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Abstract: In this work, antioxidant hydrogels were prepared by the construction of an interpenetrating
chitosan network and functionalization with gallic acid. The poly(2-hydroxyethyl methacrylate)
p(HEMA)-based hydrogels were first synthesized and subsequently surface-modified with
an interpenetrating polymer network (IPN) structure prepared with methacrylamide chitosan via
free radical polymerization. The resulting chitosan-IPN hydrogels were surface-functionalized with
gallic acid through an amide coupling reaction, which afforded the antioxidant hydrogels. Notably,
gallic-acid-modified hydrogels based on a longer chitosan backbone exhibited superior antioxidant
activity than their counterpart with a shorter chitosan moiety; this correlated to the amount of gallic
acid attached to the chitosan backbone. Moreover, the surface contact angles of the chitosan-modified
hydrogels decreased, indicating that surface functionalization of the hydrogels with chitosan-IPN
increased the wettability because of the presence of the hydrophilic chitosan network chain. Our study
indicates that chitosan-IPN hydrogels may facilitate the development of applications in biomedical
devices and ophthalmic materials.
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1. Introduction

Biomaterials with unprecedented levels of structural organization and extraordinary properties
have been sought for many years. One emerging material for the design and synthesis of functional
biomaterials is hydrogels. Hydrogels are robust, three-dimensional cross-linked hydrophilic polymeric
materials, which are capable of retaining large amounts of water and biological fluids [1–3]. More than
50 years after their discovery, poly(2-hydroxyethyl methacrylate) p(HEMA)-based hydrogels remain
a prominent and relevant member of the hydrogel family. Owing to their intrinsic high biocompatibility,
good mechanical properties, and excellent swelling behavior, p(HEMA)-based hydrogels are employed
as biomedical materials, such as in drug delivery systems [4–6], contact lenses [7], dental adhesives [8],
and carrier materials for wound healing [9,10]. In the past few decades, there has been a shift toward
multi-component hydrogels. Some strategies for the preparation of multi-component hydrogels
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include thiol-ene/yne click reactions [11,12], native chemical ligation [13,14], oxime chemistry [15],
and interpenetrating polymer networks (IPNs) [16]. In particular, an IPN is an intriguing system
comprising cross-linked polymers, with at least one being synthesized and/or cross-linked within
the immediate presence of the other. In an IPN system, the polymer networks are physically
interlocked and entangled on the molecular scale without covalent bonds between the different
types of polymer chains [17–19]. Furthermore, the fabrication of hydrogels via IPNs is typically simple
and straightforward, where pre-polymerized hydrogels are submerged into a solution of monomers in
the presence of a polymerization initiator. The resulting double network structure generally produces
an advanced multicomponent hybrid system, which often exhibits significantly improved component
polymer properties [20–22] and synergistic properties of the constituent polymers [23].

In recent years, advances in polymer science and biotechnology have facilitated the production of
biomaterials with excellent bioactivities. Particularly, antioxidants have gained considerable attention in
biomedical applications because of their ability to act as reducing agents, hydrogen-donating antioxidants,
free radical scavengers, and single oxygen quenchers [24]. An important class of antioxidants is
polyphenols, which have a distinguished ability to undergo oxidation/reduction reactions. For instance,
gallic acid and caffeic acid play key roles in the defense mechanism against free radicals and reactive
oxygen species (ROS) by breaking the free radical chain reaction via the hydroxyl groups on their
aromatic rings [25,26]. However, the use of bare antioxidants in the pharmaceutical, biomedical, and
food industries has faced various challenges, such as volatilization, instability, and oxidation under
ambient oxygen [27,28]. Hence, antioxidants have been functionalized into biopolymers and inorganic
materials to address the aforementioned impediments. Moreover, by using the advantages of each
constituent, antioxidant–biopolymer conjugates could be employed as new food additives, in packing,
and as biomedical materials. Several studies have reported on the functionalization of biomacromolecules
such as chitosan and its derivatives with phenolic compounds extracted from plants, such as gallic
acid, caffeic acid, tannic acid, and catechin [29–32]. Furthermore, the antioxidant curcumin has been
incorporated into bandages and collagen matrices to promote wound healing [33].
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Recently, we demonstrated the potential of IPN structures consisting of succinyl chitosan
polymers and spiropyran as photochromic hydrogels [34]. The nucleophilic amino groups of chitosan
polymers within the IPN structure facilitated modifications and conjugations with various functional
molecules. In the present paper, we report a synthetic strategy for the preparation of antioxidant
hydrogels using a simple method by constructing an IPN architecture based on methacrylamide
chitosan (MC) and an antioxidant polyphenol, gallic acid (Figure 1). Initially, p(HEMA)-based
hydrogels were synthesized and a chitosan-IPN was constructed using intermolecularly cross-linked
chitosan chains and p(HEMA) networks. By means of amide coupling reactions, chitosan-IPN
hydrogels were further surface-functionalized with gallic acid, which significantly improved the
antioxidant activity of the hydrogels. The radical scavenging efficiency of the fabricated antioxidant
hydrogels was investigated in two model assays employing 2,2-diphenyl-1-picrylhydrazyl (DPPH)
and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radicals.

2. Results and Discussion

Antioxidant hydrogels were prepared according to the synthetic route illustrated in Figure 1.
Initially, p(HEMA)-based hydrogels were synthesized via free radical polymerization with
HEMA monomers using ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent and
azobisisobutyronitrile (AIBN) as the initiator. The resulting p(HEMA)-based hydrogels were
surface-modified with an IPN structure using cross-linked chitosan chains. Chitosan is a natural
polysaccharide that has been used in various biomedical applications because of its biodegradability,
nontoxicity, and biocompatibility. However, chitosan has limited solubility in both water and common
organic solvents because of extensive intramolecular and intermolecular hydrogen bonding in the
α- and β-conformations [35,36]. Although chitosans with an acetylation degree in the range of 40–60%
and a medium molecular weight are soluble at physiological pH values [37], they must be chemically
modified to improve the solubility in neutral aqueous media and common organic solvents and to be
processed into IPN hydrogels. Herein, chitosan polymers were chemically modified by introducing
methacrylate functionalities onto the N-position of the primary amine groups in the chitosan backbone,
yielding a methacrylamide derivative of chitosan (MC). MCs with different molecular weights (MWs)
were synthesized using 100–300 kDa and 600–800 kDa chitosan, for low- and high-MC, respectively.
1H-NMR spectroscopic measurements (Figure 2) revealed the degrees of methacrylation, which were
found to be about 59.30% and 37.78% for low- and high-MC, respectively. The degree of methacrylation
was calculated according to previously reported literature [38] by comparing the integrated area of the
H2–H6 peaks at 2.8–4.0 ppm to that of the methylene peaks at 5.35 and 5.65 ppm.
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Next, chitosan-IPN hydrogels (low-MC-H and high-MC-H based on low-MC and high-MC,
respectively) were constructed by loading MC into p(HEMA) hydrogels, followed by the cross-linking
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of MC via radical polymerization across the methacryl carbon–carbon double bond using ammonium
persulfate (APS) and sodium metabisulfite (SMBS) as polymerization initiators. The fabricated
chitosan-IPN hydrogels were surface-functionalized by amide coupling reactions of antioxidant gallic
acid (GA) to the chitosan network, which resulted in two antioxidant hydrogels, low-MC-GA and
high-MC-GA based on low- and high-MC-H, respectively. After the cross-linking reaction, the yields of
surface modification with chitosans were estimated to be ~61.6% and ~73.8% for low- and high-MC-H,
respectively. The amounts of conjugated MC corresponded to about 0.123 and 0.148 g for low- and
high-MC-H, respectively, for 1 g of the corresponding hydrogels. This was obtained simply by
measuring the amount of MC bound after the cross-linking reaction and comparing it with the initial
amount of MC.

To quantify the amount of GA attached to the chitosan-IPN hydrogels, UV/Vis absorption
measurements using a standard calibration curve based on GA were taken. The method relies only on
the use of the free GA as the standard compound, and the results are given as moles of GA per surface
area of hydrogel. Employing Beer’s Law regression at 293 nm, the quantities of GA per hydrogel were
estimated to be ~0.019 µmol for low-MC-GA and 0.160 µmol for high-MC-GA (Figure 3), which were
calculated from the total surface area of hydrogels with a size of 10.0 × 10.0 mm and a thickness of
0.24 mm. As illustrated in Table 1, a much higher quantity of attached antioxidant residues was found
in the hydrogels with a longer MC polymer compared to those with a shorter MC. The longer chitosan
seems to produce a more accessible site to GA for the amide coupling reaction as compared to its
shorter counterpart, despite that the amounts of incorporated chitosans are nearly same regardless of
the length of chitosans [16,34].
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Figure 3. Absorbance spectra of the prepared methacrylamide chitosan-interpenetrating polymer
network (IPN) hydrogels functionalized with gallic acid.

Table 1. Characteristics of prepared antioxidant hydrogels.

Hydrogels MW of Chitosan
(kDa)

Amounts of Attached Polyphenols
per Hydrogel (µmol) a Contact Angle (◦) b

p(HEMA) c — — 73.2 ± 1.9
Low-MC-H 100–300 — 68.8 ± 2.9
High-MC-H 600–800 — 60.5 ± 12.3
Low-MC-GA 100–300 0.019 ± 0.0028 69.9 ± 4.1
High-MC-GA 600–800 0.160 ± 0.0536 66.4 ± 5.0
a Data are means ± SD (n = 3); b Data are means ± SD (n = 4), c p(HEMA) is pristine p(HEMA)-based hydrogel.

Contact angle measurements were carried out to investigate the surface properties of the prepared
antioxidant hydrogels [39]. As shown in Figure 4 and Table 1, the surface modification of p(HEMA)
hydrogels with cross-linked chitosan-IPN structures resulted in a decrease in the water contact angle,
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indicating enhanced surface wettability. Low- and high-MC-H exhibited contact angles of about 68.8◦

and 60.5◦, respectively. These values represent decreases of about 4.4◦ and 12.7◦ for the hydrogels,
respectively, relative to the value of 73.2◦ for the unmodified control. The observed decrease in the
hydrogel contact angle was attributed to the relatively hydrophilic chitosan-IPN, which enhanced the
surface-hydrophilicity of the prepared hydrogels. Moreover, the hydrogel surface-modified with longer
chitosan networks showed higher wettability compared to its shorter counterpart, because a longer
chitosan covered the hydrogel surface with its hydrophilic glucosamine units more so than shorter
chains. However, the water contact angle of hydrogels functionalized with GA increased by about
1.1◦ and 5.9◦ for low- and high-MC-GA, respectively, relative to GA-unfunctionalized chitosan-IPN
hydrogels, demonstrating that the relatively hydrophobic GA slightly decreased the surface wettability
of the prepared hydrogels. Furthermore, the values depicted in Table 1 were in fairly good accordance
with the contact angles reported in the literature [40]. Ketelson et al. have reported that commercially
available contact lenses exhibited contact angles of 30–105◦ [40].
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The antioxidant properties of the fabricated chitosan-IPN hydrogels were assessed using DPPH
and ABTS radical scavenging assays. Herein, the antioxidant efficiencies of the prepared hydrogels
were investigated using ascorbic acid as a positive control. In the DPPH assay, the antioxidant activity
is determined by the extent of the decolorization of the DPPH radical. The DPPH radical shows
a strong absorption maximum at 517 nm and its color changes from purple to colorless followed by the
formation of stable hydrazine (DPPH-H) upon the absorption of hydrogen from an antioxidant. Thus,
the antioxidant effect is stoichiometrically proportional to the decrease in the UV absorption at 517 nm.
In contrast, the ABTS assay is based on the reduction of the generated blue/green ABTS•+ species
with the percent inhibition of the absorbance at 734 nm. As shown in Figures 5 and 6, the radical
scavenging abilities of the prepared hydrogels were evaluated upon reaction with DPPH and ABTS
radicals. As expected, the polyphenol-free hydrogels did not exhibit any radical scavenging abilities.
Notably, a remarkable improvement in the DPPH and ABTS radical scavenging abilities by the
polyphenol-modified hydrogels was observed.

In the DPPH and ABTS assays, moderate antioxidant abilities were observed for low-MC-GA,
which inhibited 39.40% and 38.25% of the DPPH and ABTS radicals, respectively. On the contrary,
strong antioxidant activities were observed for the hydrogels with longer chitosan chains, which exhibited
a 74.65% and 95.79% inhibition of DPPH and ABTS radicals, respectively, while the positive control,
ascorbic acid, exhibited a 93.65% and 95.31% inhibition against DPPH and ABTS radicals, respectively.

The results suggest that hydrogels based on MC species with a higher MW exhibited stronger
antioxidant effects than those with shorter MC moieties. This was attributed to the potent antioxidant
residues being attached to the longer MC-based hydrogels. Generally, polyphenols possessing
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an o-diphenolic arrangement, for example, a catechol structure, can donate a hydrogen radical to
scavenge DPPH and ABTS free radicals. The resulting phenolic radical is stabilized by resonance,
whereby the radical is delocalized across the aromatic ring and is further oxidized to form the fully
conjugated o-dione structure, o-quinone. Moreover, the additional hydroxyl group in GA enhances
its antioxidant activity, as the added hydroxyl group adjacent to the o-dihydroxyl phenolic structure
forms an intramolecular hydrogen bond in the o-position during the radical scavenging reaction,
which provides additional stability to the phenoxy radical owing to its hydrogen-donating capacity.
Several studies have reported the enhanced antioxidant activity of tri-hydroxyl derivatives in the
o-position, such as catechin gallate ester and GA, because of the hydrogen-donating capacity of the
third hydroxyl group to the phenoxy radical [24,41,42].
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Figure 5. Radical scavenging capacity of the prepared antioxidant hydrogels against 2,2-diphenyl-1-
picrylhydrazyl (DPPH) free radicals. The amount of ascorbic acid was 0.85 µmol. Legend: 1 = poly(2-
hydroxyethyl methacrylate) (p(HEMA)); 2 = low-methacrylamide chitosan hydrogel (MC-H);
3 = high-MC-H; 4 = low-MC-gallic acid (GA); 5 = high-MC-GA; 6 = ascorbic acid.
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Figure 6. Radical scavenging capacity of the prepared antioxidant hydrogels against
3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radicals. The amount of ascorbic acid was 0.85 µmol.
Legend: 1 = poly(2-hydroxyethyl methacrylate) (p(HEMA)); 2 = low-methacrylamide chitosan hydrogel
(MC-H); 3 = high-MC-H; 4 = low-MC-gallic acid (GA); 5 = high-MC-GA; 6 = ascorbic acid.
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3. Materials and Methods

3.1. Chemicals

HEMA, EGDMA, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC-HCl),
N-hydroxysuccinimide (NHS), GA, APS, SMBS, methacrylic anhydride, DPPH, and ABTS were
purchased from Sigma Aldrich (St. Louis, MO, USA). AIBN was purchased from Junsei (Tokyo, Japan),
while chitosan (100–300 kDa and 600–800 kDa) was acquired from Acros Organics (Geel, Belgium).
The degree of deacetylation was provided by the supplier and was found to be ≥90%. Deuterium
oxide was purchased from Cambridge Isotope Laboratories (Tewksbury, MA, USA).

3.2. Synthesis of HEMA-Based Hydrogels

A HEMA monomer was initially purified using vacuum distillation prior to polymerization.
Briefly, EGDMA (0.04 g) and AIBN (0.04 g) were dissolved in HEMA (9.92 g). The resulting solution
was mixed for 30 min, injected into a square mold comprising two glass plates internally covered
with a polypropylene sheet and separated by a 0.20 mm wide Teflon frame, and was heated at
90 ◦C for 5 h to allow for polymerization to take place. The samples were then removed from the
molds and subjected to extensive dialysis. They were then placed in 400 mL of de-ionized water
(changed three times daily), for 2 days, to remove any unreacted monomer and initiators. Subsequently,
square hydrogels (10 mm × 10 mm × 0.24 mm) were cut from the square mold, immersed in boiling
water for 15 min, and dried at 40 ◦C overnight.

3.3. Preparation of MC and Analysis of Degree of Methacrylation

MC was synthesized according to previously reported literature [43]. Chitosan of varying
MW (Mw of 100,000–300,000 Da and 600,000–800,000 Da) was separately dissolved in 2 wt %
acetic acid overnight at room temperature (RT) to constitute a 3 wt % solution of chitosan in
distilled water. Methacrylic anhydride was added to the chitosan solutions at a 0.44 methacrylic
anhydride/glucosamine molar ratio. The resulting mixture was stirred at RT for 3 h before being
subjected to extensive dialysis against distilled water for 2 days with at least three to four changes
of distilled water a day. The mixture was freeze-dried and stored at −20 ◦C until use. The degree
of methacrylation of chitosan was determined using 1H-NMR spectroscopic measurements [35].
An appropriate amount of MC was dissolved in D2O to constitute a ~0.5% (w/v) MC solution.
The degree of methacrylation was then calculated by comparing the integrated area of H2–H6 peaks at
2.8–4.0 ppm to that of the methylene peaks at 5.35 and 5.65 ppm. The 1H-NMR spectra were recorded
using JNM-AL300 (JEOL, Tokyo, Japan).

3.4. Synthesis of MC-IPN Functionalized with GA

An appropriate amount of previously freeze-dried MC was dissolved to reconstitute a 2 wt %
solution in distilled water. Then, previously prepared p(HEMA)-based hydrogels were immersed in
the MC solution at RT. After 24 h, the p(HEMA)-based hydrogels were washed with distilled water
and immersed in 10 mL of distilled water followed by the addition of polymerization initiators,
APS and SMBS. The mixture was allowed to sit for 2 h to allow for the cross-linking reaction
to proceed completely. The yield of the surface modification was calculated from Equation (1).
To remove any unreacted cross-linking agents, MC-IPN hydrogels were washed with phosphate
buffer saline (PBS; pH 7.4) for 3 days with at least four to five changes of buffer each day. Subsequently,
the functionalization of MC-IPN hydrogels with GA was then performed. This was done by submerging
the MC-IPN hydrogels in 20 mL of distilled water, followed by the addition of EDC-HCl, NHS and
GA. The mixture was allowed to sit for 24 h at RT. The mixture was immersed in distilled water for
2 days to completely remove any unreacted chemicals prior to characterization.

% Yield = {(Weight of dried IPN Hydrogel − Weight of p(HEMA) hydrogel)/Weight of MC)} × 100 (1)
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3.5. UV-Vis Absorption Measurements

The absorption spectra of the hydrogels were measured at a wavelength range of 285–750 nm
with a Shimadzu, UV-1650PC (Shimadzu, Tokyo, Japan) spectrophotometer. The measurements for
each sample were repeated four times, and the results were averaged.

3.6. Contact Angle Measurements

A drop of nanopure water (4.5 µL) was positioned on the hydrogel surface. Contact angles were
then measured using a DSA100 instrument (Krüss GmbH, Hamburg, Germany). The measurements
for each sample were taken four times, and the results were averaged.

3.7. DPPH Radical-Scavenging Assay of the MC-IPN Hydrogels

A method described by Brand–Williams and modified by Miliauskas [44] was used in determining
the DPPH radical-scavenging capacity of the prepared MC-IPN hydrogels. The test samples were
compared to a known antioxidant, ascorbic acid (1000 ppm). Briefly, DPPH• solution (0.2 mM,
in ethanol) was mixed with the hydrogel samples. The reaction mixture sample was shaken for
30 min at 37 ◦C in the dark. The reaction of the DPPH radical was estimated by measuring the
absorption at 517 nm against ethanol as a blank in the spectrophotometer. The percentage of the
DPPH• scavenging inhibition capacity was calculated from Equation (2):

% Inhibition = {1 − (Absorbance of sample/Absorbance of control)} × 100 (2)

3.8. ABTS Radical-Scavenging Assay of the MC-IPN Hydrogels

The ABTS radical-scavenging capacity of each sample was determined according to the modified
method described by Arnao et al. [45]. ABTS radical cations (ABTS•+) were produced by adding
7 mM ABTS solution and 2.4 mM potassium persulfate solution. The diluted ABTS•+ solution was
then prepared by mixing the two solutions in equal quantities and allowing them to react for 24 h
at RT in the dark. The solution was then diluted with methanol to obtain an absorbance range of
0.7–1 ± 0.02 units at 734 nm. Hydrogel samples were added to the diluted ABTS•+ solution and
incubated for 30 min, at 37 ◦C, in the dark. The reaction of the ABTS•+ species was estimated by
measuring the absorption at 734 nm against methanol as a blank. The percentage scavenging inhibition
capacity of ABTS•+ was calculated using Equation (2).

4. Conclusions

We have prepared antioxidant p(HEMA)-based hydrogels using a chitosan-based IPN structure
and surface immobilization with GA. We have successfully synthesized polymerizable MCs
and applied them to the construction of chitosan-based IPN structures on p(HEMA) hydrogels.
Remarkably, the IPN synthesis was carried out in an aqueous solution without an additional
cross-linker, which makes this approach more facile and practical than those previously reported using
chitosan-based IPN structures. Further covalent modifications with GA on the chitosan backbone
yielded antioxidant chitosan-IPN hydrogels. Superior antioxidant effects were observed by the
hydrogels with longer chitosan species, as more antioxidant residues were attached to the longer
chitosan chains. The surface wettability of the prepared antioxidant hydrogels was enhanced in
the presence of the relatively hydrophilic chitosan-IPN structure but was slightly decreased upon
conjugation with GA. The results described herein support the feasibility of chitosan-IPN hydrogels
as versatile platforms for the development of ophthalmic materials and functional biomaterials with
intrinsic bioactivities and biocompatibility.
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