Supporting Information

Transformation of a thermostable G-quadruplex structure into DNA double helix driven by reverse gyrase

Dawei $\mathrm{Li}^{\mathrm{a}, *}$, Qiang wang ${ }^{\mathrm{a}}$, Yun Liu ${ }^{\mathrm{a}}$, Kun Liu ${ }^{\text {b }}$, Qiang Zhuge ${ }^{\mathrm{a}}$ and Bei $\mathrm{Lv}^{\mathrm{b}, *}$
${ }^{a}$ Key Lab of Forest Genetics and Biotechnology, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
${ }^{b}$ Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210037, China

[^0]

Figure S1 Schematic illustration of our synthetic route towards DNA 1.

Experimental procedures:

Step 1: X2420G (plasmid DNA) was purchased from Generay Biotech (Shanghai, China). The forward primer (Primer 1 in Table S 1) contained the cytosine-rich segment. The detailed nucleotide sequences of Forward Primer (Primer 1) and reverse primer (Primer 2) used in the current studies are shown in Table S1. The PCR amplification reactions were carried out following reported procedures with a annealing temperature of $63^{\circ} \mathrm{C}$.

Step 2: A mixture containing 10 mM Bis-Tris-Propane- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ Dithiothreitol, 10 units SacI and $\sim 2 \mu \mathrm{~g}$ purified PCR products was incubated at $37^{\circ} \mathrm{C}$ for 1 hour, which gave rise to a cohesive end-containing linear DNA.

Step 3: A mixture containing 50 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ ATP, 10 mM dithiothreitol, 20 units T4 DNA ligase and $\sim 2 \mu$ g SacI digested products was incubated at $16^{\circ} \mathrm{C}$ for 8 hours. The
resultant reaction mixture was allowed next to react with BAL-31 (an exonuclease that hydrolyzes opening end-containing DNA) in order to acquire pure closed circular DNA products (DNA S1). Step 4: A mixture containing 5 units of Nt.BsmAI, $1 \times \mathrm{Nt}$.BsmAI buffer (20 mM Tris-acetate, 50 mM potassium acetate, 10 mM Magnesium Acetate, 1 mM Dithiothreitol) and $\sim 2 \mu \mathrm{~g}$ DNA S1 was incubated at $37^{\circ} \mathrm{C}$ for 1 hour to generate a nicked site-containing circular DNA (DNA N1).

Step 5: A nicked site- and G-quadruplex-containing circular DNA obtained by incubation of DNA N 1 in 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.4)$ buffer containing 1 mM EDTA, 150 mM KCl and 40% PEG 200 at $95^{\circ} \mathrm{C}$ for 5 minutes followed by cooling the mixture to room temperature.

Step 6: A mixture containing 50 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ ATP, 10 mM dithiothreitol, 20 units T4 DNA ligase and $\sim 500 \mathrm{ng}$ DNA products obtained in Step 5 was incubated at $16^{\circ} \mathrm{C}$ for 8 hours to give the final DNA products (DNA 1)

Table S1. Nucleotide sequences of primers used in our polymerase chain reactions.

Name of DNA	Nucleotide sequence
Primer 1	5^{\prime} CCGAGCTCAGGACCCCCCATTCCCCCCATTCCCCCCATTC CCCCCTAATACATGTGCTGAGGATCGAG 3'
Primer 2	5^{\prime} TCGTTTGGTATGGCTTCATT 3'
Primer 3	5^{\prime} CCGAGCTCAGGACATAACATTCTGCCCATTCCTTTCATTC CGGTCTAATACATGTGCTGAGGATCGAG 3'

Table S2 Nucleotide sequences of DNA 1. Sequence only shows one strand from 5^{\prime} to 3^{\prime}. Gray shadow indicates the sequence that can form the G-quadruplex structures.

Abstract

< 5 ' GAGCTCCAGCTCTTCTCTCCTTCGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAGCTTAACTT ACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGC GTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATAC TCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATG TATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATT ATTATCATGACATTAACCTATAACAAGAATTCTCATGTTTGACAGCTTATATAACTTCGTATAATGTATGCTATAC GAAGTTATGGCTCGAGACCGGTTCTAGATACCTAGGTTGGTACCCTCTAGTCAAGGCCTTAAGTGAGTCGTATTAC GGACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGGTTTTGCGACGAGG ATCCACTAAGTGGGAAGACTTGCCGAATTCCTTCAAGCCTGCTTTTTTGTACAAAGTTGGCATTATAAAAAAGCAT TGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGGGGCCCGAGCTTAAGAC TGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACATCCATGCTAGCGTTAACGCGAGAGTAGGGAACTGCCAGGC ATCAAATAAAACGAAAGGCTCAGTCGGTAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCT GAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGTGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCG CCATAAACTGCCAGGCATCAAACTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAGGCCGGC AGTAATTAAGACTCGATCCTCAGCACATGTATTTAGGGGGGAATGGGGGGAATGGGGGGAATGGGGGGTCCT $3^{\prime}>$

Note: (1) DNA 1 is a circular DNA; and
$(2)<$ and $>$ stand for the termini that are covalently connected.

Table S3 Nucleotide sequences of DNA C1. Sequence only shows one strand from 5' to 3'. Gray
shadow indicates the sequence that are different from DNA 1 and cannot form G-quadruplex.

Abstract

<5' GAGCTCCAGCTCTTCTCTCCTTCGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAGCTTAACTT ACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGC GTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATAC TCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATG TATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATT ATTATCATGACATTAACCTATAACAAGAATTCTCATGTTTGACAGCTTATATAACTTCGTATAATGTATGCTATAC GAAGTTATGGCTCGAGACCGGTTCTAGATACCTAGGTTGGTACCCTCTAGTCAAGGCCTTAAGTGAGTCGTATTAC GGACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGGTTTTGCGACGAGG ATCCACTAAGTGGGAAGACTTGCCGAATTCCTTCAAGCCTGCTTTTTTGTACAAAGTTGGCATTATAAAAAAGCAT TGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGGGGCCCGAGCTTAAGAC TGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACATCCATGCTAGCGTTAACGCGAGAGTAGGGAACTGCCAGGC ATCAAATAAAACGAAAGGCTCAGTCGGTAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCT GAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGTGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCG CCATAAACTGCCAGGCATCAAACTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAGGCCGGC AGTAATTAAGACTCGATCCTCAGCACATGTATTTAGACCGGAATGAAAGGAATGGGCAGAATGTTATGTCCT $3^{\prime}>$

Note: (1) DNA C1 is a circular DNA; and
$(2)<$ and $>$ stand for the termini that are covalently connected.

[^0]: * Corresponding author. Tel.: +86-25-8542-8701; fax: +86-25-8542-8701; e-mail: dwli@njfu.edu.cn or lvbei@jssnu.edu.cn

