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Abstract: This study was aimed to investigate the chemical composition, antioxidant activities and
hepatoprotective effect of flavonoids from Ziziphus jujuba cv. Jinsixiaozao (ZJF). The composition of ZJF
was analyzed by high performance liquid chromatography (HPLC) and Liquid chromatography–mass
spectrometry (LC–MS), and antioxidant properties were investigated by biological assays in vitro.
The hepatoprotective activity of ZJF was evaluated in acetaminophen (APAP)-treated BALB/c
mice. Results indicate that ZJF displayed significant antioxidant capacity. Pretreatment with
ZJF significantly decreased APAP-elevated serum alanine aminotransferase (ALT), aspartate
aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin (TB). Activities of superoxide
dismutase (SOD) and glutathione peroxidase (GSH-Px) were enhanced with ZJF administration,
while malondialdehyde (MDA) level and glutathione (GSH) depletion were reduced. Meanwhile, ZJF
reversed the suppression of nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation,
and up-regulated the protein expression of NAD(P)H: quinone oxidoreductase 1(NQO1) in liver
damage mice. Furthermore, ZJF attenuated APAP-induced inflammatory mediator production, such
as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β).
Expression of p65 showed that ZJF dampened nuclear factor-κB (NF-κB) activation. The results
strongly indicate that the hepatoprotective role of ZJF in APAP-induced hepatotoxicity might result
from its induction of antioxidant defense via activation of Nrf2 and reduction of inflammation via
inhibition of NF-κB.

Keywords: Ziziphus jujuba cv. Jinsixiaozao; Flavonoids; hepatoprotective; antioxidant activity; Nrf2;
anti-inflammation; NF-κB

1. Introduction

Nowadays, liver diseases remain one of the major threats to public health, as the organ plays
a pivotal role in the metabolism of endogenous and exogenous substances. Drug-induced liver
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injury has become the main reason of acute liver injury, especially acetaminophen (APAP)-induced
hepatotoxicity [1,2]. APAP is a widely used drug for its analgesic and antipyretic properties, but
overdose causes severe hepatotoxicity and nephrotoxicity [3,4]. It is widely accepted that APAP is
metabolized in the liver primarily by glucuronidation and sulfation pathways at therapeutic doses, and
only a small fraction is converted by liver cytochrome P450 into a highly reactive metabolite product
named N-acetyl-p-benzoquinone imine (NAPQI), which depleted glutathione (GSH) [5,6]. At a toxic
dose, GSH is exhausted, and excessive NAPQI will covalently bind to cellular proteins, which leads
to oxidative stress, inflammation, lipid peroxidation, mitochondrial dysfunction and centrilobular
necrosis [1,7–9]. Therefore, there is an urgent need for complementary and alternative medicines for
the preventive treatment of APAP toxicity. Studies on herbal medicines indicate that phytochemicals
possessing strong antioxidant and free radical scavenging abilities as well as anti-inflammatory actions
can be developed for therapeutically effective agents for the treatment of liver diseases [10].

The fruit of Zizyphus jujuba Mill, belonging to the Rhamnaceae family, is a historically
prescribed herb in folklore medicine for the treatment of various diseases. Extensive phytochemical
studies in recent years have revealed that jujube contains many functional constituents such as
triterpenic acid [11,12], flavonoids [13], phenolic acids [14,15], polysaccharides [16,17], and amino
acids [18], which have been shown to be responsible for various pharmacological effects including
antiproliferation of cancer cells [19–21], regulation of immune function [16], anti-inflammatory [22],
antiobesity [23], antioxidant [24,25], hepatoprotective [26], and gastrointestinal protective activities [27].
As secondary metabolites, flavonoids possess multiple pharmacological actions such as antioxidant [28],
anti-inflammatory [29], and antimicrobial activities [30], which makes it a potential agent for hepatic
protection. Bifendate is a commonly used drug for the treatment of drug-induced liver injury, and is
often selected as a positive control drug for the evaluation of potential hepatoprotective agents [31,32].
Therefore, in this study, we selected bifendate as a control drug for evaluating the hepatoprotective
activity of flavonoids from Ziziphus jujuba cv. Jinsixiaozao (ZJF).

It has been reported that most genes overexpressed in the inflammatory response are controlled
by the nuclear factor kappa B (NF-κB) [33]. The genes encoding antioxidant proteins and phase II
detoxifying enzymes are modulated by a transcription factor nuclear erythroid 2-related factor 2 (Nrf2).
Thus, to evaluate the signaling pathways involved in the protective role of ZJF against APAP-induced
liver injury, we further investigated the roles of Nrf2 and NF-κB which may be the potential molecular
mechanism accounting for the antioxidant and anti-inflammatory activities of ZJF.

To the best of our knowledge, there is no systematical report available on the chemical composition,
antioxidant, and hepatoprotective effects of ZJF. Hence, the present study focused on assessing the
chemical composition of ZJF and its antioxidant activity. Furthermore, the underlying mechanism of
its protection against APAP-induced hepatotoxicity was investigated by evaluating its antioxidant and
anti-inflammatory effects.

2. Results

2.1. Content Assay and Chemical Composition Analysis of ZJF

It is necessary to reveal the chemical composition to make a rational assessment on the biological
activity of ZJF. Limited research has reported on the identification of flavonoids from Ziziphus jujuba.
Most of the previous studies focused on the assay of total flavonoid content by different colorimetric
assay methods [24,34,35]. In our study, total flavonoid content of ZJF was determined to be 40.85%
rutin equivalent via ultra-violet (UV) spectrophotometer.

The chemical compositions in ZJF were analyzed by HPLC-diode array detector (DAD) and liquid
chromatography–electron spray ionization-mass spectrometry (LC-ESI-MS) analyses. A representative
chromatogram was obtained at 350 nm (Figure 1) and the results of tentative identification are shown in
Table 1. Two types of flavonol derivatives with the MS/MS fragments at around m/z 301 and 285 were
characteristic of quercetin and kaempferol derivatives, respectively. Based on the retention time, UV
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adsorption values and MS spectral data comparing with the authentic commercial standards, peaks 2, 4,
5, 7, 10 were identified as quercetin-3-O-rutinoside, quercetin-3-O-galactoside, quercetin-3-O-glucoside,
kaempferol-3-O-rutinoside, and quercetin-3-O-rhamnoside, respectively (Table 1). Peak 1 at 17.63 min
yielded a deprotonated molecular [M−H]− ion at m/z 608.9. The fragment ion of m/z 300.2 (quercetin
moiety) was generated by loss of two sugar units. UV spectrum showed λmax at 252 and 353 nm,
suggesting that it was a quercetin glycoside and tentatively identified as quercetin-3-O-robinobioside by
examining the two known compounds, quercetin-3-O-rutinoside (tR = 18.58, identified by comparison
with the standard) and quercetin-3-O-robinobioside reported previously in the published data [13].
The mass spectrometric characterization of compounds at 27.96 and 29.67 min provided evidences for
the presence of two quercetin pentosides, with m/z 579.5 as the pseudo-molecular ion. By consulting
the current information with those in literature [13,25], the analytes were tentatively identified as
quercetin-3-O-arabino-rhamnoside and quercetin-3-O-xyloso-rhamnoside, respectively. A peak at
22.41 min showed a precursor ion at m/z 593.4. Owing to a combined loss of two sugar units, its mass
spectrometry/ mass spectrometry (MS/MS) spectrum gave a fragment ion at m/z 285 corresponding
to kaempferol glycoside derivatives. In addition, UV spectrum of this compound with λmax at 260
and 350 nm was typical of flavonol derivatives. By examining the known kaempferol glycoside in
jujube [13,25]. Kaempferol-3-O-robinobioside and kaempferol-3-O-rutinoside were consistent with the
above data. Furthermore, the peak at 25.50 min was straightway confirmed as kaempferol-3-O-rutinoside
by comparing with its standard. From these results and cited studies, peak 6 was tentatively identified as
kaempferol-3-O-robinobioside. The UV/vis absorptions of peak 3 and 8 were around 250 and 350 nm,
which were characteristic absorption wavelengths of flavonoids, the structures of which could only be
needed to be further elucidated.
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Figure 1. A representative high performance liquid chromatography (HPLC) chromatogram acquired 
at 350 nm of (A) flavonoid standards (B) flavonoids in flavonoids from Ziziphus jujuba cv. Jinsixiaozao 
(ZJF). Peaks were tentatively identified as (1) quercetin-3-O-robinobioside, (2) quercetin-3-O-
rutinoside, (3) Unidentified, (4) quercetin-3-O-galactoside, (5) quercetin-3-O-glucoside, (6) 
kaempferol-3-O-robinobioside, (7) Kaempferol-3-O-rutinoside, (8) Unidentified, (9) Quercetin-3-O-
arabino-rhamnoside, (10) Quercetin-3-O-rhamnoside, (11) Quercetin-3-O-xyloso-rhamnoside. 

Figure 1. A representative high performance liquid chromatography (HPLC) chromatogram
acquired at 350 nm of (A) flavonoid standards (B) flavonoids in flavonoids from Ziziphus
jujuba cv. Jinsixiaozao (ZJF). Peaks were tentatively identified as (1) quercetin-3-O-robinobioside,
(2) quercetin-3-O-rutinoside, (3) Unidentified, (4) quercetin-3-O-galactoside, (5) quercetin-3-O- glucoside,
(6) kaempferol-3-O-robinobioside, (7) Kaempferol-3-O-rutinoside, (8) Unidentified, (9) Quercetin-3-O-
arabino-rhamnoside, (10) Quercetin-3-O-rhamnoside, (11) Quercetin-3-O-xyloso-rhamnoside.
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Table 1. Flavonoids identified by liquid chromatography–mass spectrometry/ mass spectrometry
(LC-MS/MS) in flavonoids from ZJF.

Peak
No. Compounds tR (min) λmax

(nm)
[M−H]−

(m/z)
Collision

Energy (eV)
MS/MS

(m/z)

1 Quercetin-3-O-robinobioside 17.63 252/353 608.9 −45 300.2
2 Quercetin-3-O-rutinoside 18.58 253/353 608.9 −45 300.0
3 Unidentified 19.35 247/355 671.5 −40 581.4/509.2
4 Quercetin-3-O-galactoside 20.25 253/353 463.3 −34 300.1
5 Quercetin 3-O-glucoside 21.27 253/353 463.3 −34 300.0
6 Kaempferol-3-O-robinobioside 22.41 260/350 593.4 −43 284.0
7 Kaempferol-3-O-rutinoside 25.50 258/350 593.2 −43 285.0
8 Unidentified 26.86 252/352 623.3 −46 315.1
9 Quercetin-3-O-arabino-rhamnoside 27.96 252/350 579.5 −41 300.0
10 Quercetin-3-O-rhamnoside 28.78 252/350 447.4 −32 300.1
11 Quercetin-3-O-xyloso-rhamnoside 29.67 255/350 579.5 −41 300.1

2.2. In Vitro Antioxidant Activity of ZJF

Flavonoids have been postulated to exert a positive effect on the prevention of chronic diseases due
to its antioxidant activity [36]. Free radical scavenging capacity is an important feature of antioxidants,
since free radicals can initiate lipid peroxidation, cause DNA strand breaks, form protein adducts,
and oxidize molecules in biological membranes and tissues. Free radical scavenging capacity in vitro
has been evaluated by various methods under different conditions. 1,1-diphenyl-2-picrylhydrazyl
(DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging
assays are more convenient and rapid indirect methods. Thus, DPPH and ABTS radical scavenging
assays have been widely used to assess the capacity of scavenging free radicals of various complex
mixtures of plants [34]. In the present study, butylated hydroxytoluene (BHT) and ascorbic acid (VC)
were used as the reference commercial antioxidants. The results are shown in Figure 2. In these three
assays, VC showed significantly higher radical scavenging activity and reducing power compared
with ZJF and BHT. There was no significant difference between the antioxidant capacities of ZJF and
BHT. Furthermore, the results from these three test systems reveal that ZJF had the relatively strong
antioxidant activity.
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(C) Ferric Reducing Power assay (FRAP). Data are shown as mean ± Standard Error of Mean (SEM)
(n = 3).
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2.3. Biochemical Indicators of Liver Function

2.3.1. Levels of Alanine Aminotransferase, Aspartate Aminotransferase, Alkaline Phosphatase and
Total Bilirubin in Serum

It is well known that aspartate aminotransferase (AST), alanine aminotransferase (ALT), total
bilirubin (TB), and alkaline phosphatase (ALP) are sensitive serum biochemical markers for early
acute hepatic damage. To evaluate the hepatoprotective activity of ZJF against the APAP-induced
hepatic injury, the serum levels of AST, ALT, TB and ALP were analyzed by commercial reagent
kits. Results of the liver function detection are showed in Figure 3. The APAP-intoxicated group
exhibited a notable elevation of AST, ALT, TB, and ALP levels in serum compared to the control
group (p < 0.01). In contrast, the levels of ALT, TB, and ALP were dose-dependently reduced in low-,
medium-, high-dose ZJF pretreatment groups (p < 0.05 or p < 0.01). AST levels showed a significant
decrease at the dose of 400 mg/kg, which was close to the control. It was confirmed that ZJF could
prominently ameliorate hepatoxicity induced by APAP.
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aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TB), and alkaline phosphatase
(ALP) in APAP-induced liver damage mice. (A) level of AST; (B) level of ALT; (C) level of TB; (D) level
of ALP. Values are presented as Mean ± SEM, n = 6. ## p < 0.01 compared to control group. * p < 0.05
and ** p < 0.01 compared to APAP treated group.
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2.3.2. Measurement of Malondialdehyde, Glutathione and Activity of Antioxidant Enzymes in
the Liver

In order to study the protection mechanisms of ZJF on the hepatotoxicity induced by APAP in vivo,
malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase
(GSH-Px) were used as indexes to evaluate the level of oxidative stress in liver. As a product of lipid
peroxidation, MDA is frequently detected to evaluate the degree of oxidative injury. As shown in
Figure 4A, there was a distinct increase of MDA content in the liver of mice exposed to APAP (p < 0.01),
while pretreatment with ZJF (200 and 400 mg/kg) significantly reduced the MDA levels compared
with the APAP treated group (p < 0.01). GSH and GSH-Px (Figure 4B,D) were depleted after the APAP
administration when compared to the control (p < 0.01). However, GSH and GSH-Px were reversed
with pretreatment of ZJF in a dose-dependent manner. The down-regulated activities of SOD after
APAP poisoning were significantly elevated by ZJF at a dose of 200 and 400 mg/kg (Figure 4C). All the
results above suggest that ZJF had a marked antioxidant activity and could suppress APAP-induced
oxidative liver injury.
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Figure 4. Effects of ZJF on the oxidative damage markers in liver homogenate after APAP overdose.
(A) Hepatic level of malondialdehyde (MDA); (B) Hepatic glutathione (GSH) contents; (C) Hepatic
superoxide dismutase (SOD) activity (D) Hepatic glutathione peroxidase (GSH-Px) activity. Data are
expressed as mean ± SEM, n = 6 mice per group. ## p < 0.01 vs. the control group. * p < 0.05 and
** p < 0.01 vs. the APAP group.

2.3.3. Measurement of Nitric Oxide, Tumor Necrosis Factor-α, Interleukin-6 and Interleukin-1β Levels
in Serum

Nitric oxide (NO) is a highly reactive oxidant produced in the liver in response to inflammatory
stimuli and plays a crucial role in hepatic injury [37]. Tumor necrosis factor-α (TNF-α), Interleukin-6
(IL-6), and Interleukin-1β (IL-1β) are the essential proinflammatory cytokines involved in the
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progression of APAP-induced liver injury [1,38]. As shown in Figure 5, APAP tremendously induced
the elevation of NO production. Nevertheless, the NO level of the treatment group with a high dose of
ZJF (400 mg/kg) was significantly lower than the APAP group (p < 0.05). TNF-α, IL-6 and IL-1β levels
in the APAP group were markedly enhanced compared to the control group (p < 0.01), ZJF suppressed
the elevation of these cytokines induced by the acute toxic dose of APAP in a dose-dependent manner.
TNF-α and IL-6 levels were significantly different between ZJF (200 and 400 mg/kg) and the APAP
group (p < 0.05 or p < 0.01).
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Figure 5. Preventive effects of different doses of ZJF on Nitric oxide (NO), tumor necrosis factor-α
(TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels in APAP-induced hepatotoxicity mice.
(A) level of NO; (B) level of TNF-α; (C) level of IL-6; (D) level of IL-1β. Data are expressed as mean
± SEM, n = 6 mice per group. ## p < 0.01 vs. the control group. * p < 0.05 and ** p < 0.01 vs. the
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2.3.4. Effects of ZJF on the Protein Expression of NF-κB p65, Nrf2 and NQO1

Nrf2 plays an important role in cellular redox balance and serves as a major regulator of cellular
defense associated pathways [39]. NF-κB P65 is associated with inflammatory responses in many
diseases. Thus, to examine whether ZJF exerts its protective effect via NF-κB and Nrf2 pathways, we
investigated NF-κB p65, Nrf2, and NAD(P)H: quinone oxidoreductase 1 NQO1 protein expression by
Western blotting analysis. NF-κB p65 was up-regulated in response to the APAP-induced liver injury
(Figure 6A,B), whereas this inflammatory mediator expression was alleviated by ZJF pretreatment in
a dose-dependent manner. As shown in Figure 6C,D, APAP exposure caused a significant decrease
in Nrf2 and NQO1 levels compared to the control group (p < 0.01). In contrast, ZJF up-regulated
the expression of those proteins in a dose-dependent manner. The medium- and high-dose ZJF
pretreatments significantly attenuated the decrease of Nrf2 expression (p < 0.01). The level of NQO1
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protein showed more significant differences when pretreated with ZJF at low and high doses, compared
to the APAP group (p < 0.05). Furthermore, at the same dose (200 mg/kg), ZJF affected the expression
of Nrf2 and NQO1 protein more effectively than bifendate.Molecules 2017, 22, 1781 8 of 17 
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Figure 6. The effect of ZJF pretreatment on the nuclear factor kappa B p65 (NF-κB p65), nuclear
factor erythroid 2-related factor 2 (Nrf-2), and NAD(P)H: quinone oxidoreductase 1 (NQO1 ) protein
expression in response to the APAP-induced hepatotoxicity. (A) Western blotting analyses of NF-κB
p65, Nrf-2, and NQO1 proteins; quantitative densitometric analyses of (B) NF-κB p65, (C) Nrf-2, and
(D) NQO1 proteins normalized against glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Each
value represents the mean ± SEM of three independent experiments. ## p< 0.01 vs. the control group.
* p < 0.05 and ** p < 0.01 vs. the APAP treated group.

2.3.5. Histopathological Evaluation

Hematoxylin and eosin stained sections are shown in Figure 7. Histology of liver tissues from the
control mice showed a normal liver lobular architecture with cords of hepatocytes radiating from the
central vein. Each cell exhibited a centrally located nucleus, but some binucleated cells were also seen
(Figure 7A). In contrast, the APAP-intoxicated treatment exhibited severe histopathological changes
such as swollen centrilobular hepatocytes with highly vacuolated cytoplasm, large areas of extensive
cell necrosis with loss of hepatocyte architecture, and massive mononuclear cell infiltration in the
portal area (Figure 7B). The histological examination of tissue sections from the mice pretreated with
ZJF or bifendate showed the improvement of liver morphology. A low dose of ZJF slightly diminished
the injured area, necrotic cells, and inflammatory infiltration compared to the control group (Figure 7D).
Moreover, liver sections of the mice treated with medium- and high-dose ZJF exhibited more normal
cellular architecture, disappearance of inflammatory infiltration, and patches of necrotic hepatocytes
(Figure 7E,F).
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2.3.6. Immunohistochemistry Analysis

To further investigate the potential role of Nrf2 and NF-κB p65 in APAP-induced liver injury,
we analyzed the protein expression of Nrf2 and NF-κB p65 in liver tissue by immunohistochemical
staining. As shown in Figure 8, the accumulation of Nrf2 nuclear translocation was significantly lower
in the control group, while ZJF reversed the suppression of Nrf2 nuclear translocation in the liver
damage mice. The results in Figure 9 show that NF-κB activity was markedly induced in the hepatic
cells of the APAP-treated mice, and the increased activity of NF-κB was inhibited by pretreatment
with ZJF. These results imply that the protective effect of ZJF might be due to its antioxidant and
anti-inflammatory abilities via the NF-κB and Nrf2 pathways.
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3. Discussion

The jujube (Ziziphus jujuba Mill.), a hardy rhamnaceous plant, is widely used as a herb in
traditional Chinese medicine [12]. It has gained a great deal of attention for its high nutritional
value and multiple pharmacological effects [40]. Although there have been many pharmacological
studies on jujube, the objective of the present study was to investigate ZJF’s main active ingredients
and mechanisms associated with its hepatoprotective activity.

In this study, we isolated ZJF from Ziziphus jujuba cv. Jinsixiaozao by the macroporous resin
adsorption method. Notably, total flavonoid content in ZJF was determined to be 40.85%. Furthermore,
the chemical profile of ZJF was determined by LC-MS/MS analysis. Two kaempferol derivatives and
seven quercetin derivatives were identified in ZJF. Particularly, quercetin derivatives are the main
flavonoids found in ZJF. Numerous studies have shown that kaempferol and quercetin derivatives
have a wide range of pharmacological activities [41,42]. The identification of the chemical composition
in ZJF provided a basis for the further research of the pharmacological activity of ZJF.

In the assessment for antioxidant activity of ZJF, it showed a dose-dependent scavenging capacity
against DPPH and ABTS radicals. Besides, ZJF exhibited a strong redox activity according to the
ferric reducing antioxidant power assay. As a result, the ZJF was demonstrated to have a notable
antioxidant activity in vitro and to have potential for antioxidant supplementation to protect humans
against oxidative stress.

Due to its clinical relevance and experimental convenience, the APAP-induced liver injury
model is widely used for evaluating the therapeutic potential of compounds purported to be
hepatoprotective [43]. The APAP-induced hepatotoxicity is characterized as increased oxidative stress,
mitochondria, and cell death [6]. Evidence indicates that the reactive metabolite of APAP initiates
hepatocyte damage and inflammatory innate immune responses, which lead to the exacerbation and
progression of liver injury [44]. Compared to the few studies reported on the hepatoprotective activity
of ZJF, our study is the first to show that ZJF has a preventative effect on APAP-induced liver injury.

Hepatic damage can be evaluated by monitoring sensitive serum biochemical markers such
as AST, ALT, TB, and ALP, which exude from the hepatocytes into the circulatory system because
of altered membrane permeability [45]. Based on the test results, when mice were subjected to the
APAP intoxication, there were a remarkable increase in AST, ALT, TB, and ALP levels compared with
the control group. However, these reduced serum biochemical markers were significantly reduced
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by pretreatment with ZJF and bifendate, indicating that ZJF could preserve the structural integrity
of hepatocytes and alleviate APAP-induced liver damage. These findings were also confirmed by
histological observation. The APAP-challenged mice showed hepatocellular necrosis or apoptosis,
inflammatory cell infiltration, cords of degenerated hepatocytes around the central vein, and other
histological manifestations, while pretreatment of ZJF mitigated these changes.

APAP overdose induced the oxidative stress response in the liver, as shown in this study. In order
to understand the antioxidant activities of ZJF in vivo, we determined the activities of antioxidant
enzymes (SOD and GSH-Px) as well as the levels of GSH and MDA in the liver. SOD catalyzes the
conversion of the superoxide radical into hydrogen peroxide, and then hydrogen peroxide is converted
into oxygen and water by GSH-Px, generating reduced GSH as its substrate [46]. As a non-enzymatic
antioxidant, GSH can remove superoxide ions and free radicals from the body to protect the integrity of
cell membranes and maintain metabolism by anti-lipid oxidation [47]. MDA is generally considered to
be an important marker of lipid peroxidation. In line with these concepts, we found that the activities of
the major scavenger enzymes (SOD and GSH-Px) and the content of GSH were significantly decreased
in the livers of the APAP-treated mice, while the level of MDA was elevated compared with the control
group. As expected, the administration of ZJF markedly enhanced the levels of hepatic SOD, GSH-Px,
GSH and inhibited the increase of MDA induced by APAP. Therefore, this study suggested that ZJF
effectively protected the liver by improving enzymatic and non-enzymatic antioxidant defense systems
against APAP-induced injury.

Moreover, Nrf2 is a major regulator of intracellular antioxidants. Under physiological conditions,
Nrf2 binds to kelch-like ECH-associated protein-1 (Keap1) in the cytoplasm. When the body is
subjected to oxidative stress, Nrf2 dissociates form Keap1 and translocates into the nucleus from cytosol
and interacts with antioxidant response element (ARE), resulting in upregulating the expression of
cytoprotective target genes including antioxidant enzymes and phase II detoxifying enzymes [48]. With
ZJF intervention, our Western blotting and immunohistochemical analyses showed that Nrf2 protein
expression and nuclear translocation in hepatic tissue were effectually increased compared with the
APAP group. In addition, as one of phase II detoxifying enzymes, the NQO1 protein expression was
also up-regulated compared with the control group. These results imply that ZJF treatment provided
a hepatoprotective effect by activating the Nrf2 pathway.

Inflammation is closely interrelated with oxidation in the biological systems, and also plays
a vital role in APAP-induced acute liver injury [1]. Inflammation occurs with the release of
pro-inflammatory mediators, such as NO, TNF-α, IL-6 and IL-1β. Our study indicated that the levels of
NO, TNF-α, IL-6, and IL-1β were elevated in the APAP-induced mice. ZJF administration dramatically
decreased the expression of these pro-inflammatory mediators. NF-κB p65 is a key transcription
factor in up-regulating inflammatory cytokines. In our study, ZJF prevented APAP-induced liver
injury by reducing the protein expression of NF-κB p65, as evidenced by Western blotting and
immunohistochemical staining. These results indicate that ZJF inhibited inflammatory responses
initiated by APAP.

In summary, our present study demonstrated that ZJF possessed a protective action against
APAP-induced liver injury. The underlying mechanisms of its hepatoprotective activity might involve
the antioxidant defense through the Nrf2 pathway and anti-inflammatory activity via inhibiting NF-κB.
These encouraging findings would be helpful for developing a potential hepatoprotective agent for
remedying APAP-induced liver injury.

4. Materials and Methods

4.1. Materials and Chemicals

Ziziphus jujuba cv. Jinsixiaozao was obtained from Laoling, Shandong, China. Quercetin-3-O-
galactoside, quercetin-3-O-rutinoside, and quercetin-3-O-glucoside were purchased from the
National Institutes for Food and Drug Control (Beijing, China). Kaempferol 3-O-rutinoside and
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quercetin-3-O-rhamnoside were purchased from Chengdu Preferred Biotechnology Co. Ltd. (Chengdu,
China). HPLC grade methanol and acetonitrile were purchased from Tedia Co. Inc. (Fairfield, CT, USA).
Ultrapure water was prepared using a Milli-Q water purification system (Millipore, Bedford, MA, USA).
APAP was produced by Aladdin chemistry Co. Ltd. (Shanghai, China) Anti-NF-κB p65 and Anti-NQO1
antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). Anti-Nrf2 antibodies
were provided by Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-GAPDH antibodies were
provided from Proteintech Biotechnology (Rocky Hill, CT, USA). Other reagents were of analytical grade
(Sinopharm Chemical Reagent Co. Ltd., Shanghai, China).

4.2. Animals

Male BALB/c mice (20–22 g) were purchased from Center for New Drug Evaluation of Shandong
University, Jinan, China. Mice were housed in groups in ventilated cages, at a controlled temperature
and humidity with a light/dark cycle of 12 hr. They were maintained with laboratory chow and water
ad libitum. Mice in this experiment were acclimatized under laboratory condition for at least 1 week
prior to the experiments. All procedures and care were in compliance with “Guide to the Care and Use
of Laboratory Animals” (National Research Council and Shandong University) and approved by the
Ethical Committee of Experimental Animal Center of Shandong University (No. 2016020, Shandong
University, Jinan, China).

4.3. Preparation of the Flavonoids from Ziziphus jujuba cv. Jinsixiaozao

After removing the kernel, the jujube fruits were pulverized to homogeneous powder. A sample
of 500 g powder was macerated with 70% aqueous ethanol for 3 h, then placed in ultrasonic cleaning
bath and sonicated for 40 min. The extract was filtered and the filter cake was re-extracted by steps
under the same conditions three times. The combined extracts were concentrated under reduced
pressure in a rotary evaporator at 40 ◦C and a viscous mass was obtained after freeze drying. This
mass was suspended in distilled water and chromatographed on an AB-8 macroporous absorption
resin column (80 cm × 4.0 cm id.). The column was firstly eluted with distilled water. Subsequently,
the highly polar compounds were removed with 3 BV of 10% aqueous ethanol. Finally, 70% aqueous
ethanol was employed to rinse the column and the elution of 70% aqueous ethanol was collected,
concentrated and then freeze-dried (3.22 g) for the following experiments.

4.4. Determination of Total Flavonoids Content

The total flavonoids content was determined using a colorimetric method [49]. Briefly,
appropriately diluted sample (0.5 mL) was mixed with 5% (w/v) sodium nitrite (0.5 mL). Six minutes
later, 10% (w/v) aluminum nitrate (0.5 mL) was added and incubated for 6 min. 4% (w/v) sodium
hydroxide (4 mL) was added in the order stated. The final volume was adjusted to 10 mL with ethanol.
The mixture was thoroughly mixed and allowed to stand for 15 min. Absorbance was measured at
510 nm against a blank solution using a UV spectrophotometer. The amount of the total flavonoids
was expressed as rutin equivalents (mg rutin/g sample) through the calibration curve of rutin.

4.5. Separation and Identification of Flavonoids in ZJF

Analysis of the chemical composition of ZJF was performed on an Agilent 1260 HPLC system
equipped with a diode array (Agilent Technologies, Palo Alto, CA, USA). Separation was carried out
using a Gemini-NX C18 (4.6 mm × 250 mm, 5 µm, Phenomenex, Torrance, CA, USA) column at 30 ◦C,
and the injection volume was 10 µL. The mobile phase consisted of solvent A (0.1% formic acid in
water) and B (0.1% formic acid in acetonitrile) with gradient elution as follows: 0–15 min (15% B);
15–20 min (15–18% B); 20–30 min (18–20% B); 30–35 min (20–50% B); 35–40 min (50–15% B). The flow
rate was set at 1.0 mL·min−1. Peaks of flavonoids were monitored at 350 nm, and UV/vis spectra were
measured over a wavelength range of 200–400 nm in steps of 2 nm.
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LC-MS/MS analysis was conducted on a Shimadzu LC-20AD XR series HPLC system (Shimadzu,
Kyoto, Japan) coupled to an API 5000 electrospray triple-quadrupole tandem mass spectrometer
(ESI-MS/MS) (Applied Biosystems/MDS SCIEX, Foster City, CA, USA). Compounds were applied
on a Gemini-NX C18 (4.6 mm × 250 mm, 5 µm) column to separate flavonoids using the applied
chromatographic conditions as same as those in the HPLC analysis. The LC eluate was introduced into
the mass spectrometer from 5 to 40 min. Q1 MS (Q1) and Product Ion (MS2) analyses were operated
in the negative-ion mode. Full scan data were acquired by scanning from the mass range of m/z 200
to 1000. The operational parameters of the mass spectrometer are summarized as follows: Nitrogen
was used as the ion source gas, curtain gas and collision gas for API5000. Curtain gas (CUR), 15 psig;
Ion source gas1 (GS1), 50 psig; Ion source gas2 (GS2), 50 psig; Ionspray voltage, −4500; Desolvation
temperature, 450 ◦C; Declustering potential (DP) and entrance potential (EP) were set at −150 V and
−10 V, respectively. For Product Ion (MS2) spectrometric procedures, collision energies (CE) were
optimized to detect the fragments of these compounds.

Structural identification was performed by comparing retention time, UV absorption spectra,
and mass spectral analysis with either the known authentic commercial standards available in our
laboratory, or data reported in the peer-reviewed literature.

4.6. Antioxidant Activity In Vitro

4.6.1. DPPH Radical Scavenging Assay

DPPH radical scavenging activity was evaluated according to a previously reported protocol [24],
with slight modification. Briefly, samples (1.0 mL) at different concentrations were mixed with
0.15 mmol/L DPPH (3.0 mL), and then shaken vigorously. The absorbance value was read against
a blank at 519 nm using a spectrophotometer after standing for 1 h at room temperature. All samples
were carried out in triplicate with BHT and VC as references.

4.6.2. ABTS Radical Scavenging Assay

ABTS scavenging ability was assessed according to a previously described method [50], with
some modifications. In specific, ABTS+ was prepared by mixing ABTS stock solution (5 mL, 7 mM in
pH 7.4 phosphate buffer solution) with 2.45 mM potassium persulfate (5 mL). The reaction mixture
was kept in the dark at room temperature for 16 h. The mixture was then diluted with phosphate buffer
solution (pH 7.4) to obtain an absorbance value of 0.700 ± 0.02 at 734 nm. Samples (20 µL) at various
concentrations and ABTS+ solution (180 µL) were added to 96-well plates and mixed. The absorbance
was recorded at 734 nm after a 6 min interval with a blank solution as reference.

4.6.3. Reducing Power Assay (FRAP)

The reducing power assay (FRAP), was performed according to the method described by
Huang et al. [51]. In brief, sample (1 mL) was mixed with 0.2 mM sodium phosphate buffer (2 mL,
pH 6.6) and 1% potassium ferricyanide (2 mL). After incubating at 50 ◦C for 20 min, 10% (w/v)
trichloroacetic acid (2 mL) were added. Subsequently, the reaction solution (2 mL) was combined
with deionised water (2 mL) and 0.1% ferric chloride (0.4 mL). The mixture was allowed to stand for
30 min in the dark. Thereafter, the absorbance was measured at 700 nm. The increased absorbance of
the reaction mixture indicated an increase in reducing power. Samples of BHT and VC at the same
concentrations were used as positive control.

4.7. In Vivo Hepatoprotective Activity

4.7.1. Drug Administration

In the experiment, acute liver injury was induced by giving an intraperitoneal injection of
a sublethal dose of APAP (350 mg/kg). Based on the preliminary study, the ZJF concentration range
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of 100–400 mg/kg was selected for the study in vivo. Mice were fasted overnight for approximately
12 h before administration of APAP. Animals were divided into six groups as follows: (1) The normal
control (Control); (2) APAP treated group (350 mg/kg, single dose) (APAP); (3) Bifendate (200 mg/kg)
+ APAP (350 mg/kg) (Bifendate); (4) ZJF (100 mg/kg) + APAP (350 mg/kg) (ZJF-L); (5) ZJF (200 mg/kg)
+ APAP (350 mg/kg) (ZJF-M); (6) ZJF (400 mg/kg) + APAP (350 mg/kg) (ZJF-H). ZJF and bifendate
were suspended in 0.3% (w/v) sodium carboxy methyl cellulose (CMC-Na) for intragastric gavage.
Mice were pre-treated with ZJF (100, 200, 400 mg/kg per day) for 10 consecutive days. On the last day,
mice were given a single dose of APAP (350 mg/kg) by intraperitoneal injection after administration
of ZJF for 1 h. The bifendate group was administrated in the same manner. Mice in control group and
APAP-treated group were administered with 0.3% CMC-Na solution and injected intraperitoneally with
normal saline and a single dose of APAP (350 mg/kg) after 1 h from the last administration, respectively.
Mice were sacrificed at 16 h after APAP administration. Blood samples were collected from the eyeballs
and liver tissues were removed immediately. Serum was separated by centrifugation at 4000 r/min for
15 min. A small portion of the liver was immediately fixed in 4% buffered paraformaldehyde and the
remaining tissues were flash frozen in liquid nitrogen and stored at −80 ◦C for further use.

4.7.2. Measurement of Serum Biochemical Parameters Related to Hepatic Dysfunction

Serum ALT, AST, ALP and TB were determined using commercial assay kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) according to the manufacturer’s protocols.

4.7.3. Measurement of GSH, MDA, SOD and GSH-Px in Liver Homogenate

Liver homogenates (10%, w/v) were prepared for evaluating the levels of GSH, MDA, SOD, and
GSH-Px. All procedures were carried out according to the guidelines of the commercial assay kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

4.7.4. Test for NO, TNF-α, IL-6 and IL-1β Levels in the Serum

Levels of serum TNF-α, IL-6, IL-1β were measured with mouse cytokines enzyme linked
immunosorbent assay (ELISA) kit (MultiSciences Biotech Co., Ltd., Hangzhou, China) following the
instructions of the manufacturer. Nitric oxide formation was measured by the commercial assay kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China) according to the manufacturer’s protocol.

4.7.5. Western Blot Analysis for NF-κB p65, Nrf2, and NQO1

The mice liver tissues were homogenized in ice-cold radio immunoprecipitation assay (RIPA)
lysis buffer (SolarbioLife Sciences) containing 1 mmol/L phenylmethylsulfonyl fluoride (PMSF, Sigma
Aldrich, St. Louis, MO, USA) and 1% cocktail protease inhibitors (Sigma). Proteins were extracted
by centrifugation and determined by a BCA kit (Beyotime Institute of Biotechnology, Beijing, China).
Equal quantities of proteins were separated on 8–12% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and then transferred onto a polyvinylidene difluoride (PVDF) membrane
(Millipore Corp., Bedford, MA, USA) by electroblotting. The membranes were blocked in 5% skim
milk for 2 h and subsequently probed overnight with the primary antibodies (1:1000) at 4 ◦C. After
washing in TBST buffer, the membranes were exposed to HRP-conjugated secondary anti-rabbit
or anti-mouse antibodies (1:5000) for 1 h at room temperature. Final detection was performed by
enhanced chemiluminescence system (Merck Millipore, Darmstadt, Germany). The signal intensity
of each band was quantified using the Alphalmager HP system (Cell Biosciences, Inc., Santa Clara,
CA, USA). The relative optical densities of the bands were quantified using AlphaView SA software
(Cell Biosciences, Inc., Santa Clara, CA, USA). All Western blot analyses were carried out at least
three times.
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4.7.6. Histological Examination

Hematoxylin and eosin (H&E) staining was performed to evaluate cell necrosis. Liver tissue
specimens were fixed in 4% paraformaldehyde solution for at least 24 h, processed routinely, embedded
in paraffin and cut into 4 µm sections. Then these sections were deparaffinized and stained with
hematoxylin and eosin (H&E) to evaluate morphology.

4.7.7. Western Blot Analysis for NF-κB p65, Nrf2 and NQO1

Immunohistochemistry examination (IHC). Paraffin-embedded sections with a thickness of
4 µm were deparaffinized, rehydrated, and blocked in normal goat serum. The sections were
incubated with NF-κB and Nrf2 antibodies overnight at 4 ◦C, followed by binding with a horseradish
peroxidase-conjugated secondary antibody. Subsequently, immunoreaction was visualized by
diaminobenzidine reaction and counterstained with hematoxylin.

4.8. Statistical Analysis

The experimental results were analyzed using the statistical software Prism version 6.0 (GraphPad
Software, Inc., La Jolla, CA, USA). Data are presented as mean ± SD or mean ± SEM. The statistical
significance of the difference between the control and treatment groups was assessed by either the
Student t-test or ANOVA analysis for multiple comparisons.
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