Trace oxygen sensitive material based on two porphyrin derivatives heterodimer complex

Eugenia Fagadar-Cosma^{*,a}, Valentin Badea^b, Gheorghe Fagadar-Cosma^{*,b}, Anca Palade^a, Anca Lascu^a, Ionela Fringu^a, Mihaela Birdeanu^{a,c}

^a Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave, No. 24, 300223-Timisoara, Romania, e-mail: <u>efagadar@yahoo.com</u>, fax: +40-256-491824, tel: +40-256-491818

^b Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Pta Victoriei 2, 300006-Timisoara, Romania, e-mail: <u>gfagadar@yahoo.com</u>, fax: +40-256-403021,

tel: +40-256-403000

^c National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu Street, No. 1, 300224- Timisoara, Romania.

1. The ¹H-NMR spectrum of 5,10,15,20-tetrakis(3,4-dimethoxy-phenyl)-porphyrin Fe(III) chloride, compound 1

S1 The ¹H-NMR spectrum of 5,10,15,20-tetrakis(3,4-dimethoxy-phenyl)-porphyrin Fe(III) chloride, compound 1

2. The ¹³C NMR spectrum of 5,10,15,20-tetrakis(3,4-dimethoxy-phenyl)-porphyrin Fe(III) chloride, compound 1

S2 The ¹³C NMR spectrum of 5,10,15,20-tetrakis(3,4-dimethoxy-phenyl)-porphyrin Fe(III) chloride, compound **1**

S3 The ¹H-NMR spectrum of (5,10,15,20-Tetraphenylporphinato)dichlorophosphorus (V) chloride, compound **2**. (a) The ¹H-NMR (detail of range $0 \div -5$ ppm) spectrum of (5,10,15,20-Tetraphenylporphinato)dichlorophosphorus (V) chloride, compound **2** proving the fact that there is no internal NH proton (b)

4. FT-IR spectrum of compound 2

S4 The FT-IR spectrum of (5,10,15,20-Tetraphenylporphinato)dichlorophosphorus (V) chloride, compound **2**

S5 The ¹³C-NMR spectrum of (5,10,15,20-Tetraphenylporphinato)dichlorophosphorus (V) chloride, compound **2**

6. The ³¹P-NMR spectrum of (5,10,15,20-Tetraphenylporphinato)dichlorophosphorus (V) chloride, compound 2

S6 The ³¹P-NMR spectrum of (5,10,15,20-Tetraphenylporphinato)dichlorophosphorus (V) chloride, compound **2**

 $^{31}\text{P-NMR}$ (202.4 MHz, CDCl₃) δ : -193.22 (s, inner P(V) porphyrin, -228.4 (s, outer P(V)porphyrin)

7. HSQC ¹H-¹³C and the HMBC spectra of (5,10,15,20-Tetraphenylporphinato)dichlorophosphorus (V) chloride, compound 2

S7 The HSQC ¹H-¹³C and the HMBC spectra of (5,10,15,20-Tetraphenylporphinato)dichlorophosphorus (V) chloride, compound **2**

8. Characterization of heterodimer complex compound 3

S8. FT-IR spectrum of dimer complex compound 3

S9 ¹H-NMR and of the dimer complex compound 3 This spectrum was introduced in the main manuscript as Figure 3

9. ³¹ P-NMR of the heterodimer complex compound 3

S10. ³¹ P-NMR of the heterodimer complex compound **3**

10. EDAX Quantification reveals, in strong agreement with NMR that to a Fe atom one P atom is corresponding.

S11 EDAX Quantification of compound 2, compound 1 and dimer complex compound 3

11. UV-vis experiments between compound 3 and hydrogen peroxide solution

S12 UV-vis experiments between compound **3** and hydrogen peroxide solution. The decrease of the intensity of absorbtion by increasing the H_2O_2 concentration does not provide sufficient sensitivity.