Supplementary Materials

Evaluation of Aminothiazole-Paeonol Derivatives to Attenuate LPS-induced Acute Lung Injury in Rats

Pin-Kuei Fu^{1,2}, Chi-Yu Yang³, Su-Chin Huang⁴, Yu-Wen Hung³, Kee-Ching Jeng⁵, Ying-Pei Huang^{6,7}, Hong Chuang^{6,7}, Nai-Chun Huang⁴, Jei-Ping Li⁴, Ming-Hua Hsu^{7,8} and Jen-Kun Chen^{4,9,10*}

- ¹ Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan; yetquen@gmail.com_(P.-K. F.)
- ² Department of Biotechnology, Hungkuang University, Taichung, 43302, Taiwan
- ³ Animal Technology Laboratory, Agriculture Technology Research Institute, Miaoli 35053, Taiwan; chiyu@mail.atri.org.tw (C.-Y. C.); pp33887788@gmail.com (Y.-W. H.)
- ⁴ Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan; jkchen@nhri.org.tw (J.-K. C.); chin@nhri.org.tw (S.-C. H.); anai@nhri.org.tw (N.-C. H.); piny72@nhri.org.tw (J.-P. L.)
- ⁵ Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan; kcjeng@gmail.com (K.-C. J.)
- ⁶ Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; suzann800217@hotmail.com (Y.-P. H.); hom770706@gmail.com (H. C.)
- ⁷ Nuclear Science & Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan; mhhsu@mx.nthu.edu.tw (M.-H. H.)
- ⁸ Department of Chemistry, National Changhua University of Education, Changhua County 50007, Taiwan; minghuahsu@cc.ncue.edu.tw (M.-H. H.)
- ⁹ Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- ¹⁰ School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan
- * Correspondence: jkchen@nhri.org.tw ; Tel.: +886-3-724-6166 (ext. 38117); Fax: +886-3-758-6440

List of Contents

Fig. S1 The ¹H NMR Spectrum of Compound 2 in CDCl₃ (500 MHz) Fig. S2 The ¹³C NMR Spectrum of Compound 2 in CDCl₃ (125MHz) Fig. S3 The ¹H NMR Spectrum of Compound 3 in DMSO (500 MHz) Fig. S4 The ¹³C NMR Spectrum of Compound 3 in DMSO (125MHz) **Fig. S5** The ¹H NMR Spectrum of Compound **4** in CDCl₃ (400 MHz) Fig. S6 The ¹³C NMR Spectrum of Compound 4 in CDCl₃ (100MHz) Fig. S7 The ¹H NMR Spectrum of Compound 5a in CDCl₃ (400 MHz) Fig. S8 The ¹³C NMR Spectrum of Compound 5a in CDCl₃ (100MHz) Fig. S9 The ¹H NMR Spectrum of Compound 5b in CDCl₃ (400 MHz) Fig. S10 The ¹³C NMR Spectrum of Compound 5b in CDCl₃ (100MHz) Fig. S11 The ¹H NMR Spectrum of Compound 5c in CDCl₃ (400 MHz) Fig. S12 The ¹³C NMR Spectrum of Compound 5c in CDCl₃ (100MHz) Fig. S13 The ¹H NMR Spectrum of Compound 5d in CDCl₃ (400 MHz) Fig. S14 The ¹³C NMR Spectrum of Compound 5d in CDCl₃ (100MHz) Fig. S15 The ¹H NMR Spectrum of Compound 5e in CDCl₃ (400 MHz) Fig. S16 The ¹³C NMR Spectrum of Compound 5e in CDCl₃ (100MHz) Fig. S17 The ¹H NMR Spectrum of Compound 5f in CDCl₃ (400 MHz) Fig. S18 The ¹³C NMR Spectrum of Compound 5f in CDCl₃ (100MHz) Fig. S19 The ¹H NMR Spectrum of Compound 5g in CDCl₃ (400 MHz) Fig. S20 The ¹³C NMR Spectrum of Compound 5g in CDCl₃ (100MHz)

Fig. S2 The ¹³C NMR Spectrum of Compound 2 in CDCl₃ (150MHz)

Fig. S3 The ¹H NMR Spectrum of Compound 3 in DMSO (500 MHz)

Fig. S4 The ¹³C NMR Spectrum of Compound 3 in DMSO (125MHz)

Fig. S5 The ¹H NMR Spectrum of Compound 4 in CDCl₃ (400 MHz)

Fig. S6 The ¹³C NMR Spectrum of Compound 4 in CDCl₃ (100MHz)

Fig. S7 The ¹H NMR Spectrum of Compound 5a in CDCl₃ (400 MHz)

Fig. S8 The ¹³C NMR Spectrum of Compound 5a in CDCl₃ (100MHz)

Fig. S9 The ¹H NMR Spectrum of Compound 5b in CDCl₃ (400 MHz)

Fig. S10 The ¹³C NMR Spectrum of Compound 5b in CDCl₃ (100MHz)

Fig. S13 The ¹H NMR Spectrum of Compound 5d in CDCl₃ (400 MHz)

Fig. S14 The ¹³C NMR Spectrum of Compound 5d in CDCl₃ (100MHz)

Fig. S15 The ¹H NMR Spectrum of Compound 5e in CDCl₃ (400 MHz)

Fig. S16 The ¹³C NMR Spectrum of Compound 5e in CDCl₃ (100MHz)

Fig. S17 The ¹H NMR Spectrum of Compound 5f in CDCl₃ (400 MHz)

Fig. S18 The ¹³C NMR Spectrum of Compound 5f in CDCl₃ (100MHz)

Fig. S19 The ¹H NMR Spectrum of Compound 5g in CDCl₃ (400 MHz)

Fig. S20 The ¹³C NMR Spectrum of Compound 5g in CDCl₃ (100MHz)