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Abstract: Passerina del Frusinate is an autochthonous wine grape variety, which grows in
the Lazio region that is currently being evaluated by local wine producers. In this study,
colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols),
HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del
Frusinate white wines and the effect of different maceration times (0, 18 and 24 h) were evaluated
based on these parameters. Results highlighted statistically significant differences for almost all
analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan
content of macerated wines was six times higher than that of the control, while total polyphenols were
1.5 times higher. According to their phytochemical content, macerated wines showed the highest
antiradical capacity tested by means of DPPH® and ABTS*® assays. Besides, prolonged maceration
resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and
antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and
caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged
maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant
potential similar to that of red wines.
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1. Introduction

Passerina del Frusinate (PF) is a recognised geographical indication (RGI) for wine originating in
the southwest of Rome, in the region of Lazio. Passerina is an old white grape variety of Vitis vinifera L.,
which grows in central Italy. It is currently widespread in the Marches, particularly in Piceno, Abruzzo,
Emilia Romagna and Lazio, almost exclusively in the province of Frosinone, where it is known as
Passerina del Frusinate cv. Although PF has been replaced for a long period in cultivation with other
varieties, such as Trebbiano, which is more vigorous and productive but of lower quality, it is now at
the centre of the renewed interest of local vine growers, thanks to the excellent quality of its RGI wines.
In the province of Frosinone, the vinification of PF grapes occurs both with and without skin contact.
Pre-fermentative skin contact is an increasingly widespread alternative technique for the production
of white wines adopted to extract the phenolics responsible for the aged character of wine [1].

It is well known that phenolic compounds contribute to the sensory characteristics of wine,
such as colour, flavour and astringency [2]. Moreover, several studies have highlighted the health
properties of polyphenols found in grapes and wine, which are responsible for most of their antioxidant
properties [3]. Wine (especially red wine) contains a plethora of phenolics such as phenolic acids,
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flavonoids, tannins, stilbenes and coumarins, and for this reason, at a moderate level of consumption,
may be considered a good functional food [4]. In this regard, several epidemiological studies have
demonstrated a direct association between the reduced risk of cardiovascular diseases and moderate
alchohol consumption [4]. Sacanella et al. (2007) reported a reduction of some inflammatory biomarkers
associated with coronary heart disease after wine consumption, which reached 51% in the case of white
wine’s somministration [5]. Phenolic compounds are marked by a broad spectrum of health-promoting
functions such as antioxidants, blood pressure- or blood sugar-influencing substances, or agents
with anticarcinogenic, immunity-supporting, antibacterial, antifungal, antiviral, cholesterol-lowering,
antithrombotic or anti-inflammatory effects [4,6]. In white winemaking, maceration is generally
used to enrich wine in aroma compounds. However, wine practices also affect the final content
of polyphenols in wine [4], and this aspect is very important to consider as polyphenols not only
enhance the functional properties of wine but also strongly affect its sensorial traits. In this regard, it is
fundamental to keep the phenolic content in a range that does not compromise the wine’s acceptability
by consumers [7] and, consequently, determine the correct length of maceration during vinification.
Among polyphenols, the most important compounds in white wines, both in terms of quantity and
ability to participate in redox reactions, are non-flavonoid phenols: mainly hydroxybenzoic (HBA)
and hydroxycinnamic (HCA) acids [8,9]. In particular, it has been reported that cinnamic acids are
precursors of volatile aroma compounds and are also associated, with flavan-3-ols, with the wine
browning process [10]. They also exert important antioxidant properties and have potential osteogenic
effects, particularly p-coumaric acid [11]. To date, no information is available on the quality traits
(e.g., colour properties and phytochemical content) and antioxidant potential of Passerina del Frusinate
wine. In addition, since the vinification of PF grapes can occur with or without skin maceration
affecting the bioactive molecule composition and the final colour of the produced wines, the present
study aimed at investigating the bioactive compound content, antioxidant potential and phenolic acid
profile of autochthonous Passerina del Frusinate white wines as well as their potential influence on the
colour of wines as a function of the pre-fermentative skin contact times.

2. Results and Discussion

2.1. Color Evaluation

Figure 1 shows the chromatic data for the wines analysed. CIELab coordinates a*, b*, and C,,*
showed significant differences among wines.
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Figure 1. Influence of pre-fermentative skin contact times on the wine colour properties.
WO0: non-macerated wines; W18: maceration length 18 h; W24: maceration length 24 h. Data are
expressed as CIELab coordinates (mean + SE). Experimental number: 24 samples.
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a* had negative values for all the samples analysed, revealing a certain greenish tone characterizing
PF wines, even though they were relatively small values. b* (and consequently C,,*) was the most
discriminant variable between the wines analysed. Both a* and b* increased going from non-macerated
(WO0) to macerated samples, which then appeared more greenish and yellowish [12]. In addition,
L decreased when going from W0 to W24 wines, pointing out a corresponding oxidation [13,14].
In the pre-fermentative maceration, the must is in contact with the freshly pressed grape juice,
but the alcoholic fermentation has not yet begun. At this stage, the skins are essentially in contact
with an aqueous solution, which will mainly determine the extraction of water-soluble substances
(e.g., hydroxycinnamic acids and flavans), which, for the presence of high levels of oxygen in the freshly
pressed juice, are oxidized, producing o-quinones and yellow pigments that give a golden amber tone
to the wine. This tendency for the oxidation of macerated wines was also confirmed by the absorbance
values recorded at 420 nm (0.08 £ 0.01, 0.12 + 0.01 and 0.19 + 0.02, for W0, W18 and W24 samples,
respectively; p < 0.05), which pointed out a browning of these wines compared to the WO ones [14,15].
Among macerated wines, prolonged skin contact time (from 18 to 24 h) resulted in a reduction of the
CIELab coordinates of a* and b* (—41% and —29%, respectively). This may be due to the secondary
oxidative processes that take place with a prolonged maceration. In fact, o-quinones (yellow colour and
unstable compounds), produced by the enzymatic oxidation of o-diphenols, take part in the coupled
oxidation reaction with HCAs and flavans generating colourless or slightly yellow pigments [15].

Wine colour differences perceived by the human eye (AE,p+) [12] were calculated as the Euclidean
distance between two points in the three-dimensional space defined by L, a* and b*. For all analysed
wines, AE,,+ values were significantly greater than 2 (p < 0.05). The highest value of AE,,+ was found
between W0 and W18 (AE,,+ = 4.8 £ 0.9), which was higher than three units, indicating that the
colour difference between these samples can be easily detected by the observer. Besides, the difference
between W18 and W24 samples (2.2 + 0.9, respectively) was less than three units, making it difficult
for the observer to differentiate the colour of these wines.

2.2. Bioactive Compound Content and Antiradical Capacity of Passerina del Frusinate Wines

Table 1 shows the flavan and total phenolic content (named FLC and TPC, respectively) of the
analysed wines. To the best of our knowledge, there is no literature data on the average TPC and FLC
content of PF wines. A comparison between our data on total phenols and that given by the phenol
explorer database [16] showed a good similarity for the TPC mean content of PF samples with those
reported for rose wines. Generally, macerated wines were shown to be significantly richer (+54%;
p < 0.05) in bioactive compounds than in WO ones. Particularly, they had an average FLC six-fold
higher than that of the W0 wines and similar to that normally found for red wines, according to the
findings of Fuhrman et al. [17], who showed that processing white wine by imposing a short period
of grape skin contact produced polyphenol-rich white wine with antioxidant characteristics similar
to those of red wine. On the other hand, Yoo et al. [7] demonstrated that the phenolic enrichment of
white wine could impact the taste greatly. In the present study, the catechin concentration of the W18
samples (247.8 mg CAE/L) was generally below the consumer rejection threshold reported by these
authors, except in the case of white wines spiked with cathechin-rich green tea extract, for which the
rejection threshold of Australian consumers was fixed at a cathechin concentration of 236.4 mg/L. As a
consequence, the right balance between healthy properties and taste/flavour perception should be
kept in mind for producing health-enhanced white wines acceptable to different cultural consumers.

Data pointed out that longer skin contact times resulted in a reduction of the content of phenolic
substances, both in terms of TPC and FLC (—27% and —38%, respectively). This reduction can be
attributed to an increased oxidative degradation of the phenolic fraction of W24 wine, which was
facilitated by a pH value close to 4 (pH W18: 3.55 + 0.02; pH W24: 3.99 + 0.01) as also reported by
Olejar et al. [14]. This hypothesis is confirmed by the work of Sant’Anna et al. [18], which showed that
the reduction of the brightness of the sample (L) is one of the best indicators from a statistical point of
view of the degradation that occurs to the polyphenols and condensed tannins. However, in the present
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study, only a weak but significant correlation between FLC and L (p = —0.439, p (two-tailed) < 0.01) was
found, while a strong correlation was recorded between FLC and a* (p = —0.927, p (two-tailed) < 0.01)
and an even stronger correlation between FLC and b* (p = 0.991, p (two-tailed) < 0.01).

Table 1. Phytochemical content and antiradical capacity of wines analysed (mean + SE).

Sample TPC! FLC? ACppph * ACpprs *
WO 391 +22 327+ 032 37 4+2b 34+06P
W18 695+ 5°¢ 247.8 + 0.8 ¢ 259 +04°2 28.0+ 092
W24 509 +4b 154.0 + 0.5b 36+ 1P 36+ 1P

Experimental number: 24 samples. ! TPC: total polyphenol content expressed as mg GAE/L; 2 FLC:
total flavan-3-ol content expressed as mg CAE/L; 3 ACpppy: antiradical capacity expressed in terms of ECsg
= puL of wine required to obtain 50% DPPH?® scavenging; 4 ACagrs: antiradical capacity expressed in terms
of EC5p = uL of wine required to obtain 50% ABTS*. Significant differences between groups are shown with
different letters according to Bonferroni’s post-hoc test (p < 0.05).

The overall antiradical capacity (AC) of wine samples showed the same trend for both synthetic
radicals (DPPH® and ABTS**) employed (Table 1). W18 wines were statistically more effective than
W24 ones in reducing both the radical targets (p < 0.05), and according to its TPC and FLC it was
the best scavenger. This can be attributed to the extent of the oxidative degradation of the phenolic
fraction of W24 wines, which resulted in a lower AC.

2.3. HPLC-DAD Phenolic Acid Fingerprinting

The quantification of total phenolics in wine is usually done by colorimetric methods.
Nevertheless, these assays suffer from non-specificity and their main disadvantage is that they only
give an estimation of the total phenolic content and they do not give quantitative measurement of
individual polyphenol content. For these reasons, in this study, a reversed-phase HPLC-PAD method
was developed for the qualitative and quantitative analysis of wine phenolic acids (hydroxybenzoic
and hydroxycinnamic acids, namely HBA and HCA, respectively), which are the most important
polyphenolic constituents in white wines, both in terms of quantity and ability to participate in
redox reactions. The proposed HPLC method was also validated for quantitative purposes (Table 2).
Selectivity was checked by using a mixture of available standards, while peak purity was checked
by DAD through multivariate analysis using the Agilent Chemstation. Three spectra corresponding
to the up slope, apex and down slope of each peak were computer-normalized and superimposed.
Peaks were considered pure when the match factor was >98%. The intra- (repeatability) and inter-day
(reproducibility) precision on compound retention times (tr) was evaluated by analysing both a
standard mixture and spiked wine samples. Each solution was measured six times in the same day
(intra-day precision) and three times a day over four weeks for inter-day precision. Then, the calculated
coefficient of variation (CV%) was used to estimate both reproducibility and repeatability. The low
variance (0.03-0.29 and 0.18-0.67 for Intra-D and Inter-D, respectively) obtained was good enough for
phenolic quantification (Resurreccion, 2009). The LOD (Limit Of Detection) ranged from 0.02 ppm
for ferulic acid to 0.88 ppm for gallic acid, while the LOQ (Limit Of Quantification) from 0.05 ppm
for ferulic acid to 2.89 ppm for vanillic acid. Ten-point calibration curves based on external standard
solutions (0-100 ppm) were generated for each phenolic compound. Linearity was also evaluated
by analysing both a standard mixture and spiked wine samples with known amounts of different
standard mixture. Pearson’s coefficients obtained by plotting the peak area vs. concentration were
>0.999, thus confirming the linearity of the method (data not shown).
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Table 2. Validation parameters for the analysed bioactive compounds using pure standards.

Retention Time Intra-D Inter-D LOD! LOQ 2

Chemical Class Compound (min) (CV%) (CV%)  (ppm) (ppm)
Gallic acid 10.31 + 0.03 0.29 0.67 0.88 2.66
HBAs 3 Vanillic acid 33.35 + 0.02 0.06 0.33 0.95 2.89
Syringic acid 34.42 + 0.01 0.03 0.18 0.10 0.29
Caffeic acid 33.71 + 0.01 0.04 0.20 0.36 1.11
4-coumaric acid 37.66 + 0.01 0.04 0.18 0.57 1.34
HCAs * Ferulic acid 39.06 + 0.01 0.03 0.18 0.02 0.05
3-coumaric acid 40.16 + 0.02 0.05 0.21 0.25 0.77
2-coumaric acid 43.08 + 0.02 0.05 0.28 0.36 1.09

1 LOD: limit of detection; 2 LOQ: limit of quantitation; 3 HBAs: hydroxybenzoic acids;
4 HCAs: hydroxycinnamic acids.

Figure 2 shows the typical HPLC-DAD profiles obtained for both phenolic acid standard mixture
and wine samples analysed (in the inset of the figure).
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Figure 2. Typical HPLC-DAD chromatograms of phenolic acids and wine samples (in the inset)
recorded at 320 nm. 1: caffeic acid; 2: syringic acid; 3: 4-coumaric acid; 4: ferulic acid; 5: 3-coumaric
acid; 6: 2-coumaric acid.

As expected, the highest amount of phenolic acids was found in macerated wines, according to
the following order: W18 > W24 > WO (Table 3). W18 samples showed a total phenolic acid content
(TFAC) about two times higher than that of the other wines. Regarding the different phenolic acid
classes analysed, the total content of HCAs was higher than that of HBAs for all the wines. Maceration
led to a higher content of HCAs in the wine regardless of the skin contact time. Moreover, while W18
showed an increase of both HCA and HAB contents compared to that of W0 samples, prolonged skin
contact time up to 24 h produced a strong reduction of HBA content (—42%) in W18 samples [12].
The higher content of HCAs of macerated wines agreed with spectral analysis (i.e., CIELab coordinates
and 420 nm absorbance values) as previous studies demonstrated that HCAs can be both oxidation
substrates and browning precursors, accounting for the higher oxidation potential of wines undergoing
a long skin contact time [14]. Results also showed a decrease in almost all phenolic acids analysed with
the increasing skin contact time. This can be explained taking into account that oxidative processes
play a significant role in changing the phenolic composition of wine since they are accompanied by the
oligomerization of the original phenolic compounds.
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Table 3. Concentration (mg/L) of phenolic compounds determined by HPLC-DAD in the analysed

wines (mean + SE).

Chemical Class Compound WO W18 W24
gallic acid 10.6 £ 0.1°¢ 59+0.1°P 342 +0.04°
HBAs ! vanillic acid 5.23 +0.052 162 +0.2°¢ 85+ 0.2P
syringic acid 3.30+0.01° 85+02°¢ 59+0.1°
caffeic acid 2.36 +0.022 134+0.1°€ 5.69 +0.04 b
4-coumaric acid 1.75 £ 0.01P 141 +0.042 1.94 +0.01°¢
HCAs? ferulic acid 1.40 +0.01 2 1.39+£0.022 175+ 0.02"b
3-coumaric acid trace trace nd
2-coumaric acid trace trace nd

6 0f 9

Experimental number: 24 samples. 1 HBAs: hydroxybenzoic acids; 2 HCAs: hydroxycinnamic acids.
nd: not detectable. Trace is below the LOQ but above the LOD. In a row, significant differences are shown with
different letters according to Bonferroni’s post-hoc test (p < 0.05).

Table 3 summarizes the content of identified HBAs in the studied samples. Vanillic acid was the
most abundant one in the macerated wines, followed by syringic and gallic acids, the latter being the
most abundant HBA in W0 samples (Table 3). The identified HBAs represent 5%, 4.4% and 3.5% of the
total phenols in W0, W18 and W24 samples, respectively. Among macerated wines, prolonged skin
contact time up to 24 h negatively affected the overall HBA content, especially that of vanillic acid,
whose concentration was almost halved by prolonged maceration.

Among HCAs, which were higher in macerated samples than in WO ones, caffeic acid was
the most abundant, ranging from 2.36 to 13.4 mg/L (Table 3). This is particularly interesting
as free caffeic acid is released by hydrolysis of caftaric acid, a hydroxycinnamate, which during
fermentation is oxidized into its principal components. The final concentration of caffeic acid in wine
is therefore dependent on oenological practices and this fact can explain the differences observed
between macerated and W0 samples. For what concerned the macerated wines, as previously
observed for HBA content, prolonged skin contact time negatively affected the overall HCA content
of W24 samples, mainly that of caffeic acid (—57.5%), which proved to be the most susceptible to
degradation as a result of prolonged maceration. It is a very relevant feature, as Migliori et al. [19]
reported that this acid, at the concentrations generally found in white wines, may exert a protective
effect on endothelial injury induced by hypoxia and uremic toxins. The reduction of caffeic acid
following its oxidation due to prolonged maceration correlates well with the browning of white
wines. In fact, correlation analysis pointed out a good correlation between caffeic acid and the
CIELab coordinate L (p = —0.718, p (two-tailed) < 0.01) and between caffeic acid and a* (p = —0.860,
p (two-tailed) < 0.01). Besides, a strong positive correlation was established between caffeic acid and
b* (p = 0.941, p (two-tailed) < 0.01).

3. Materials and Methods

3.1. Chemicals

For the analysis, four bottles of each wine were analysed and all the reagents used were
of analytical spectrophotometric grade (Carlo Erba, Rome, Italy). Folin-Ciocalteu reagent,
gallic acid, catechin, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH®), vanillin, 2,2’-azinobis-
(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS), potassium persulfate, and vanillin were purchased from
Sigma-Aldrich (Milan, Italy). Standards used for identification and quantification purposes with HPLC
were purchased from Extrasynthese (Genay, France) and Sigma-Aldrich (Milan, Italy). Organic solvents
used for chromatography were of HPLC ultragradient grade (Sigma Aldrich, Milan, Italy), while the
water employed was previously purified in a Milli-Q system (Millipore, Milan, Italy). The 0.45 pm
pore size membrane filters from Pall (Pall Corporation, Ann Arbor, MI, USA) were used for filtration
of both mobile phases and samples.
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3.2. Wine Samples

Mono varietal (100% Passerina cultivar, grown at Piglio (Frosinone, central Italy) (41°49'0"N
latitude; 3°07'60"E longitude) commercial white wines (vintages 2013-2014; number of wine samples
per year: three wines; number of bottles analysed: four per wine) were obtained by local wineries.
All wines were produced using the same winemaking process. Briefly, grapes were destemmed,
crashed and then transferred into stainless steel tanks for maceration. The maceration was carried
out by control the skin contact conditions (18 and 24 h at 20 °C for W18 and W24 wines, respectively).
After maceration, pomaces were softly pressed and sulphur dioxide was added to the obtained must
(final concentration: 55 mg/L). No selected yeasts were used. Control wines were produced in the
same manner without maceration (W0). At the end of fermentation, the wines were racked and stored
in stainless steel tanks to stabilize. Finally, they were filtered and bottled.

3.3. Wine Colour Evaluation

Wine colour evaluation was made using a chromameter (CR-400, illuminant D65, 10° standard
observer; Minolta, Osaka, Japan) tristimulus colour analyser. All samples were filtrated trough
0.45 m PTFE filters (Millipore, Milan, Italy). The visible reflectance spectra (380-770 nm) were
recorded (AA=2nm) and colour definition was made using the CIELab space, according to
Gomez-Miguez et al. [12].

3.4. Determination of Total Polyphenol Content

TPC of wine samples was determined using the Folin-Ciocalteu (F-C) method [20], with some
modifications as reported by Carbone et al. [21]. TPC was calculated from a calibration curve,
using gallic acid as a standard. Results were expressed as milligrams of gallic acid equivalents
(GAE) per L of wine (ppm).

3.5. Determination of Flavan-3-ols

The vanillin assay was performed as reported by Carbone et al. [21]. FLC was calculated
from a calibration curve, using catechin as a standard. Results were expressed as ppm of catechin
equivalents (CTE).

3.6. Antiradical Capacity Determination

The DPPH* quenching capacity was estimated spectrophotometrically according to Carbone et al. [21].
The decrease in absorbance was measured at 517 nm against a blank (using methanol to replace wine)
in a UV-Vis spectrophotometer (Evolution 300, THERMO Scientific, Milan, Italy) at room temperature.
ECsp was calculated according to Sanchez-Moreno et al. (1998). ABTS*® quenching capacity of wines
was estimated according to Carbone and Mencarelli [22] and results were expressed in terms of the
percentage decrease of the initial ABTS®** absorption by the wine samples. ECsy values were calculated
based on dose-response curves.

3.7. Chromatographic Analysis of Phenolic Acids Using Diode Array Detection (DAD)

Phenolic acids (PAs) were separated and identified by an analytical high performance liquid
chromatography (HPLC) system (Agilent 1100 series, Agilent, Milan, Italy) equipped with a diode array
detector (DAD; Agilent Technologies, Milan, Italy). The separation was carried out on a Zorbax SB C18
column (Agilent, 4.6 x 250 mm; 5 um particle size, set at 30 °C), according to Carbone and Mencarelli
(2015). Separated PAs were identified at 280 nm (benzoic acids) and 320 nm (hydroxycinnamic acids),
by their retention times, spectral data as compared to individual standards and by the method of
standard addition to the samples. Besides, UV-Vis spectra were recorded over the range 200-700 nm.
The injection volume was 20 puL and samples were membrane-filtered (Millipore PTFE 0.45 um, Milan,
Italy) before HPLC analysis. Analytical data were evaluated using a software-management system of
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chromatographic data (Chemstation 32.1, Agilent Technologies). 10-point calibration curves based on
external standard solutions (0-100 ppm) were obtained for quantification.

3.8. HPLC-DAD Method Validation

The proposed HPLC method for phenolic acid analysis in wines was validated in terms of
selectivity, peak purity, precision (intra- and inter-day), linearity, limits of detection (LOD) and
quantification (LOQ).

Precision, both intra- and inter-day, was expressed by the coefficient of variation (CV%) of the
dataset obtained. The mean peak area and retention time (tg) values for each compound were also
determined. LOD and LOQ were calculated by the standard deviation (o) of the y-intercepts of the
regression lines and the slope (S), using the following equations:

LOD = 3.30/S (1)
LOQ = 100/S (2)

3.9. Statistical Analysis

Statistical analysis was performed with SPSS 17.0 software (SPSS, Inc., Chicago, IL, USA).
All measurements were performed at least in triplicate and data were reported as mean =+ standard
error of the mean (SE). A one-way analysis of variance (ANOVA) was performed on collected data.
Bonferroni’s post-hoc test and Pearson’s correlation coefficient (p) were used to determine differences
between means (p < 0.05) and variable correlations (p < 0.01).

4. Conclusions

For the first time, in the present study we reported some sensorial (e.g., colour characteristics)
and nutraceutical features of 100% Passerina del Frusinate white wine. Results highlight the good
antiradical and poliphenolic potential of this wine, which is similar to that found in rosé wines.
The present findings also indicate that the use of prolonged skin contact has a great impact on both
the colour and the overall nutraceutical properties of wines. Extended maceration up to 24 h produces
wine browning, with a strong reduction of the CIELab coordinates. Moreover, the maceration length
also appears as a critical parameter for the nutraceutical and antiradical potential of wines, having a
great impact on phenolic acids, mainly vanillic and caffeic ones. Prolonged skin contact up to 24 h
strongly reduces the content of these acids, the concentrations of which are halved.

Finally, the research findings indicate that the vinification process may benefit from maceration
with extended skin contact up to 18 h, which has the potential to increase the content of the compounds
that are important for wine production and quality, such as phenolic acids.
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