulting in a complete coverage. The device with graphene oxide as a HTL,
showed a high PCE of 12.5%, which is comparable to the cells using the conventional PEDOT:PSS.
The GO/PEDOT:PSS hybrid bilayer HTL was successfully developed for inverted PHJ perovskite



Molecules 2016, 21, 837 11 of 18

solar cells, where GO layer can efficiently extract holes out of perovskite and block electrons at
ITO/PEDOT:PSS interlayer from recombination, leading to an efficiency of 13.1% [87]. Furthermore,
an ammonia modified graphene oxide (GO:NH3) was introduced into PEDOT:PSS. The resulting
PEDOT:PSS-GO: NH3 HTL-based inverted PHJ perovskite solar cells achieved a high PCE of
16.11% [61]. A hysteresis-free planar perovskite solar cell with a PCE of 19.1% was achieved by
using a room-temperature vacuum-processed C60 ETL [74].

High efficiency of perovskite solar cells generally can be achieved at a small effective device area
(e.g., <0.1 cm2), but poor stability is often observed. Although a number of studies have reported
the fabrication of centimeter-scale perovskite solar cells, the efficiency obtained from those devices is
inferior [88,89]. NiMgLiO was introduced as a HTL to replace PEDOT:PSS due to its high conductivity
of 2.32 ˆ10´3 S cm´1. The NiMgLiO based HTL offered Ohmic contact at the FTO-perovskite interface
by decreasing the barrier height through the staircase energy level alignment, and enhanced hole
extraction was obtained. With the NiMgLiO based HTL, a large-size (1.02 cm2) perovskite solar
cell with an efficiency of up to 16.2% was achieved. Furthermore, hyteresis in the current-voltage
characteristics was eliminated, with 90% of the initial PCE remaining after 1000 hours light soaking.
Other inorganic materials, CdS and CuS, were introduced as ETL, HTL respectively in conventional
and inverted PHJ perovskite solar cells, which achieved PCEs of 12.2% and 16.2%, respectively [90,91].
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Figure 8. The contact angle of water on the varied HTLs (a), the cross-section SEM (b), top-view SEM
(c) and X-ray diffraction patterns of the 360-nm MAPbI3 grown on PVA-, PEDOT:PSS-, c-OTPD-, PTAA-
and PCDTBT-covered ITO substrates (g). Scale bars, 1 µm in b,c; (d,e) the top-view SEM images of the
MAPbI3 grown on PEDOT:PSS (top row) and c-OTPD (bottom row) right after drying and after 20,
40 and 65 min of thermal annealing at 105 ˝C. Scale bar, 1 µm; (f) HTL-dependent X-ray diffraction
(110) peak full width at half maximum (FWHM) and average grain size/thickness aspect ratio of the
MAPbI3. Reprinted with permission. Copyright 2015 macmillan publishers limited.
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Figure 9. (a) Schematic of the inverted photovoltaic device configuration consisting of a structure
of ITO/GO/CH3NH3PbI3´xClx/PCBM/ZnO/Al; (b) Cross-sectional SEM image of the optimized
inverted device configuration. Reprinted with permission [82]. Copyright 2014, Royal Society
of Chemistry.

Table 3. Device characteristics of representative PHJ perovskite solar cells employing graphene oxide
and inorganic materials as the supporting layer.

Device Structure Voc (V) Jsc (mAcm´2) FF PCE (%) Ref.

ITO/GO/ CH3NH3PbI3´xClx/PCBM/ZnO/Al 1 17.46 0.71 12.4 [82]
ITO/GO/PEDOT:PSS/CH3NH3PbI3/PCBM/Al 0.96 17.96 0.76 13.1 [87]
ITO/PEDOT:PSS/GO:NH3/CH3NH3PbI3´xClx/PCBM/Bphen/Ag 1.03 22.06 0.71 16.11 [61]
ITO/BCP/C60/CH3NH3PbI3/Spiro-OMeTAD/Au 1.09 23.91 0.73 19.12 [74]
FTO/NiMgLiO/CH3NH3PbI3/PCBM/Ti(Nb)OX/Ag 1.072 20.62 0.748 16.2 [83]
ITO/CdS/CH3NH3PbI3/Spiro-OMeTAD/Au 0.977 17.54 0.71 12.2 [90]
ITO/CuS/CH3NH3PbI3/C60/BCP/Ag 1.02 22.3 0.71 16.2 [91]

5. Summary and Outlook

The unique combination of virtually all the good properties required in a solar cell provides
perovskite solar cells with excellent performance over other thin-film solar cells. This review has
highlighted interface engineering of the layer under the perovskite film in different materials, especially
the role of different molecules on perovskite solar cells. Efforts dedicated towards optimizing the
interface included the following four aspects: (1) better alignment of the interfacial work function with
perovskite, which can improve the transfer of charges and increase the device Voc; (2) high charge
extraction and transport capacity; (3) interfacial properties to optimize the perovskite film growth; and
(4) new ETL/HTL materials to improve the device stability. Molecular interfacial materials, which
have the advantages of simple solution processing, low-temperature annealing process, and tunable
electrical as well as optical properties, offer a bright future for the optimization of PHJ perovskite
solar cells.

Though device efficiency and stability have been significantly improved, many issues still remain
to be solved before perovskite solar cells can be used in real applications. The challenges are
contained as the following aspects: (1) film morphology control of perovskite. In spite of efforts
dedicated to optimize the perovskite film such as solution-based hot-casting [22], vapor-deposition [3],
additive optimization [19,92,93], solvent optimization [94,95], solvent annealing [20], and perovskite
precursor solution optimization [96,97] to control the high quality perovskite thin film growth, the
complex procedures of perovskite film preparation make the availability of uniform and large size
perovskite films difficult. Meanwhile, there are still many problems with no reasonable explanation in
perovskite solar cells such as hysteresis and S-shaped current-voltage characteristics; (2) device stability.
The stability of solar cells is the key to realize real applications. In spite of efforts dedicated to develop
novel interfacial materials, the stability of perovskite solar cells is far inferior to that of traditional
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crystalline silicon solar cells. The molecular interfacial materials, which show good compatibility
with perovskite, provide a promising way to further improve the stability of perovskite solar cells;
(3) Pb. The presence of Pb in perovskite solar cells restricts the further large-scale applications due
to the potential environmental pollution and health damage. Sn2+, Cu2+ and Fe2+ are the potential
candidates to replace Pb. However, due to the limit of low mobility and diffusion length, as well as the
poor stabilisation of lead-free perovskite material, the efficiency of lead-free perovskite solar cells is
still obviously lower than traditional lead-based perovskite solar cells [98–100].

With rapid development of perovskite solar cells, commercial applications in the near future are
expected by sequentially solving the challenges mentioned above, opening up a new way for efficient,
low-cost and flexible power generation.
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