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Abstract: A Barbier reaction–Heck arylation sequence from α-bromomethylbutenolide to fused tri
and tetracyclic lactones has been developed. The first step involving a Barbier reaction enabled
installing ortho-bromoaromatics in α-ylidene γ-lactones. The latter substrates were subjected to
intramolecular Heck reaction conditions which selectively afforded 6,5,5 or 6,6,5 fused ring systems
depending on the nature of the base employed.
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1. Introduction

The α-ylidene γ-lactone subunit can be found in a myriad of biologically active compounds [1,2].
The conjugated exo-vinylidene fragment is believed to be essential to a wide array of biological
activities and thus drove the development of numerous preparation methods [3–7]. The interest of the
scientific community for such lactones also stems from their use as intermediates in the synthesis of
complex and polycyclic molecular architectures. As examples, the synthesis of the pterocarpan [8,9]
and the podophyllotoxin skeletons illustrate α-methylidene butyrolactones as key intermediates for
the construction of the final ring D and central ring B, respectively (Figure 1) [10–13].
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1. Introduction 

The α-ylidene γ-lactone subunit can be found in a myriad of biologically active compounds [1,2]. 
The conjugated exo-vinylidene fragment is believed to be essential to a wide array of biological activities 
and thus drove the development of numerous preparation methods [3–7]. The interest of the scientific 
community for such lactones also stems from their use as intermediates in the synthesis of complex 
and polycyclic molecular architectures. As examples, the synthesis of the pterocarpan [8,9] and the 
podophyllotoxin skeletons illustrate α-methylidene butyrolactones as key intermediates for the 
construction of the final ring D and central ring B, respectively (Figure 1) [10–13]. 
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Figure 1. α-Ylidene γ-lactone as advanced intermediates in the synthesis of polycyclic skeletons. 

Although starting from α-ylidene γ-lactone precursors provided an elegant approach to polycyclic 
architectures, in each of the latter cases, the preparation of α-methylidene butyrolactone intermediates 
bearing the mandatory ortho-halide substituent (Figure 2a, highlighted in green) required multistep 
sequences which somewhat hampered the overall access to polycyclic targets [10–13]. In this context, 
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Although starting from α-ylidene γ-lactone precursors provided an elegant approach to polycyclic
architectures, in each of the latter cases, the preparation of α-methylidene butyrolactone intermediates
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bearing the mandatory ortho-halide substituent (Figure 2a, highlighted in green) required multistep
sequences which somewhat hampered the overall access to polycyclic targets [10–13]. In this context,
access to the podophyllotoxin derivatives was carried out mainly on two substrates which are
characterized either by the absence of substituents [10,11] or by the presence of a OTIPS group [12]
located at the benzylic site which connects the two fragments of the precursor (Figure 2b, highlighted
in blue). Two different routes leading to podophyllotoxin derivatives have been studied involving
a radical-induced cyclization, depending on the configuration of the vinylidene double bond and
a Pd-mediated ring closure depending on the catalytic system used and the substitution at the benzylic
site. Indeed, in the presence of a radical cyclisation agent, the Z-isomer led to a mixture of “6,6,5” and
“6,5,5” architectures. In contrast, the E-isomer gave an exclusive access to the 5-membered central ring
(Figure 2a).
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Two different “6,6,5” and “6,5,5” architectures have also been obtained from Pd-catalyzed
processes. Without a substituent at the benzylic site, the 6,5,5-pattern was obtained as the sole
product from the Z-isomer using K2CO3 or Et3N in combination with Pd(II)/PPh3 as the catalytic
system. Under these conditions, the E-isomer only led to complex mixtures. In contrast, the use of
Pd(II)/PPh3, K2CO3, TlOAc and HCO2Na as the hydride source gave the 6,6,5-pattern as the exclusive
product (Figure 2a). In the presence of a OTIPS group, the issue of the Pd catalyzed cyclisation process
was strongly dependant on the base used (Figure 2b). When Hünig’s base was used, the 6,5,5 pattern
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was isolated. Mixtures of both patterns were observed in the presence of K2CO3 and TlOAc. Finally,
exclusive and high yielding access to the 6,6,5 architecture was obtained using a combination of TlOAc,
dppf and pentamethylpiperidine as the base.

The development of a shortcut sequence implying a selective and rapid access to the α-ylidene
γ-lactone intermediates bearing a bromine atom followed by an intramolecular Heck arylation
is therefore highly desirable. In this communication, we describe a two-step strategy towards
fused tricyclic architectures starting from α-bromomethylbutenolide. The key α-ylidene γ-lactone
intermediate was obtained in the first step through a Barbier reaction which allowed installation of
the ortho-bromoaromatics. These intermediates were subsequently subjected to intramolecular Heck
reaction conditions. In our case, the presence of the OH group located at the benzylic site accounted
for the selective preparation of the tricyclic 6,6,5 α-vinylidene γ-lactone or the 6,5,5 lactone motifs
depending on the catalytic precursor/base combination (Figure 2c). The generation of tetracyclic
analogues was then examined using the same strategy.

2. Results and Discussion

We first examined the Barbier reaction between α-bromomethylbutenolide 1 and ortho-
bromobenzaldehyde 2. If such reactions are well described [3–7], the use of ortho-substituted
benzaldehydes and further ortho-bromide derivatives remain scarcely reported [14]. In our case,
2 smoothly reacted with the starting butenolide at room temperature in THF for 16 h, in the presence
of activated zinc powder (1.1 eq.) and saturated aq. NH4Cl as an additive. Under these conditions,
homoallylic alcohol 3 was obtained at 65% with an 85:15 dr (Scheme 1).
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The stereoselectivity of the major isomer is consistent with those described with other aromatic
substrates [2], this was supported by our own NMR data (see ESI) and established by comparison with
X-ray crystallographic analysis of the naphthalene analogue (vide infra). We next turned our attention
to the intramolecular Heck cyclization under various conditions as exemplified in Table 1.

Our first attempts were based on a Pd(II) catalytic system reported in the literature for an analogous
transformation [3–7]. Pd(PPh3)2Cl2 (5 %) in combination with K2CO3 (2 eq.) was first used as the
catalytic system in refluxing THF for two hours (entry 1). Although under these conditions, the reaction
did not reach completion (see ratio of compounds 3/4/5 determined by 1H-NMR), we were able
to isolate the unexpected tricyclic lactone 4 in 20% yield. The structure of 4 was unambiguously
assigned by NMR experiments. Our strategy represents an alternative to the construction of fused
tricyclic lactone architectures combining fused cyclopentenone and dihydrofuranone or γ-lactone-fused
benzopyrans [8,9,15–17]. After 16 h, we noticed full conversion of the starting material and lactone 4 was
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isolated in a fair 60% yield together with some unidentified degradation material (entry 2). Under these
conditions, no traces of the expected tricyclic 6,5,5 product was detected in the crude material. These first
entries differ markedly from earlier observations within similar series [10–12]. Indeed, as described by
Genet and Ikeda [10–12], the tricyclic products arising from the intramolecular Heck process is obtained
either in the absence of a homoallylic hydroxyl group or in the presence of a Si-protected hydroxyl
group (Figure 2a,b). In our case, the presence of an unprotected hydroxyl group allowed a different
pathway to take place. As shown in Scheme 2, compound 4 and two new fused O-heterocycles might
arise from a ring opening–ring closure sequence starting from the potassium alcoholate, through
an intramolecular trans lactonization process, followed by an intramolecular Pd-assisted C-O bond
formation [18]. Attempts to modify the reaction course by using silver salts [19] proved detrimental
to the transformation only affording degradation material (entry 3). Changing from THF to MeCN
as the solvent or Pd(PPh3)2Cl2/K2CO3 to Pd(PPh3)2Cl2/Cs2CO3 as the catalytic combination did not
improve the isolated yield or led to degradation of the starting material respectively (entries 4 and 5).
A control reaction run without a palladium source (entry 6) in order to isolate the intermediate from the
ring opening–ring closure sequence failed, affording tangled mixtures of polycondensation products.

Table 1. Selective access to lactones 4 and 5.
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4 Pd(PPh3)2Cl2 K2CO3 MeCN 90 ◦C, 16 h 0/1/0 4(50)
5 Pd(PPh3)2Cl2 Cs2CO3 MeCN 90 ◦C, 2 h - - c

6 - K2CO3 THF 65 ◦C, 16 h - - d

7 Pd(dppf)Cl2 K2CO3 MeCN 90 ◦C, 2 h 0.5/1/0 4(30)
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A combination of Pd(dppf)2Cl2/K2CO3 in MeCN or THF at reflux led to average yields of 30% and
45%, respectively, accompanied by degradation products (entries 7 and 8). Interestingly, the use of KOAc
instead of K2CO3 allowed a complete switch of selectivity as tricyclic compound 4 was not detected
(entry 9). Indeed, such conditions afforded a mixture of the starting material and a small amount
of lactone 5. Gratifyingly, we were able to cleanly isolate lactone 5 in a 40% yield by changing from
THF to MeCN as the solvent (entry 10). It is worthy to note that the intramolecular Heck cyclization
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afforded the carbonyl compound 5 instead of the expected corresponding benzylic alcohol. Under our
conditions, the formation of lactone 5 can be explained as shown in Scheme 3. The generation of
a quaternary carbon center arising from oxidative addition and carbopalladation in a 5-exo process
at precursor 3 precludes classical β-hydride elimination. The formation of lactone 5 could thus arise
from an alternative pathway, involving an exo/endo migration of the olefin prior to Heck reaction.
The α,β-unsaturated lactone thus generated would then successively undergo oxidative addition and
carbopalladation in a 5-endo pattern followed by β-hydride elimination. The latter sequence would
then generate an enolate and the corresponding ketone after aqueous workup.

Molecules 2017, 22, 2171 5 of 10 

 

Heck reaction. The α,β-unsaturated lactone thus generated would then successively undergo oxidative 
addition and carbopalladation in a 5-endo pattern followed by β-hydride elimination. The latter sequence 
would then generate an enolate and the corresponding ketone after aqueous workup. 

 
Scheme 3. Plausible mechanism for the obtention of lactone 5. 

This sequence requires an exo/endo migration of the olefin to take place prior the oxidative addition 
as the first key step leading to lactone 5. The formation of allylic alcohols from homoallylic alcohols 
including homoallylic benzylic alcohols using Pd/C and Et3N has already been reported [20]. In addition, 
migration of the olefin from α-methylene-γ-butyrolactone to the corresponding α,β-unsaturated 
lactone has been obtained using RhCl3 in EtOH [21] and observed as a side product of cross metathesis 
reactions [22]. Unfortunately, we have not been able to demonstrate the olefin migration on the closely 
related dehalogenated analogue of compound 3 under our reaction conditions. However, in good 
agreement with the latter reports, we have been able to acquire evidence for the olefin migration of the 
olefin from α-methylene-γ-butyrolactone A to the corresponding α,β-unsaturated lactone B under our 
reaction conditions (Pd(PPh3)2Cl2/KOAc in refluxing MeCN) as shown in Scheme 4. The presence of 
characteristic signals of lactone B in the 1H-NMR of the crude material (see supplementary material) 
confirmed the olefin isomerization in full agreement with data reported by Jefford et al. [21]. 

 
Scheme 4. Exo/endo migration of the olefin from α-methylene-γ-butyrolactone (A) to the α,β-unsaturated 
lactone; (B) using Pd(PPh3)2Cl2/KOAc in refluxing MeCN. 

The stereoselectivity was established by comparison with an X-ray crystallographic structure of 
the naphthalene analogue (vide infra). Again, the use of silver salts disappointingly afforded a 
sluggish reaction from which compound 5 could be isolated in 14% yield (entry 11). Finally, the use 
of a 1:1 mixture of K2CO3 and KOAc in refluxing THF afforded a partial conversion of the starting 
material 3 and formed lactone 4 as well as traces of lactone 5 in a 1/1.2/0.1 ratio (entry 12). Our results 
seem to indicate that both the nature of the base and the reaction conditions are essential to the 
selective transformation of benzylic alcohol 3. Indeed, higher temperature in MeCN combined with 
the use of KOAc as the base affords the tricyclic 6,5,5 lactone 5, whereas lower temperature in THF 
associated to K2CO3 affords the tricyclic 6,6,5 lactone 4. 

The same strategy was tested on ortho-bromobenzonitrile 6 and ortho-bromobenzaldimine 7. 
Unfortunately, in both cases under similar Barbier conditions only the α-methylbutenolide arising 
from Zn-promoted reduction of the C-Br bond could be isolated (Table 2, entries 1 and 2). In contrast, 
moving from the phenyl to the commercially available naphthyl substrate 8 led to the formation of 
alcohol 12 in 60% yield with an 87:13 dr (entry 3). The rigid naphthalene fragment did not affect the 

Scheme 3. Plausible mechanism for the obtention of lactone 5.
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as the first key step leading to lactone 5. The formation of allylic alcohols from homoallylic alcohols
including homoallylic benzylic alcohols using Pd/C and Et3N has already been reported [20]. In addition,
migration of the olefin from α-methylene-γ-butyrolactone to the corresponding α,β-unsaturated lactone
has been obtained using RhCl3 in EtOH [21] and observed as a side product of cross metathesis
reactions [22]. Unfortunately, we have not been able to demonstrate the olefin migration on the closely
related dehalogenated analogue of compound 3 under our reaction conditions. However, in good
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The stereoselectivity was established by comparison with an X-ray crystallographic structure of
the naphthalene analogue (vide infra). Again, the use of silver salts disappointingly afforded a sluggish
reaction from which compound 5 could be isolated in 14% yield (entry 11). Finally, the use of a 1:1
mixture of K2CO3 and KOAc in refluxing THF afforded a partial conversion of the starting material 3
and formed lactone 4 as well as traces of lactone 5 in a 1/1.2/0.1 ratio (entry 12). Our results seem
to indicate that both the nature of the base and the reaction conditions are essential to the selective
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transformation of benzylic alcohol 3. Indeed, higher temperature in MeCN combined with the use of
KOAc as the base affords the tricyclic 6,5,5 lactone 5, whereas lower temperature in THF associated to
K2CO3 affords the tricyclic 6,6,5 lactone 4.

The same strategy was tested on ortho-bromobenzonitrile 6 and ortho-bromobenzaldimine 7.
Unfortunately, in both cases under similar Barbier conditions only the α-methylbutenolide arising
from Zn-promoted reduction of the C-Br bond could be isolated (Table 2, entries 1 and 2). In contrast,
moving from the phenyl to the commercially available naphthyl substrate 8 led to the formation of
alcohol 12 in 60% yield with an 87:13 dr (entry 3). The rigid naphthalene fragment did not affect the dr
observed for compound 3. Moving towards the more flexible dihydronaphthalene platforms 9 and
10 [23] (entries 4 and 5) allowed preparation of the corresponding Barbier adducts 13 and 14 in higher
yields ranging from 80 to 89% with similar drs of 87:13 and 94:6 regardless of the nature of the halide
(Cl or Br) in the precursors.

Table 2. Barbier reaction on substrates 6 to 10.

Entry Starting Halide Compound Condition α-Methylidene
Butyrolactone Product Yield (%) Dr a

1
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X-ray crystallographic analysis undoubtedly assigned the stereoselectivity of the major isomer as
shown in Figure 3. The presence of a sterically demanding naphthalene platform, as well as a bromine
atom, did not affect the stereoselectivity observed for other aromatic substrates [3–7]. The combined
presence of the lactone carbonyl and the benzyl alcohol induces the formation of hydrogen bonds
associating three molecules in the solid state.
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Finally, (dihydro)naphthalene substrates 12, 13, and 14 were subjected to the aforementioned
intramolecular Heck cyclization conditions. For the naphthyl substrate, conditions A (PdCl2(PPh3)2,

KOAc, MeCN at 90 ◦C for 18 h) and B (PdCl2(PPh3)2, K2CO3, THF at 65 ◦C for 18 h) were tested.
Interestingly, only the tetracyclic lactone 15 arising from a Heck cyclisation–oxidation sequence was
isolated in 40% and 60% yields, respectively, under these reaction conditions. Further, no trace of the
naphthyl analogue of compound 4 was observed even in the presence of K2CO3 as the base. At this
stage, no satisfactory explanation for the unexpected selectivity observed towards the tetracyclic lactone
15 can be given. The reactivity of the dihydronaphthalene-based substrates 13 and 14 towards the
Heck cyclization–oxidation sequence were next evaluated. Although no cyclization occurred using the
less reactive chloride derivative 13, the expected product 16 could be obtained in 55 to 70% yields from
the bromide derivative 14. Similarly, only one cyclization product was observed under both reaction
conditions. Moving from the fully aromatic to the dihydro platform (compare 12 and 14) had only
a minor effect on the yield. Again, single crystal X-ray diffraction analysis confirmed the tetracyclic
architecture of 16 and allowed assignment of the stereochemistry of the lactone–cyclopentanone
junction (Scheme 5 and Figure 4).
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3. Materials and Methods

Unless otherwise noted, all starting materials were obtained from commercial suppliers and used
without purification. Petroleum ether was distilled under Argon. NMR spectra were recorded on
300 MHz and 200 MHz Brucker spectrometers (Bruker BioSpin GmbH, Rheinstetten, Germany).

Chemical shifts were reported in ppm relative to the residual solvent peak (7.27 ppm for CHCl3 in
the 1H-NMR and 77.0 ppm for CDCl3 13C-NMR). High resolution mass spectroscopy data were
recorded on an Autospec Ultima (Waters/Micromass) device (Waters, Gyancourt, France) with
a resolution of 5000 RP at 5%. Thin-layer chromatography (TLC) was carried out on aluminium sheets
precoated with silica gel 60 F254. Column chromatography separations were performed using silica
gel (0.040–0.060 mm). Compound 1, 7, 9, 10 and 11 were prepared according to the literature [25–29].
Compounds 6 and 8 are commercially available.

3.1. Methods

3.1.1. Representative Procedure for the Barbier Allylation Reaction of 3-Bromomethyl-5H-furan-2-one

To a reaction vessel were added sequentially 3-bromomethyl-5H-furan-2-one 1 (400 mg, 2.26 mmol),
aldehyde 2 (1.53 mmol, 0.68 eq.), THF (2 mL) saturated aqueous NH4Cl (1 mL) and activated zinc
powder [30] (2.64 mmol, 1.17 eq.). The mixture was stirred vigorously at ambient temperature. After
16 h, the reaction was filtered through diatomite, extracted with diethyl ether (2 × 20 mL for each
extraction), washed with brine (20 mL), and dried over anhydrous MgSO4. Evaporation in vacuo
followed by flash column chromatography on silica gel (petroleum ether/ethyl acetate, 7:3) afforded
homoallylic alcohols 3, 12, 13, and 14.

3.1.2. Procedure A for Intramolecular Heck Reaction

A mixture of lactone 3 (100 mg, 0.35 mmol), PdCl2(PPh3)2 (12.5 mg, 0.017 mmol), and K2CO3

(98 mg, 0.71 mmol) in solvent (3 mL) was purged under argon atmosphere and stirred at 95 ◦C for 16 h.
When the reaction was complete (as indicated by TLC), the mixture was diluted with water (10 mL)
and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried over anhydrous
MgSO4, concentrated under reduced pressure, and purified by flash column chromatography on silica
gel eluted with CH2Cl2/petroleum ether (8:2) to give the expected product 4.

3.1.3. Procedure B for Intramolecular Heck Reaction

A mixture of lactone 3 (100 mg, 0.35 mmol), PdCl2(PPh3)2 (12.5 mg, 0.017 mmol), and KOAc
(69.6 mg, 0.71 mmol) in CH3CN (3 mL). The mixture was purged under argon atmosphere and stirred
at 95 ◦C for 16 h. When the reaction was complete (as indicated by TLC), the mixture was diluted
with water (10 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried
over anhydrous MgSO4 and concentrated under reduced pressure and purified by flash column
chromatography on silica gel eluting with CH2Cl2/petroleum ether (8:2), to give the expected product

4. Conclusions

In summary, we have developed a three-step sequence involving a Barbier reaction followed
by an intramolecular Heck arylation to prepare tri- and tetracyclic lactones starting from
α-bromomethylbutenolide. The Zn-promoted allylation reaction proved efficient in the benzene,
naphthalene, and dihydronaphthalene series giving access to various allylic/benzylic alcohols with
high stereoselectivity. In the key Heck arylation step, the nature of the base proved crucial for obtaining
polycyclic architectures. In the benzene series, switching from K2CO3 to KOAc selectively led to the
expected tricyclic 6,5,5 pattern instead of the unexpected 6,6,5 pattern. Our strategy could be extended
to tetracyclic analogues based on a naphthalene and a dihydronaphthalene platform.
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Supplementary Materials: Representative synthetic procedures, characterization data of new compounds,
as well as NMR and X-ray data are available online, experimental procedures as well as analytical data for
new compounds.
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